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Abstract: Urban agglomerations (UA) are attracting increasing research attention as a global emer-
gent phenomenon, whereby regional collaborative linkages between cities attracts and agglomerates
development. However, these studies also acknowledge that ecological values may be negatively
impacted by re-development, ecological fragmentation, and proximity or downstream impacts. Sus-
tainable development, therefore, requires balancing forces from economic attraction and ecological
repulsion. Forces similar to economic ones may also operate in attracting ecological enhancement to-
wards higher-valued ecological regions; however, research regarding the role of the self-collaborative
gravity-like forces shaping UA is limited in land use optimization. To assist planners, this study
developed a new multi-objective land use optimization of UA that explored the intensity of economic
ties and ecological gradients using the multi-objective NSGA-II algorithm. In this model, economic
linkage intensity (ELI) and accessibility were used to calculate a modified GDP (gross domestic
product), while the NDVI (normalized difference vegetation index) was used for the modified ESV
(ecosystem services value). Spatial allocation with implicit economic accessibility relationships was
enhanced through a two-step mutation operator, including a “gravity flip” spatial orientation factor.
Compared to the standard NSGA-II algorithm, models of future land use of the Guangdong-Hong
Kong-Macao Greater Bay Area (GBA) in 2030 have shown that the modified GDP value in our model
increased by 7.41%, while the conversion rate of high-density vegetation reduced by 7.92%. The
results highlighted the importance of linkage and accessibility factors in enhancing the clustering
of cities. In tandem, the modified ESV also enhances ecosystem services contributions of higher
value vegetated land through decentralized built-up developments. The proposed model provides
managers with a comprehensive and efficient land use solution model that accounts for intrinsic
linkage factors shaping the development of compact urban agglomerations.

Keywords: urban agglomerations; land use optimization; parallel NSGA-II; economic linkage inten-
sity; ecosystem services value

1. Introduction

The emergence of urban agglomerations (UA) globally is thought to improve economic
cooperation, livability, and transportation, especially along coastal areas [1–4]. There
are more than 20,000 UA in the 151 countries, and research has proved that the urban
growth of UA in the 21st century will produce increasingly concentrated cities with high
population density [5]. Expansion of these UA is driven not only by the speed of economic
development and population growth, but also through collaborative economic linkages
between cities, and regional collaborative development has become even more important
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than ever in domestic and foreign competition [1,6]. However, urban expansion in UA is at
the expense of limited land resources that increase pressure on the ecological environment
and ecosystem services [7]. UA that are sustainable, therefore, need to balance and optimize
complex multiple objectives, in order to progress and/or redress development towards
balanced integrated ecological sustainability and economic performance.

Future planning for urban agglomerations is evident in China’s New Urbanization
Strategy, involving the proposed development of five national-level UA [8]. One of these,
the Guangdong-Hong Kong-Macau Greater Bay Area (GBA), was strategically initiated in
2015 to strengthen links within the Pearl River Delta (PRD) regions, with countries involved
in China’s Belt and Road Initiative [4]. GBA’s development is, therefore, strategically
important to China for economic outcomes, innovation, tourism, and industrial cooperation,
as supported by high quality living conditions and environment [1–3,9]. However, GBA is
facing major challenges, including serious environmental pollution, social conflicts, and
the need for planning options to guide regional collaborative development. Land use
optimization strategies for GBA are, therefore, needed to guide collaborative development
between cities, as well as for ecological sustainability.

Studies of land use optimization typically focus on the tradeoffs between conflicting
objectives, in order to optimize allocations of regional land use using optimization mod-
els [10–16]. Sustainable development under constrained land availability invariably leads
to conflicts between economic growth and declines in ecosystem services [17]. Increased
accessibility and transportation infrastructure can improve regional connectivity, social
equity, health, and education [18]; however, they can also lead to regional landscape and
habitat fragmentation [19], with flow-on impacts to biodiversity. GDP (gross domestic
product) and ESV (ecosystem services value) are often used in the calculation of economic
and ecological objectives, respectively; however, the above two objectives do not have
the ability to select spatial locations, while compactness has such ability to limit land use
fragmentation [20,21].

UA involve similar tradeoffs, but additional polycentric spatial structures arise from
correlated attraction forces that increase towards the core of cities, and as well as linkages
with neighboring cities [22–25]. The degree of economic linkage affects the capacity of col-
laborative development among cities, which, in turn, affects the extent of regional synergy
and urban expansion [6,26,27]. Analytical studies of economic linkage include network
analysis, gravity models, and hierarchical structures. Zhao et al. (2017) used network
analysis to show that the Pearl River Delta region was characterized by cross-regional
interactions between market-oriented sectors [28]. Shen et al. (2019) found significant
east–west gradient differences between counties in Zhejiang [29], and Meng et al. (2021)
used gravity models to illustrate barycentric expansion of urbanization, industrialization,
and carbon emissions in China [26]. Despite analytical differences, these findings show
that UA involve integration and development across regional disparities and gradients. A
unifying theme maybe economic linkage intensity (ELI), which has been shown to influence
urban expansion [6,30]. However, Chen et al. (2020) found that this relationship between
urban expansion and economic linkage is indirect and variable [6]. Further, this aspect is
often overlooked in land use optimization models of UA, where ELI between cities may
affect collaborative development within regions, and accessibility can effectively strengthen
the ties between cities [31]. Hence, this aspect requires further investigation in the land use
optimization models of UA.

Optimization of land resources, under multiple conflict objectives, can be modelled
using mature intelligent algorithms, such as genetic [21,32–34], simulated annealing [35,36],
ant colony [37,38], and particle swarm [15] algorithms. Due to nonlinear tradeoffs between
objectives, the overall fitness, representing the balance between objectives, is typically
calculated using one of two methods: the weighted-sum method and Pareto frontier. The
weighted-sum method set weights for each normalized objective before calculating the
weighted sum across objectives, in order to obtain an overall fitness measure. The Pareto
frontier obtains a set of preferred solution sets by non-dominated sorting and selects the
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results according to the planner’s needs [39]. The non-dominated sorting genetic algorithm
II (NSGA-II) is a classic metaheuristic algorithm based on GA, and it can obtain Pareto
set by non-dominated sorting; it has been widely used for optimizations, due to its good
robustness and global search capability [40–42]. For example, it has been successfully
applied to land use planning and integrated optimization using system dynamics mod-
els [43–45]. However, the complexity of NSGA-II problems often leads to long calculation
times, especially in land use optimization. Significant time reductions can be achieved with
computationally parallelized NSGA-II [46,47]. Even small computational speedup across
numerous repetitive calculations in NSGA-II can provide substantial overall benefits, and
parallel processing is a reliable method for achieving computational improvements.

Most previous urban land use optimization studies considered the conflicting rela-
tionship between economy and ecology but ignored the role of ecological gradients and
economic linkage between cities [13]. This paper assumes that the economic linkages and
ecological gradients can play a positive role in the future regional optimization. To simplify
the model and emphasize the collaborative development demands of UA, we do not con-
sider the effects of factors such as food security [16,48], environmental deterioration [49],
or climate risk [50] on land use optimization and propose a new multi-objective land use
optimization of UA that explored the intensity of economic ties and ecological gradients
using the multi-objective NSGA-II algorithm. In the rest of this paper, a description of
the land use optimization model, consisting of three conflicting objectives, is described
first, followed by details of the parallel NSGA-II algorithm used. Subsequently, the model
is applied to the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) to assess its
agglomeration capabilities, and the results and conclusions are discussed.

2. Materials and Methods
2.1. Materials

Our case study is the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), situ-
ated in the Pearl River Delta in China, which includes nine mainland cities and two special
administrative regions, namely Guangzhou (GZ), Shenzhen (SZ), Zhuhai (ZH), Zhao-
qing (ZQ), Huizhou (HZ), Jiangmen (JM), Dongguan (DG), Foshan (FS), Zhongshan (ZS),
Hongkong (HK), and Macao respectively (Figure 1). Covering a total area of 64,823 km2,
and with a total population of over 66 million at the end of 2015, it is one of the most
economically dynamic regions in China. As of 2015, the total GDP reached 6745 billion
CNY, where the economic volume and population density are mainly concentrated in HK,
SZ, and GZ, and the regional land use shows a spatial gradient of decreasing built-up
development from the bay area to the hinterland.

Economic and demographic data were obtained from the statistical yearbooks of each
city, which contained the total GDP of primary, secondary, and tertiary industries (Table 1).
The ecological control areas data of the GBA were obtained from the website of the Ministry
of Natural Resources of the People’s Republic of China (http://g.mnr.gov.cn/ (accessed on
21 February 2022)). Land use data (Figure 1), and NDVI data (Figure 2a) were obtained from
the Resource and Environmental Science and Data Center, with a resolution of 1 × 1 km
(https://www.resdc.cn/ (accessed on 5 December 2021)). The intensity of urban economic
linkage data were obtained from Peng’s paper [51], while the road network was obtained
from Open Street Map (https://www.openstreetmap.org accessed on 2 December 2021).
DEM data (Figure 2b) were obtained from the Shuttle Radar Topography Mission (SRTM,
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp (accessed on 2 December 2021)).

http://g.mnr.gov.cn/
https://www.resdc.cn/
https://www.openstreetmap.org
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
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Figure 1. Land use map of the GBA in 2015. For modeling purposes, the land-use map is divided
into 509 × 417 cells, with each cell being 1 × 1 km in size.

Table 1. The GDP of different cities in the Great Bay Area.

City\Industry (100 Million
CNY) Primary Industry Secondary Industry Tertiary Industry

SZ 7.21 7678.10 10,328.76
ZH 48.30 1037.97 980.08
GZ 206.52 5873.54 12,233.74
ZQ 288.22 647.20 342.28
FS 127.29 4975.83 3030.55
HZ 146.13 1768.08 1264.48
DG 19.92 3007.87 3346.51
ZS 59.56 1680.96 1312.27
JM 170.46 1110.76 982.97
HK 1.13 129.23 1547.69

Marco 0.00 207.53 2888.67

Based on the land use data from 1995–2015 (five years for one period), linear regression
was used to predict the total built-up land area in 2030 to be 12,371 km2. To ensure that the
future agricultural land conforms to government planning requirements, we used the data
from the 2010–2020 master plan of Guangdong Province for the agricultural land retention
projection to estimate agricultural land retention of 8299 km2 in 2030, excluding Hong
Kong and Macao.
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2.2. Method

The steps in applying the NSGA-II optimization algorithm are shown in Figure 3. The
first step was to derive future land use area constraints for the optimization case study
by predicting the future land use structure using a linear model of past trends. Using
NSGA-II, we incorporated accessibility and ELI as modification factors and used parallel
computational processing to speed up the model.
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Figure 3. Workflow procedure of the multi-objective NSGA-II land use optimization framework to
derive Pareto-optimal solutions. A linear prediction of past land use was used to provide future land
use initialization constraints. The NSGA-II algorithm was then applied using non-dominated sorting,
cross-over, accessibility mutation, and gravity flip operators, which are described in the main text.
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We assumed that the study area was a two-dimensional regular grid (rasterized region).
The land use allocation problem was to determine how to assign future (changed) land uses
to specific locations, so that the optimal land use pattern balanced the conflicting objectives,
based on Pareto front solutions.

To determine constrains for the overall areas of future land use, a linear model was
used to extrapolate past trends of land use. In the case study area (described below), we
used data of land use from every five years of the past twenty years to forecast land use
constraints 15 years into the future. The modified NSGA-II algorithm was then used to de-
termine Pareto front solutions using modified objectives and genetic algorithm procedures
described in the next section.

2.2.1. Objectives

(a) Modified GDP

GDP is widely used to measure the level of regional development, and many scholars
have adopted this objective in land use optimization [13,20,21,52]. Since different land uses
correspond to different industries, the study uses the sector-based classification designed
by Cao to calculate the GDP per unit area for different land uses [13], as shown in Table 2.

Table 2. GDP grouped by sector and corresponding land uses (Cao et al. (2019)).

GDP Group by Sector Corresponding Land Use

Primary industry

Farming - Agricultural land
Forestry - Forest

Animal husbandry Cattle, sheep,
chickens, pigs

Grassland, Agricultural
land

Fishery - Water
Secondary industry - - Built-up land

Tertiary industry

Service on farming - Agricultural land
Service on forestry - Forest
Service on animal

husbandry - Agricultural land

Service on Fishery - Water
Other - Built-up land

Uneven development reflects complex linkages between, and drivers of, regional and
local policies, trade, and market. Rapid urbanization in UA can lead to uneven develop-
ment, and the strength of economic linkages between cities reflects the potential for regional
economic collaborative development, which is closely related to distance, population size,
and the level of economic development [1]. The greater the economic linkage intensity
(ELI) between cities, the greater the region’s capacity for collaborative development. ELI is,
therefore, a potential factor that drives change and integrated development in UA. In our
study, we tested its incorporation as a spatial modification factor for GDP, in order to guide
the direction of collaborative land use change towards regions of higher ELI.

Accessibility, in relation to regional commuting time and reduction in environmental
impacts, such as CO2 emissions, has significant impact on land use status and socioeco-
nomic development [53]. Within a region of several cities, accessibility is a core issue
affecting connectivity, livability, and the shaping of UA [31]. Accessibility was, therefore,
used as a spatial modification factor for GDP, calculated according to the formula:

Modified GDP =
K

∑
k=1

ELIk × GDPk × Acck (1)

where ELIk represents the ELI value in cell k. GDPk and Acck represent the unit GDP value
and accessibility value in cell k, respectively. K represent the total number of changed cells.
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Factors included in calculating ELI were: total population, GDP, total import and
export, and tourism income, based on the gravity model of urban economic linkage data
obtained from Peng’s paper [51]. ELI data can present the economic influence degree
between each city, which have high spatial autocorrelation. Considering that ELI is a
function of city quality and spatial distance between cities, which decays exponentially
with increasing distance. Kringing is the method use the spatial correlation between
sampled point data to interpolate the value in the spatial field. Compared with other
interpolation methods, Kringing can preserve spatial variability and generate estimates of
uncertainty surrounding interpolated value. Thus, in this paper, Kringing was used in this
paper to get the spatial distribution map of ELI.

(b) Modified ESV

ESV is a main factor determining the livability, attractiveness, and ecological health
of a region. Obtaining greater economic value with minimal ESV loss is often one of the
main goals of land use management. Conventionally, the same land use type is regarded
as having the same ESV value, thereby ignoring differences in ESV due, for example, to
vegetation densities, which could be used to temper the direction of urban expansion.
Therefore, in this paper, the NDVI was used as modified index to identify the vegetation
density of the selecting cells. With higher NDVI, there will be a lower chance of change.
The modified ESV objective change was calculated by multiplying the unit ESV by the
NDVI, using the formula:

Modified ESV =
K

∑
k=1

ESVk × NDVIk (2)

where k represents the changed cell. K represent the total number of changed cells. NDVIk
is the value of NDVI in cell k. ESVk is the unit ESV in cell k.

(c) Compactness

Compactness is a measure of urban intensification and land use efficiency [14,54].
For any cell, compactness is the number of cells with the same land use type in its eight
neighborhoods, i.e., the more cells with the same value in its neighborhood, the higher the
compactness. The formula is as follows:

Compactness =
I

∑
i=1

(N i − N′i ) (3)

where Ni and N′i are the number of cells with the same land use type in i cell’s eight
neighborhoods in the solution and initial pattern, respectively. I represents the total number
of cells in the region.

2.2.2. Constraints

Constraints on the regional optimization, detailed later in the case study, are set by the
ecological control zone, slope constraint, total agricultural land area constraint, and built-up
land area constraint. Additionally, each cell’s land use type is unique and, therefore, cannot
be converted to another land use type.

2.2.3. Parallel NSGA-II

The NSGA-II algorithm, widely used in land use optimization, was used to obtain the
Pareto solution set from multiple non-linear objectives through non-dominated sorting. As
shown in Figure 1, improved NSGA-II involved five steps: initialization, non-dominated
sorting, selection, crossover, accessibility mutation, and gravity flip. These steps are
described below, bearing in mind that a land use pattern represents a chromosome, and
each land use cell is called a gene. To reflect economic attraction between cities shaping UA,
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we modified the algorithm with a two-step mutation operator and improved the overall
computational efficiency through parallel processing.

Initialization: Based on the projected area of each land use in future (2030 in the case
study), the land use that needs to be increased is randomly assigned to other land uses, and
100 initial chromosomes are set to form the initial population.

Non-dominated sorting and crowing distance: A selected solution in the search space
is a non-dominated solution [55] only if there are no other solutions that are equal in all
objectives or better than that solution in at least one objective. Crowding distance is used to
choose the better solution on a front shown in Figure 4, which represents the non-dominated
sorting of NSGA-II, based on the following process. Assume that the parent is Pi and
population after crossover and mutation is T. There are M solutions within the population.
First, P and T are combined and then sorted non-dominantly from shortest to longest
crowding distance, and the top M chromosomes are selected as the new offspring Pi+1.
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Selection: After non-dominated sorting of the parent population, roulette is performed,
based on the crowding distance. The smaller the distance, the higher the probability of
being selected.

Crossover: Crossover operator is used to preserve relatively better land-use change
patterns under multi-objective constraints and reduce the generation of duplicate individu-
als. In original NSGA-II, the selected cell in the two parents will be exchanged to form the
offspring. Different to the original NSGA-II, the selected cells in our model use maximum
count of neighbors’ land use to choose whether to change. The procedure for crossover is
as follows: after determining the crossover probability, if the number of cells amongst the
eight neighbors that are the same as the central cell in Parent1 is less than that in Parent2,
crossover is performed by replacing the center cell in Parent1 with the central cell land use
in Parent2, as illustrated in Figure 5.

Mutation operator is used to enhance population diversity and prevent the optimiza-
tion results from falling into a local optimum trap. Original NSGA-II only has one mutation
operator. For the selected cell, the land use type of the selected cell is replaced by calculating
the highest number of land use types in its eight neighborhoods. Unlike the original NSGA-
II, two mutations with implicit economic relationships were set for enabling agglomeration
and limiting fragmentation in our model, the procedure for two-step mutation operator is
as follows.

Accessibility Mutation: We developed a new mutation operator that used accessibility
as a modification factor. Referring to the example in Figure 6, after determining the
mutation probability, cell AA (with land use type of built-up land) was selected, and its
accessibility value was 0.2, while cell BB was random selected, and its accessibility value
was 0.4. Since the accessibility value of BB was higher than AA, the land use type shifted
between AA and BB.
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Gravity flip: ELI is calculated from the gravity model, and its spatial distribution has a
structure similar to a gravity field. Areas with strong gravity attract areas from weak gravity.
The spatial linkage of cities can be optimized by gravity flip, which is used to determine if
spatial flipping results in an overall stronger impact of the gravity field on modified GDP.
As a simple example, where weight = mass × gravity, moving a mass closer to a stronger
gravity field results in greater weight. Likewise, moving an area producing GDP closer to a
stronger ELI field results in potentially higher GDP generated = original GDP × ELI. Using
3 × 3 window as unit, the total modified GDP in the original window and solution after
gravity flip, which, in this case, corresponds to a transposition, are compared. If the total
modified GPD after flipping is higher, then the window will be flipped (Figure 7). Note
that vertical and horizontal flipping are possible as options.

Land 2022, 11, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 7. Gravity flip—rotate the 3 × 3 windows 180 degrees clockwise if it enhances modified 
GDP. 

To summarize, accessibility mutation determines whether the location of a random 
built-up land cell and another randomly selected non-built-up land cell are exchanged, 
based on the accessibility value, while gravity flip is implemented if the total modified 
GDP is higher than the original value when the cells in the 3 × 3 window are rotated 180 
degrees clockwise. 

3. Results 
3.1. Objective Quantification and Constraints 

The spatial constraints were set, based on following restrictions: (1) the total arable 
land area to be no less than 8299 km2 and according to the overall development plan of 
each city; (2) all changeable cells could not be changed to unused land; (3) slopes less than 
15 degrees can be built-up land, less than 25 degrees can be cropland, and more than 25 
degrees can only be forest; (4) all ecological control area and water could not be changed 
(Figure 8). All the restrictions are not only applied in the initialization process, but also 
play an important role in constraining the global situation. 

Parameters were set as follows: the unit ESV of each land use is derived from the 
results of Xie’s assessment, as shown in Table 3 [56]. GDP is calculated, with reference to 
Cao’s study, and the unit GDP values of each land use are shown in Table 3 [13]. The 
initial spatial distributions of GDP and ESV (Figure 9) were obtained using ArcGIS. This 
paper uses Peng’s results of ELI for the Greater Bay Area [51]. Accessibility is expressed 
by road network density, and its spatial distribution was obtained in arcGIS (Figure 10) 
after applying the normalization method in Pan’s model [21]. 

 

Figure 8. Constraints in GBA, in relation to (a) the slope constraint and (b) ecological control area, 
that cannot be changed. 

Figure 7. Gravity flip—rotate the 3 × 3 windows 180 degrees clockwise if it enhances modified GDP.

To summarize, accessibility mutation determines whether the location of a random built-
up land cell and another randomly selected non-built-up land cell are exchanged, based on
the accessibility value, while gravity flip is implemented if the total modified GDP is higher
than the original value when the cells in the 3 × 3 window are rotated 180 degrees clockwise.
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3. Results
3.1. Objective Quantification and Constraints

The spatial constraints were set, based on following restrictions: (1) the total arable
land area to be no less than 8299 km2 and according to the overall development plan of
each city; (2) all changeable cells could not be changed to unused land; (3) slopes less
than 15 degrees can be built-up land, less than 25 degrees can be cropland, and more than
25 degrees can only be forest; (4) all ecological control area and water could not be changed
(Figure 8). All the restrictions are not only applied in the initialization process, but also
play an important role in constraining the global situation.
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Parameters were set as follows: the unit ESV of each land use is derived from the
results of Xie’s assessment, as shown in Table 3 [56]. GDP is calculated, with reference
to Cao’s study, and the unit GDP values of each land use are shown in Table 3 [13]. The
initial spatial distributions of GDP and ESV (Figure 9) were obtained using ArcGIS. This
paper uses Peng’s results of ELI for the Greater Bay Area [51]. Accessibility is expressed by
road network density, and its spatial distribution was obtained in arcGIS (Figure 10) after
applying the normalization method in Pan’s model [21].

Table 3. The unit ESV and GDP in each land use type.

Land Use ESV (Million CNY × km−2 × a−1) GDP (100 Million CNY × km−2)

Cropland 0.355 0.104
Forest 0.524 0.004

Grassland 1.263 0.012
Water 2.037 0.137

Built-up land 0 8.4
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3.2. Implementation and Evaluation

A total of 100 random patterns were used as the initial population, based on probabili-
ties of crossover, accessibility mutation, and gravity flip of 0.06, 0.1, and 0.1, respectively. A
total of 600 iterations were simulated, in order to optimize the three conflicting objectives
under constraints on the agricultural land total and ecological control areas. We found
that parallel NSGA-II outperformed classical NSGA-II in execution, taking 16.71 s in each
iteration, while classical NSGA-II took 151.63 s.

The progress of iterations (Figure 11a) shows that the solutions achieved a better spread
across the three objectives, with the respect to the overall optimization, but improvements
become smaller and smaller. To illustrate the convergence trend in the model, we use
minimum modified ESV, shown in Figure 11b, which showed a rapid decrease up to
90 iterations and then an almost static phase through successive iterations. The curve
appears stable after 212 iterations, implying the solution process efficiently approaches
near-optimality relatively quickly.
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In Figure 11a, modified ESV and compactness both change negatively to modified GDP,
and the pattern with smallest compactness loss also has smallest modified ESV loss. Taking
each preferred solution as an example of the optimal solution set, the following specific
solutions are possible: Solution I (SI)—the pattern with the highest modified GDP; Solution
II (SII)—the pattern with minimal modified ESV loss; Solution III (SIII)—the pattern with
minimal compactness loss. To demonstrate the superiority of our model, solutions from
the classic NSGA-II approach were also simulated. In this approach, the GDP and ESV
were not affected by their spatial location, and cells selected in mutation changed their
land use values randomly. Solution IV (SIV)—was obtained from the classic NSGA-II for
comparison with SI, due to the almost identical increments of build-up land, ESV loss, and
compactness loss. The objective values in SIV were recalculated according to our proposed
method to facilitate the comparison. The comparative results from the different solutions
are shown below (Figure 12, Tables 4 and 5). We did not count the percentage change in
unused land because the total area of unused land is almost zero. For comparison purposes,
the spatial distribution of land use and built-up land increment for each scenario are shown
in Figure 12.

Table 4. The objective values, under different scenarios, described in the main text.

Scenario\Objective
Value

Modified GDP
Change

Modified ESV
Change

Compactness
Change

SI (GDP) 19.22% −11.48% −8.67%
SII (ESV) 9.28% −8.03% −4.75%

SIII (Compactness) 9.17% −9.18% −4.69%
SIV (NSGA-II) 11.81% −10.94% −8.67%



Land 2022, 11, 1003 13 of 18Land 2022, 11, x FOR PEER REVIEW 14 of 19 
 

 

  

(a) SI (GDP) (b) Built-up land increment in SI 

  
(c) SII (ESV) (d) Built-up land increment in SII 

  
(e) SIII (compactness) (f) Built-up land increment in SIII 

Land 2022, 11, x FOR PEER REVIEW 15 of 19 
 

 

  
(g) SIV (NSGA-II) (h) Built-up land increment in SIV 

Figure 12. Distribution of land use for simulation scenarios: SI (GDP)—optimal GDP objective; SII 
(ESV)—optimal ESV objective; SIII (compactness)—optimal compactness objective; SIV (NSGA-
II)—baseline NSGA-II algorithm, without ELI, accessibility, or NDVI. Left panels show final simu-
lated land use patterns, while right side panels show the corresponding built-up land increment 
changes. 

4. Discussion 
In the past decades, many scholars have conducted regional land use optimization 

studies and focused on multi-objective trade-offs, as well as model improvements [20,57–
59]; however, few studies take the effect of inner-city economic linkages and ecological 
gradient on land use changes in UA into account [13,60]. Cao have proposed land use 
optimization for urban agglomerations, but he focused on the intermediate process of 
change between the initial and future patterns and ignored the intrinsic characteristics of 
urban agglomerations [13]. Some scholars have discussed the role of economic linkages 
for regional collaborative development [31], these studies cannot identify the spatial loca-
tion preferences of land use. Meanwhile, although objectives, such as soil erosion and cli-
mate risk are still important factors for high quality development of UA [49,50], this model 
argues that using too many objectives would confuse the focus of the study, so only the 
three objectives with the highest universality are chosen (GDP, ESV, and compactness) 
and modified to meet the regional collaborative development needs. 

In this model, ELI and accessibility were introduced into modified GDP, while NDVI 
was used in modified ESV; the modification not only give economic and ecological objec-
tive a quantitative meaning, but also the ability of spatial location preference for enabling 
agglomeration, whereas the above objectives had only a quantitative function in the pre-
vious study [13,20]. Additionally, original NSGA-II used a neighbor-change method to 
reduce the fragmentation [40,42]. In our model, spatial allocation with implicit economic 
relationships was enhanced through a two-step mutation operator to limit fragmentation. 
The results show that our model is able to promote agglomeration and optimize ecological 
objectives around higher value vegetation. Our framework appears to provide more rele-
vant future land use planning solutions that can comprehensively and efficiently simulate 
UA around different objective priorities. 

Although this paper establishes a land use optimization framework applicable to UA, 
it still has some limitations. Firstly, the raster-based optimization could be more practical 
if we adopt land use zones or patches as optimization units. Additionally, UA are com-
plex, and the variety of urban development across regions is more pronounced than in-
land UA—for example, from regional linkages. Computationally, vertical and horizontal 
gravity flips should be tested, in addition to the rotation used, and more continuous 
measures of vegetation density could be used. Additionally, risk objectives, such as heat 

Figure 12. Distribution of land use for simulation scenarios: SI (GDP)—optimal GDP objective; SII
(ESV)—optimal ESV objective; SIII (compactness)—optimal compactness objective; SIV (NSGA-II)—
baseline NSGA-II algorithm, without ELI, accessibility, or NDVI. Left panels show final simulated
land use patterns, while right side panels show the corresponding built-up land increment changes.
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Table 5. The Area change of land use under different scenarios.

Scenario\Area
Change (%) Cropland Forest Grassland Built-Up Land

Initial Pattern 14929 35004 1472 8806
SI (GDP) 1.36% −8.84% 0.34% 32.88%
SII (ESV) 0.07% −6.38% −8.63% 26.89%

SIII (Compactness) −0.13% −7.52% −7.88% 31.56%
SIV (NSGA-II) −4.88% −9.00% 54.48% 33.08%

SI (GDP), SII (ESV), and SIII (compactness) achieved better scores, with respect to their
preferred objectives. In SI (GDP), built-up land increased by 32.88%, forest and cropland
decreased 8.84% and 1.36%, respectively, while grassland increased by 0.34%. Compared to
SII (ESV), more built-up land increment in SI (GDP) led to a greater decline in modified ESV
and compactness. In SII (ESV), although most of the built-up land increment comes from
forest, grassland is used more for land use transfer thereby reducing the amount of forest
transfer, in a way that minimizes the modified ESV reduction while built-up land increased.
Almost identical ESV and compactness value in SI and SIV with the same built-up land
increment, the modified GDP value in SI was significantly higher than SIV (7.41%), which
illustrates the superiority of our model in getting better pattern with higher economic output.

Comparing the spatial distribution of built-up land increments across scenarios, the
inclusion of ELI, accessibility and NDVI as modifying factors appears to positively affect
the trend of urban expansion. The cluster of built-up land increments in SII (ESV) is worse
than SI (GDP), reflecting that modified ESV increased for more decentralized patterns of
built-up land increments. Although SIII (Compactness) have the least loss of compactness,
the cluster of built-up land increments is worse than SI (GDP), reflecting the limited role
of compactness objective on the distribution of built-up land clustering. In addition, the
built-up land increment in SIV is spatially evenly distributed without clustering, this
phenomenon arises because spatial agglomeration can only be controlled through the
compactness objective, without influences from gravitation attraction of ELI, accessibility,
and ESV.

The ELI increments were 1072 and 993 for SI and SIV and the accessibility increments
were 773 and 565 for SI and SIV, respectively; implying that SI has higher ELI and accessi-
bility with the same built-up land increment. Compared with SIV, the spatial distribution
of built-up land increment is more clustered in SI, reflecting the role of modified GDP in
spatial agglomeration proposed by our model. To explore the advantages of the modified
ESV, we divided NDVI into three level by natural break method, and analyzed the amount
of vegetation transfer at different levels in SI and SIV (Table 6). The total changed percent
of vegetation (cropland, grassland, and forest) of high level in SIV was 7.92% higher than
SI, indicating the effectiveness of our model in optimizing selection of low value vegetation
for changes.

Table 6. The change of vegetation transfer at different levels in SI and SIV.

Scenario\Change of Vegetation (%) Low Medium High

SI 3.81% 24.25% 71.94%

SIV 2.43% 17.71% 79.86%

4. Discussion

In the past decades, many scholars have conducted regional land use optimization
studies and focused on multi-objective trade-offs, as well as model improvements [20,57–59];
however, few studies take the effect of inner-city economic linkages and ecological gradient
on land use changes in UA into account [13,60]. Cao have proposed land use optimization
for urban agglomerations, but he focused on the intermediate process of change between
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the initial and future patterns and ignored the intrinsic characteristics of urban agglom-
erations [13]. Some scholars have discussed the role of economic linkages for regional
collaborative development [31], these studies cannot identify the spatial location prefer-
ences of land use. Meanwhile, although objectives, such as soil erosion and climate risk are
still important factors for high quality development of UA [49,50], this model argues that
using too many objectives would confuse the focus of the study, so only the three objectives
with the highest universality are chosen (GDP, ESV, and compactness) and modified to
meet the regional collaborative development needs.

In this model, ELI and accessibility were introduced into modified GDP, while NDVI
was used in modified ESV; the modification not only give economic and ecological objective
a quantitative meaning, but also the ability of spatial location preference for enabling ag-
glomeration, whereas the above objectives had only a quantitative function in the previous
study [13,20]. Additionally, original NSGA-II used a neighbor-change method to reduce the
fragmentation [40,42]. In our model, spatial allocation with implicit economic relationships
was enhanced through a two-step mutation operator to limit fragmentation. The results
show that our model is able to promote agglomeration and optimize ecological objectives
around higher value vegetation. Our framework appears to provide more relevant future
land use planning solutions that can comprehensively and efficiently simulate UA around
different objective priorities.

Although this paper establishes a land use optimization framework applicable to UA,
it still has some limitations. Firstly, the raster-based optimization could be more practical if
we adopt land use zones or patches as optimization units. Additionally, UA are complex,
and the variety of urban development across regions is more pronounced than inland
UA—for example, from regional linkages. Computationally, vertical and horizontal gravity
flips should be tested, in addition to the rotation used, and more continuous measures
of vegetation density could be used. Additionally, risk objectives, such as heat risk and
soil erosion risk, may be required in the optimization process, in order to determine the
long-term livability of regions. Despite shortcomings, our study provides a good reference
and strategy for future planning of UA.

5. Conclusions

This study established a new multi-objective land use optimization of UA that explored
the intensity of economic ties and ecological gradients using the multi-objective NSGA-II
algorithm. Three conflicting objectives (modified GDP, modified ESV, and compactness)
were proposed. ELI and accessibility factors were proposed as modifying factors for GDP.
NDVI were used to modify ESV and limit development within high-value vegetation.
Accessibility mutation and gravity flip mutation were constructed for enabling agglomer-
ations. The parallel process was applied in NSGA-II by making eight chromosomes run
simultaneously in each iteration, which improved the model efficiency in execution. On
this basis, the model was used to optimize the land-use layout in GBA in 2030. A Pareto set
was obtained, and its optimization performance was evaluated.

The optimization results showed that the performance of our model was better than
original NSGA-II. The value of modified GDP of our model was 7.41% higher than the
original NSGA-II for almost the same built-up land increment. Anyway, the comparison
showed that our model reduced the conversion rate of high-density vegetation (7.92%)
and select relatively low- and medium-density vegetation for built-up land development.
The reason for these improvements is that ELI and accessibility caused the clustering of
cities, which enhanced modified GDP performance, and the modified ESV preferentially
optimized ecological objectives around higher value vegetation. However, prioritizing
planning around the modified ESV favored decentralized built-up development.

Our model provided a set of relative optimum land-use arrangements that meet the
requirements of the ecological red line, and it has shown high robustness and flexibility
in multiple-objective land-use optimization problems. It could simultaneously optimize
the land-use spatial layout and improve the economic benefits, without negative effects on
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ecological benefits and spatial compactness. In 2030, the newly-developed built-up land
was reasonably deployed. Decision makers can observe the optimal land-use allocation
schemes and select one according to their priorities. Considering collaborative development
and ecological sustainability, in 2030, the increment of built-up land in GBA mainly comes
from forest. Guangzhou has the largest increase in built-up land. The GBA’s spatial
optimization needs to adjust measures according to local conditions, adopt strategies
according to the categories, cooperate as a whole to promote the core drive capability of
Guangzhou, Shenzhen, push the coordinated development of all cities to improve the
overall competitiveness of the region, and achieve high quality development.
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