Study on Ecological Loss in Coal Mining Area Based on Net Primary Productivity of Vegetation
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Soure
2.3. Methods
2.3.1. CASA Model
2.3.2. Statistical Analysis and Mathematical Model
2.3.3. Correlation Analysis
3. Result and Analysis
3.1. Model Accuracy Verification
3.2. Spatial Variation Analysis of NPP
3.3. Analysis of the Interannual Variation of NPP
3.4. Analysis of NPP Variation in Mining Area
3.5. NPP Analysis of the Surrounding Area of the Mining Area
3.6. NPP Dynamics of Reclaimed Land
4. Discussion
4.1. Validation of the NPP Estimation of CASA
4.2. Effects of Mining Activities on NPP of Vegetation
4.3. Effects of Land Reclamation on NPP of Vegetation
4.4. Impact Factors of NPP
5. Conclusions
- From 2006 to 2020, the NPP of the Pingshuo mining area has a downward trend, from 39.54 gC/(m2·month) in 2006 to 38.99 gC/(m2·month) in 2020. The spatial distribution of NPP in the study area has gradually evolved from high in the east and low in the west in 2006 to a trend of high in the surrounding area and low in the middle in 2020. The significant decrease area is the mining area distributed in the center of the study area, and the significant increase area is the land reclamation area.
- As mining activities progressed, the NPP of the three open-pit mines fell by 2.08 gC/(m2·month) to 9.25 gC/(m2·month). It shows that with the increase in the mining speed and the continuous expansion of the mining scope, the degree of damage to the ecological environment of the mining area is also increasing, and the disturbance to the ecosystem continues to increase.
- The NPP value within 600 m from the mining area has a large change. The change value of NPP in different years is between 2.03 gC/(m2·month) and 7.45 gC/(m2·month). The change between 600 m and 1000 m from the mining area is relatively gentle, and the change range is −0.11~1.00 gC/(m2·month), indicating that vegetation NPP is sensitive to the impact of mining activities.
- The NPP value of the unreclaimed area is 18.63–26.65 gC/(m2·month), the NPP value of forest land in the reclaimed area is 37.44–50.53 gC/(m2·month), the reclaimed cultivated land is 35.28–45.56 gC/(m2·month), and the reclaimed grassland is 37.01–44.57 gC/(m2·month). It shows that NPP is significantly affected by land reclamation, and land reclamation can effectively restore part of the lost NPP and can alleviate the ecological loss of the mining area to a certain extent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ussiri, D.A.N.; Lal, R. Carbon sequestration in reclaimed minesoils. Crit. Rev. Plant Sci. 2005, 24, 151–165. [Google Scholar] [CrossRef]
- Wong, M.H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003, 50, 775–780. [Google Scholar] [CrossRef]
- Li, M.S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 2006, 357, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Guenther, A. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 2002, 49, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Fatichi, S.; Pappas, C.; Zscheischler, J.; Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. New Phytol. 2019, 221, 652–668. [Google Scholar] [CrossRef] [Green Version]
- Liao, Q.P.; Liu, X.R.; Xiao, M.Z. Ecological Restoration and Carbon Sequestration Regulation of Mining Areas-A Case Study of Huangshi City. Int. J. Environ. Res. Public Health 2022, 19, 4175. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Jiang, W. Spatial and temporal evolution of ecosystem carbon stocks in the Guangdong-HongKong-Macao Greater Bay Area. Landsc. Archit. 2020, 27, 57–63. [Google Scholar]
- Pan, J.H.; Dong, L.L. Spatio-temporal variation in vegetation net primary productivity and its relationship with climatic factors in the Shule River basin from 2001 to 2010. Hum. Ecol. Risk Assess. 2018, 24, 797–818. [Google Scholar] [CrossRef]
- Yan, Y.C.; Liu, X.P.; Ou, J.P.; Li, X.; Wen, Y.Y. Assimilating multi-source remotely sensed data into a light use efficiency model for net primary productivity estimation. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 11–25. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.Q.; Pan, Y.Z.; Zhang, J.S. Estimation of Net Primary Productivity of Chinese Terrestrial Vegetation Based on Remote Sensing. Acta Phytoecol. Sin. 2007, 31, 413–424. [Google Scholar]
- Ge, W.Y.; Deng, L.Q.; Wang, F.; Han, J.Q. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.Z.; Wu, S.H.; Zhao, D.S.; Dai, E.F.; Chen, L.; Zhang, L. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005. J. Geogr. Sci. 2014, 24, 3–17. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G.S.; Wang, Y.H. Dynamics Simulation of Net Primary Productivity by a Satellite Data-Driven Casa Model in Inner Mongolian Typical Steppe, China. Acta Phytoecol. Sin. 2008, 32, 786–797. [Google Scholar]
- Steele, S.J.; Gower, S.T.; Vogel, J.G.; Norman, J.M. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiol. 1997, 17, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, T.; Sun, R.; Liu, Q. A Model of Estimating Vegetation Productivity Based on Meteorological and Remote Sensing Data. J. Northwest For. Univ. 2017, 32, 230–236. [Google Scholar]
- Zhu, W.; Chen, Y.; Xu, D.; Li, J. Advances in terrestrial net primary productivity (NPP) estimation models. Chin. J. Ecol. 2005, 24, 296–300. [Google Scholar]
- Hadian, F.; Jafari, R.; Bashari, H.; Tartesh, M.; Clarke, K.D. Estimation of spatial and temporal changes in net primary production based on Carnegie Ames Stanford Approach (CASA) model in semi-arid rangelands of Semirom County, Iran. J. Arid. Land 2019, 11, 477–494. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Liu, H.; Lin, Z. Multi-time scale changes of vegetation NPP in six provinces of northwest China and their responses to climate change. Acta Ecol. Sin. 2019, 39, 5058–5069. [Google Scholar]
- Mu, S.J.; Zhou, S.X.; Chen, Y.Z.; Li, J.L.; Ju, W.M.; Odeh, I.O.A. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland, China. Glob. Planet. Change 2013, 108, 29–41. [Google Scholar] [CrossRef]
- Gang, C.C.; Zhao, W.; Zhao, T.; Zhang, Y.; Gao, X.R.; Wen, Z.M. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Sci. Total Environ. 2018, 645, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.Y.; Zhang, Z.X.; Kong, R.; Chang, J.; Tian, J.X.; Zhu, B.; Jiang, S.S.; Chen, X.; Xu, C.Y. Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities. Remote Sens. 2019, 11, 1451. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, G.H.; Li, Z.S.; Wang, P.T.; Wang, Z.Z. Assessing the Driving Forces in Vegetation Dynamics Using Net Primary Productivity as the Indicator: A Case Study in Jinghe River Basin in the Loess Plateau. Forests 2018, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Hicke, J.A.; Asner, G.P.; Randerson, J.T.; Tucker, C.; Los, S.; Birdsey, R.; Jenkins, J.C.; Field, C. Trends in North American net primary productivity derived from satellite observations, 1982–1998. Glob. Biogeochem. Cycles 2002, 16, 1–14. [Google Scholar] [CrossRef]
- Fan, X.; Hao, X.M.; Hao, H.C.; Zhang, J.J.; Li, Y.H. Comprehensive Assessment Indicator of Ecosystem Resilience in Central Asia. Water 2021, 13, 124. [Google Scholar] [CrossRef]
- Wang, J.; Guo, L.; Bai, Z.; Yang, R.; Zhang, M. Succession law of reclaimed soil and vegetation on opencast coal mine dump of loess area. Trans. Chin. Soc. Agric. Eng. 2013, 29, 223–232. [Google Scholar]
- Zhou, Y.; Luo, M.; Zhou, X.; Huang, Y.; Zhang, S. Making method of tracking monitoring scheme for abandoned industrial and mining land reclamation and its empirical research. Trans. Chin. Soc. Agric. Eng. 2017, 33, 240–248. [Google Scholar]
- Akala, V.A.; Lal, R. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. J. Environ. Qual. 2001, 30, 2098–2104. [Google Scholar] [CrossRef]
- Dutta, R.K.; Agrawal, M. Restoration of opencast coal mine spoil by planting exotic tree species: A case study in dry tropical region. Ecol. Eng. 2003, 21, 143–151. [Google Scholar] [CrossRef]
- Xu, Z.; Hou, H.; Zhang, S.; Ding, Z.; Ma, C.; Gong, Y.; Liu, Y. Effects of mining activity and climatic change on ecological losses in coal mining areas. Trans. Chin. Soc. Agric. Eng. 2012, 28, 232–240. [Google Scholar]
- Guowei, W.; Yanling, Z.; Yanhua, F.; Wei, N.; Yan, Z.; Jianxin, Y. Impact of reclamation-driven land use change on vegetation carbon store in mining areas. Chin. J. Eco-Agric. 2015, 23, 1437–1444. [Google Scholar]
- Chen, G.; Li, X.; Jiao, L.; Wang, J.; Gu, K. Spatial-temporal Variation of Vegetation Net Primary Productivity in Huainan Coal Mine Area from 2000 to 2012. Ecol. Environ. Sci. 2017, 26, 196–203. [Google Scholar]
- Ahirwal, J.; Maiti, S.K. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate. J. Environ. Manag. 2017, 201, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Q.; Chen, G.Z. Evolution of Ecosystem Service Value and Ecological Storage Estimation in Huainan Coal Mining Area. Bull. Environ. Contam. Toxicol. 2021, 107, 1243–1249. [Google Scholar]
- Cao, D.Y.; Huang, C.L.; Wu, J.; Li, H.T.; Zhang, Y.D. Environment Carrying Capacity Evaluation of Coal Mining in Shanxi Province. In Proceedings of the 1st International Conference on Energy and Environmental Protection (ICEEP 2012), Hohhot, China, 23–24 June 2012; p. 1141. [Google Scholar]
- Jiang, H.; Fan, G.; Zhang, D.; Zhang, S.; Fan, Y. Evaluation of eco-environmental quality for the coal-mining region using multi-source data. Sci. Rep. 2022, 12, 6623. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Zhang, S.; Ding, Z.; Gong, Y.; Ma, C. Study on the measurement of ecological loss based on the net primary productivity in coal mines. J. China Coal Soc. 2012, 37, 445–451. [Google Scholar]
- Xu, W.X.; Wang, J.M.; Zhang, M.; Li, S.J. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod. 2021, 286, 125523. [Google Scholar] [CrossRef]
- Yuan, Y.; Ren, Y.X.; Gao, G.Q.; Zhao, Z.Q.; Niu, S.Y. Intra- and Interspecific Interactions among Pioneer Trees Affect Forest-Biomass Carbon Accumulation in a Nutrient-Deficient Reclaimed Coal Mine Spoil. Forests 2020, 11, 819. [Google Scholar] [CrossRef]
- Yang, B.Y.; Bai, Z.K.; Cao, Y.G.; Xie, F.; Zhang, J.J.; Wang, Y.N. Dynamic Changes in Carbon Sequestration from Opencast Mining Activities and Land Reclamation in China’s Loess Plateau. Sustainability 2019, 11, 1473. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Tian, F.; Wang, Y.J.; Wang, M.; Hu, Z.L. Effect of coal mining on vegetation disturbance and associated carbon loss. Environ. Earth Sci. 2015, 73, 2329–2342. [Google Scholar] [CrossRef]
- Yu, D.Y.; Shi, P.J.; Shao, H.B.; Zhu, W.Q.; Pan, Y.H. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. Int. J. Remote Sens. 2009, 30, 4851–4866. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial Ecosystem Production—A Process Model-Based on Global Satellite and Surface Data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- McGuire, A.D.; Melillo, J.M.; Kicklighter, D.W.; Joyce, L.A. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. J. Biogeogr. 1995, 22, 785–796. [Google Scholar] [CrossRef]
- Rahman, A.F.; Gamon, J.A. Detecting biophysical properties of a semi-arid grassland and distinguishing burned from unburned areas with hyperspectral reflectance. J. Arid. Environ. 2004, 58, 597–610. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Pan, Y.Z.; He, H.; Yu, D.Y.; Hu, H.B. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, W.; Zhou, C.; Ding, M.; Liu, L.; Gao, J.; Bai, W.; Wang, Z.; Zheng, D. Spatial and temporal variability in the net primary production (NPP) of alpine grassland on Tibetan Plateau from 1982 to 2009. Acta Geogr. Sin. 2013, 68, 1197–1211. [Google Scholar]
- Li, J.; Yang, Y.; Zhang, H.; Huang, L.; Gao, Y. Spatio-temporal variations of net primary productivity and its natural and human factors analysis in Qinling-Daba Mountains in the past 15 years. Acta Ecol. Sin. 2019, 39, 8504–8515. [Google Scholar]
- Liu, L.; Guan, Y.J.; Mu, C.; Han, W.Q.; Qiao, X.L.; Zheng, J.H. Spatio-temporal characteristics of vegetation net primary productivity in the Ili River Basin from 2008 to 2018. Acta Ecol. Sin. 2022, 42, 1566. [Google Scholar]
- Zhao, M.S.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Jiang, R.; Li, X.; Zhu, Y.; Zhang, Z. Spatial-temporal variation of NPP and NDVI correlation in wetland of Yellow River Delta based on MODIS data. Acta Ecol. Sin. 2011, 31, 6708–6716. [Google Scholar]
- Zhou, X.; Zhu, W.; Ma, G.; Zhang, D.; Zhen, Z. Assessing the Vegetation Net Primary Productivity Loss Resulted from the Mining of Rare Earth Ore based on Remote Sensing Technology. A Case Study in Ganzhou, Jiangxi Province. Remote Sens. Technol. Appl. 2016, 31, 307–315. [Google Scholar]
- Zhang, Z.; Bai, Z.; He, Z.; Bao, N. Dynamic changes of land use type and carbon sinks based RS and GIS in Pingshuo opencast coal mine. Trans. Chin. Soc. Agric. Eng. 2012, 28, 230–236. [Google Scholar]
- Cao, Y.; Bai, Z.; Zhang, G.; Zhou, W.; Wang, J.; Yu, Q.; Du, Z. Soil Quality of Surface Reclaimed Farmland in Large Open-cast Mining Area of Shanxi Province. J. Agro-Environ. Sci. 2013, 32, 2422–2428. [Google Scholar]
- An, Y.; Bian, Z.; Dai, W.; Dong, J. Analysis on the gas carbon source and carbon sink in coal mining: A case study of Jiawang, Xuzhou. J. China Univ. Min. Technol. 2017, 46, 415–422. [Google Scholar]
- Mylliemngap, W.; Barik, S.K. Plant diversity, net primary productivity and soil nutrient contents of a humid subtropical grassland remained low even after 50 years of post-disturbance recovery from coal mining. Environ. Monit. Assess. 2019, 191, 697. [Google Scholar] [CrossRef]
- Yang, F.; Wang, J.Y.; Zhang, C.Y.; Li, J.; Xie, H.Z.; Zhuoge, Z.R. The Impact of Human Activities on Net Primary Productivity in a Grassland Open-Pit Mine: The Case Study of the Shengli Mining Area in Inner Mongolia, China. Land 2022, 11, 743. [Google Scholar] [CrossRef]
- Guo, W.B.; Yu, X.Y.; Wei, J.F.; Tong, J.B.; Tian, X.J. Integrating operation study on mining and reclamation in Hulun Buir Grassland open-pit mine area. Coal Eng. 2014, 46, 143–145. [Google Scholar]
- Sun, Q.; Bai, Z.; Cao, Y.; Xie, M.; Hu, X.; Jiang, Y.; Lu, Y. Ecological risk assessment of land destruction in large open-pit mine. Trans. Chin. Soc. Agric. Eng. 2015, 31, 278–288. [Google Scholar]
- Hou, H.P.; Zhang, S.L.; Ding, Z.Y.; Huang, A.P.; Tian, Y.F. Spatiotemporal dynamics of carbon storage in terrestrial ecosystem vegetation in the Xuzhou coal mining area, China. Environ. Earth Sci. 2015, 74, 1657–1669. [Google Scholar] [CrossRef]
- Xing, Z.G.; Peng, S.P.; Du, W.F.; He, Y.L.; Chong, S.; Feng, F.S.; Yu, P.; She, C.C.; Xu, D.J. Hydrogeological changes caused by opencast coal mining in steppe zone: A case study of Shengli 1 open-pit coal mine. Desalination Water Treat. 2018, 121, 126–133. [Google Scholar] [CrossRef]
- Ting, L. Dynamic monitoring and analysis of ecological environment in open-pit mining area of Pingshuo coal mine. China Acad. J. Electron. Publ. House 2013. [Google Scholar]
- Cao, Y.G.; Bai, Z.K.; Zhou, W.; Zhang, X.R. Characteristic analysis and pattern evolution on landscape types in typical compound area of mine agriculture urban in Shanxi Province, China. Environ. Earth Sci. 2016, 75, 585. [Google Scholar] [CrossRef]
- Cao, Y.G.; Bai, Z.K.; Zhou, W.; Zhang, X.R. Analyses of traits and driving forces on urban land expansion in a typical coal-resource-based city in a loess area. Environ. Earth Sci. 2016, 75, 1191. [Google Scholar] [CrossRef]
- Hu, Z.; Long, J.; Wang, X. Self-healing, natural restoration and artificial restoration of ecological environment for coal mining. J. China Coal Soc. 2014, 39, 1751–1757. [Google Scholar]
- Prakash, A.; Gupta, R.P. Land-use mapping and change detection in a coal mining area—A case study in the Jharia coalfield, India. Int. J. Remote Sens. 1998, 19, 391–410. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Change Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhao, Z.Q.; Bai, Z.K.; Wang, H.Q.; Wang, Y.Z.; Niu, S.Y. Reclamation patterns vary carbon sequestration by trees and soils in an opencast coal mine, China. CATENA 2016, 147, 404–410. [Google Scholar] [CrossRef]
- Liu, C.; Liang, Y.; Zhao, Y.J.; Liu, S.S.; Huang, C.B. Simulation and Analysis of the Effects of Land Use and Climate Change on Carbon Dynamics in the Wuhan City Circle Area. Int. J. Environ. Res. Public Health 2021, 18, 11617. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W. Remote estimation of vegetation fraction for reclaimed areas of Antaibao opencast mine. J. Cent. South Univ. For. Technol. 2016, 36, 113–119. [Google Scholar]
- Wang, S.; Cao, Y.; Bai, Z.; Luo, G.; Kuang, X.; Yang, G. Spatial Characteristics of Reconstructed Soil Texture in Dumping Site of Loess Open-pit Mining Area. J. Northwest For. Univ. 2020, 35, 40–51. [Google Scholar]
- Karu, H.; Szava-Kovats, R.; Pensa, M.; Kull, O. Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine (vol 39, pg 1507, 2009). Can. J. For. Res. 2010, 40, 595. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Lal, R. Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma 2010, 157, 196–205. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Z.Q.; Niu, S.Y.; Li, X.Z.; Wang, Y.Y.; Bai, Z.K. Reclamation promotes the succession of the soil and vegetation in opencast coal mine: A case study from Robinia pseudoacacia reclaimed forests, Pingshuo mine, China. CATENA 2018, 165, 72–79. [Google Scholar] [CrossRef]
Year | <−10 | −10~0 | 0 | 0~10 | 10~30 | >30 | |
---|---|---|---|---|---|---|---|
2006–2010 | Area (hm2) | 9182.29 | 26973.61 | 2301.12 | 10557.98 | 1428.09 | 537.40 |
Area (%) | 18.01 | 52.92 | 4.51 | 20.71 | 2.80 | 1.05 | |
2010–2016 | Area (hm2) | 12801.55 | 30187.05 | 2656.28 | 3041.05 | 1974.58 | 319.98 |
Area (%) | 25.11 | 59.22 | 5.21 | 5.97 | 3.87 | 0.62 | |
2016–2020 | Area (hm2) | 3052.14 | 528.96 | 4049.72 | 7862.56 | 34462.94 | 974.61 |
Area (%) | 5.99 | 1.04 | 7.94 | 15.42 | 67.61 | 1.91 |
Mine | 2006 | 2010 | 2016 | 2020 |
---|---|---|---|---|
Antaibao opencast mine | 31.08 | 25.51 | 21.03 | 29.00 |
Anjialing opencast mine | 35.31 | 26.03 | 18.55 | 26.06 |
Eastopencast mine | 43.37 | 36.21 | 28.32 | 34.27 |
Year | Cultivated Land | Forestland | Grassland | Reclaimed Arable Land | Reclaimed Forestland | Reclaimed Grassland | Unreclaimed Dump |
---|---|---|---|---|---|---|---|
2006 | 49.21 | 48.62 | 43.75 | - | 48.86 | 38.16 | 24.26 |
2010 | 47.53 | 45.61 | 41.27 | - | 47.18 | 37.01 | 23.57 |
2016 | 36.37 | 36.42 | 32.03 | 35.78 | 37.44 | 29.33 | 18.63 |
2020 | 45.49 | 48.85 | 44.27 | 45.56 | 50.53 | 44.57 | 26.65 |
Year | New Mining Area (ha) | New Reclaimed Area (ha) | NPP Change gC/(m2·month) |
---|---|---|---|
2006–2010 | 1859.88 | 564.34 | −7.34 |
2010–2016 | 1326.87 | 788.19 | −6.62 |
2016–2020 | 521.14 | 1141.08 | 7.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, S.; Bai, Z.; Yang, B.; Xie, L. Study on Ecological Loss in Coal Mining Area Based on Net Primary Productivity of Vegetation. Land 2022, 11, 1004. https://doi.org/10.3390/land11071004
Fu S, Bai Z, Yang B, Xie L. Study on Ecological Loss in Coal Mining Area Based on Net Primary Productivity of Vegetation. Land. 2022; 11(7):1004. https://doi.org/10.3390/land11071004
Chicago/Turabian StyleFu, Shuai, Zhongke Bai, Boyu Yang, and Lijun Xie. 2022. "Study on Ecological Loss in Coal Mining Area Based on Net Primary Productivity of Vegetation" Land 11, no. 7: 1004. https://doi.org/10.3390/land11071004
APA StyleFu, S., Bai, Z., Yang, B., & Xie, L. (2022). Study on Ecological Loss in Coal Mining Area Based on Net Primary Productivity of Vegetation. Land, 11(7), 1004. https://doi.org/10.3390/land11071004