A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications
Abstract
:1. Introduction
Literature Review
- (1)
- To objectively systemize NbS and associated nomenclature as defined by the IUCN framework;
- (2)
- To characterize and deconstruct NbS as complex interventions to support the United Nations Sustainable Development Goals (UN SDGs); and
- (3)
- To reduce conceptual plasticity presented by variable NbS nomenclature through the categorization of terminology.
2. Methods
2.1. Systematic Review
2.2. Categorization of Nature-Based Nomenclature
2.3. UN Sustainable Development Goal Alignment
3. Results
3.1. NbS Characteristics
3.2. Ecosystem Restoration Approaches
3.3. Issue-Specific Ecosystem-Related Approaches
3.4. Infrastructure-Related Approaches
3.5. Ecosystem-Based Management Approaches
3.6. Ecosystem Protection Approaches
4. Discussion
4.1. NbS for Societal Challenges
4.2. NbS Nomenclature
4.3. Integration of NbS in Environmental Policy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; Volume 13, p. 97. ISBN 978-2-8317-1812-5. [Google Scholar]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, K. Intersectionality as buzzword: A sociology of science perspective on what makes a feminist theory successful. Fem. Theor. 2008, 9, 67–85. [Google Scholar] [CrossRef] [Green Version]
- Brandt, P.; Ernst, A.; Gralla, F.; Luederitz, C.; Lang, D.J.; Newig, J.; Reinert, F.; Abson, D.J.; von Wehrden, H. A review of transdisciplinary research in sustainability science. Ecol. Econ. 2013, 92, 1–15. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Form, Function, and Nomenclature: Deconstructing Green Infrastructure and its Role in a Changing Climate. In Climate Change and Extreme Events; Fares, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; ISBN U1104201903351. [Google Scholar]
- Waylen, K.A.; Hastings, E.J.; Banks, E.A.; Holstead, K.L.; Irvine, R.J.; Blackstock, K.L. The Need to Disentangle Key Concepts from Ecosystem-Approach Jargon. Conserv. Biol. 2014, 28, 1215–1224. [Google Scholar] [CrossRef] [Green Version]
- Sayer, J.; Sunderland, T.; Ghazoul, J.; Pfund, J.-L.; Sheil, D.; Meijaard, E.; Venter, M.; Boedhihartono, A.K.; Day, M.; Garcia, C.; et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl. Acad. Sci. USA 2013, 110, 8349–8356. [Google Scholar] [CrossRef] [Green Version]
- Denier, L.; Scherr, S.; Shames, S.; Chatterton, P.; Hovani, L.; Stam, N. The Little Sustainable Landscapes Book; Global Canopy Programme: Oxford, UK, 2015. [Google Scholar]
- Erbaugh, J.; Agrawal, A. Clarifying the landscape approach: A Letter to the Editor on Integrated landscape approaches to managing social and environmental issues in the tropics. Glob. Chang. Biol. 2017, 23, 4453–4454. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, E.F. Small is Beautiful: Economics As if People Mattered (an excerpt) (translated by Daniil Aronson). J. Econ. Sociol. 2012, 13. [Google Scholar] [CrossRef]
- Brundtland, G.; Khalid, M.; Agnelli, S.; Al-Athel, S.; Chidzero, B.; Fadika, L. The Brundtland report: ‘Our common future’. Med. War 1988, 4, 17–25. [Google Scholar]
- Wilson, E.O. Biodiversity; National Academy Press: New York, NY, USA, 1988. [Google Scholar]
- Takacs, D. The Idea of Biodiversity: Philosophies of Paradise; The Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Costanza, R.; Daly, H.E. Natural Capital and Sustainable Development. Conserv. Biol. 1992, 6, 37–46. [Google Scholar] [CrossRef]
- Jansson, A. Investing in Natural Capital: The Ecological Economics Approach to Sustainability; Island Press: Washington, DC, USA, 1994. [Google Scholar]
- Daily, G. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of ecosystem services: Putting the issues in perspective. Ecol. Econ. 1998, 25, 67–72. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; de Groot, R.; Lomas, P.L.; Montes, C. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Daly, H.E.; Farley, J. Ecological Economics: Principles and Applications; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- UNEP. Convention on Biological Diversity; 1760 UNTS 79; 31 ILM 818 (1992); UNEP: Nairobi, Kenya, 1993. [Google Scholar]
- MA. Millennium Ecosystem Assessment-Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- UNEP. Report of the Third ad Hoc Intergovernmental and Multi-Stakeholder Meeting on an Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (“Busan Outcome”)-UNEP/IPBES/3/3; UNEP: Nairobi, Kenya, 2010. [Google Scholar]
- United Nations. Sustainable Development Goals; UN: San Francisco, CA, USA, 2016. [Google Scholar]
- Admiraal, J.; Musters, C.; de Snoo, G. The loss of biodiversity conservation in EU research programmes: Thematic shifts in biodiversity wording in the environment themes of EU research programmes FP7 and Horizon 2020. J. Nat. Conserv. 2016, 30, 12–18. [Google Scholar] [CrossRef]
- Nesshöver, C.; Prip, C.; Wittmer, H. Biodiversity Governance: A Global Perspective from the Convention on Biological Diversity. In Biodiversity in the Green Economy; Gaspartos, A., Willis, K.J., Eds.; Routledge: London, UK, 2015; pp. 289–308. [Google Scholar]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—connecting nature and people. Curr. Opin. Environ. Sustain. 2014, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; de Souza Dias, B.F.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation—Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028, Erratum in 2015, 386, 1944. [Google Scholar] [CrossRef]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based Solutions: New Influence for Environmental Management and Research in Europe. GAIA-Ecol. Perspect. Sci. Soc. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2015, 10, 121–124. [Google Scholar] [CrossRef] [Green Version]
- US Army Corps of Engineers. Coastal Risk Reduction and Resilience. CWTS 2013-3. In Directorate of Civil Works; US Army Corps of Engineers: Washington, DC, USA, 2013. [Google Scholar]
- Natural Climate Solutions Fund. Available online: https://www.canada.ca/en/campaign/natural-climate-solutions.html (accessed on 1 May 2022).
- Abson, D.J.; von Wehrden, H.; Baumgärtner, S.; Fischer, J.; Hanspach, J.; Härdtle, W.; Heinrichs, H.; Klein, A.M.; Lang, D.J.; Martens, P.; et al. Ecosystem services as a boundary object for sustainability. Ecol. Econ. 2014, 103, 29–37. [Google Scholar] [CrossRef]
- Star, S.L.; Griesemer, J.R. Institutional ecology, translations’ and boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–1939. Soc. Stud. Sci. 1989, 19, 387–420. [Google Scholar] [CrossRef]
- Brand, F.S.; Jax, K. Focusing the Meaning(s) of Resilience: Resilience as a Descriptive Concept and a Boundary Object. Ecol. Soc. 2007, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Ring, I.; Hansjürgens, B.; Elmqvist, T.; Wittmer, H.; Sukhdev, P. Challenges in framing the economics of ecosystems and biodiversity: The TEEB initiative. Curr. Opin. Environ. Sustain. 2010, 2, 15–26. [Google Scholar] [CrossRef]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-naturing Cities-Final Report of the Horizon 2020 Expert Group; European Commission, Directorate General for Research and Innovation: Brussels, Belgium, 2015; p. 74. [Google Scholar]
- FEMA. Building Community Resilience with Nature-Based Solutions. 2021. Available online: https://www.fema.gov/sites/default/files/documents/fema_riskmap-nature-based-solutions-guide_2021.pdf (accessed on 1 May 2022).
- U.S. Environmental Protection Agency. What Is Green Infrastructure? Available online: https://www.epa.gov/greeninfrastructure/what-green-infrastructure. (accessed on 1 May 2022).
- U.S. Environmental Protection Agency. Green Infrastructure Federal Collaborative. Available online: https://www.epa.gov/green-infrastructure/green-infrastructure-federal-collaborative. (accessed on 1 May 2022).
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Raymond, C.M.; Berry, P.; Breil, M. An Impact Evaluation Framework to Support Planning and Evaluation of Nature-based Solutions Projects. In Report Prepared by the EKLIPSE Expert Working Group on Nature-Based Solutions to Promote Climate Resilience in Urban Areas; Centre for Ecology & Hydrology: Wallingford, UK, 2017. [Google Scholar]
- Nature Smart Climate Solutions Fund. Available online: https://www.canada.ca/en/environment-climate-change/services/environmental-funding/programs/nature-smart-climate-solutions-fund.html (accessed on 1 May 2022).
- Government of Canada. Healthy Environment and a Healthy Economy. 2020. Available online: https://www.canada.ca/content/dam/eccc/documents/pdf/climatechange/climateplan/healthy_environment_healthy_economy_plan.pdf (accessed on 1 May 2022).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation, and Vulnerability–Summary for Policy Makers. 2022. Available online: https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_SummaryForPolicymakers.pdf (accessed on 1 May 2022).
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Anderson, V. Deep Adaptation: A Framework for Climate Resilience, Decarbonization and Planetary Health. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2018. Available online: https://tspace.library.utoronto.ca/ (accessed on 1 May 2022).
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Q.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Baik, J.-J.; Kwak, K.-H.; Park, S.-B.; Ryu, Y.-H. Effects of building roof greening on air quality in street canyons. Atmos. Environ. 2012, 61, 48–55. [Google Scholar] [CrossRef]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sust. Energ. Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Berardi, U.; AmirHosein, G.H.; Ali, G. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Feng, H.; Hewage, K. Lifecycle assessment of living walls: Air purification and energy performance. J. Clean. Prod. 2014, 69, 91–99. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For. Urban Green. 2018, 29, 40–48. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; Araminiene, V.; Carrari, E.; Hoshika, Y.; De Marco, A.; Paoletti, E. Should we see urban trees as effective solutions to reduce increasing ozone levels in cities? Environ. Pollut. 2018, 243, 163–176. [Google Scholar] [CrossRef]
- Gourdji, S. Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec. Environ. Pollut. 2018, 241, 378–387. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Evaluating the potential of nature-based solutions to reduce ozone, nitrogen dioxide, and carbon dioxide through a multi-type green infrastructure study in Ontario, Canada. City Environ. Interact. 2020, 6, 100043. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Nature-Based Resilience: A Multi-Type Evaluation of Productive Green Infrastructure in Agricultural Settings in Ontario, Canada. Atmosphere 2021, 12, 1183. [Google Scholar] [CrossRef]
- Li, J.; Wai, O.W.H.; Li, Y.S.; Zhan, J.; Ho, Y.A.; Li, J.; Lam, E. Effect of green roofs on ambient CO2 concentration. Build. Environ. 2010, 45, 2644–2651. [Google Scholar] [CrossRef]
- Marchi, M.; Pulselli, R.M.; Marchettini, N.; Pulselli, F.M.; Bastianoni, S. Carbon dioxide sequestration model of a vertical greenery system. Ecol. Model. 2015, 306, 46–56. [Google Scholar] [CrossRef]
- Li, W.C.; Yeung, K.K.A. A comprehensive study of green roof performance from environmental perspective. Int. J. Sustain. Built Environ. 2014, 3, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.M.; Handley, J.F.; Ennos, A.R. The potential of tree planting to climate-proof high density residential areas in Manchester, UK. Landsc. Urban Plan. 2012, 104, 410–417. [Google Scholar] [CrossRef]
- Velasco, E.; Roth, M.; Norford, L.; Molina, L.T. Does urban vegetation enhance carbon sequestration? Landsc. Urban Plan. 2016, 148, 99–107. [Google Scholar] [CrossRef]
- Fargione, J.E.; Bassett, S.; Boucher, T.; Bridgham, S.D.; Conant, R.T.; Cook-Patton, S.C.; Griscom, B.W. Natural climate solutions for the United States. Sci. Adv. 2018, 4, eaat1869. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, B.M.; Lukoyanov, D.; Dean, D.R.; Seefeldt, L.C. Nitrogenase: A draft mechanism. AccChem. Res. 2013, 46, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Rowe, D.B. Green roofs as a means of pollution abatement. Environ. Pollut. 2011, 159, 2100–2110. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J. Sustainable surface water management and green infrastructure in UK urban catchment planning. J. Environ. Plan. Manag. 2013, 56, 24–41. [Google Scholar] [CrossRef]
- Lin, B.B.; Philpott, S.M.; Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 2015, 16, 189–201. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Nature-based cooling potential: A multi-type green infrastructure evaluation in Toronto, Ontario, Canada. Int. J. Biometeorol. 2021, 66, 397–410. [Google Scholar] [CrossRef]
- Tan, C.L.; Wong, N.H.; Jusuf, S.K. Effects of vertical greenery on mean radiant temperature in the tropical urban environment. Landsc. Urban Plan. 2014, 127, 52–64. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Nowak, D.J. Institutionalizing urban forestry as a “biotechnology” to improve environmental quality. Urban For. Urban Green. 2006, 5, 93–100. [Google Scholar] [CrossRef]
- Kleerekoper, L.; van Esch, M.; Salcedo, T.B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl. 2012, 64, 30–38. [Google Scholar] [CrossRef]
- Rao, M.; George, L.; Rosenstiehl, T.N.; Shandas, V.; Dinno, A. Assessing the relationship among urban trees, nitrogen dioxide, and respiratory health. Environ. Pollut 2014, 194, 96–104. [Google Scholar] [CrossRef]
- King, K.; Johnson, S.; Kheirbek, I.; Lu, J.; Matte, T. Differences in magnitude and spatial distribution of urban forest pollution deposition rates, air pollution emissions, and ambient neighborhood air quality in New York City. Landsc. Urban Plan. 2014, 128, 14–22. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution–deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Berardi, U. The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy Build. 2016, 121, 217–229. [Google Scholar] [CrossRef]
- Jandaghian, Z.; Berardi, U. Analysis of the cooling effects of higher albedo surfaces during heat waves coupling the weather research and forecasting model with building energy models. Energy Build. 2019, 207, 109627. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Thatcher, M.; Barnett, G.; Kachenko, A.; Prince, R. Urban vegetation for reducing heat related mortality. Environ. Pollut. 2014, 192, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Thevathasan, N.V.; Gordon, A.M. Ecology of tree intercropping systems in the North temperate region: Experiences from southern Ontario, Canada. New Vistas Agrofor. 2004, 1, 257–268. [Google Scholar] [CrossRef]
- Francis, R. Wall ecology: A frontier for urban biodiversity and ecological engineering. Prog. Phys. Geogr. Earth Environ. 2010, 35, 43–63. [Google Scholar] [CrossRef]
- Tonietto, R.; Fant, J.; Ascher, J.; Ellis, K.; Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 2011, 103, 102–108. [Google Scholar] [CrossRef]
- Thevathasan, N.V. Agroforestry research and development in Canada: The way forward in agroforestry. In The Future of Global Land Use; Advances in Agroforestry; Springer: Berlin/Heidelberg, Germany, 2012; Volume 9. [Google Scholar] [CrossRef]
- Wotherspoon, A.; Thevathasan, N.V.; Gordon, A.M.; Voroney, R.P. Carbon sequestration potential of five tree species in a 25-year-old temperate tree-based intercropping system in southern Ontario, Canada. Agrofor. Syst. 2014, 88, 631–643. [Google Scholar] [CrossRef]
- Coutts, C.; Hahn, M. Green Infrastructure, Ecosystem Services, and Human Health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef] [Green Version]
- Azunre, G.A.; Amponsah, O.; Peprah, C.; Takyi, S.A.; Braimah, I. A review of the role of urban agriculture in the sustainable city discourse. Cities 2019, 93, 104–119. [Google Scholar] [CrossRef]
- Parkins, K.; Clark, J. Green roofs provide habitat for urban bats. Glob. Ecol. Conserv. 2015, 4, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Anderson, V.; Gough, W.; Agic, B. Nature-Based Equity: An Assessment of the Public Health Impacts of Green Infrastructure in Ontario Canada. Int. J. Environ. Res. Public Health 2021, 18, 5763. [Google Scholar] [CrossRef] [PubMed]
- Thornbush, M.J. Vehicular Air Pollution and Urban Sustainability: An Assessment from Central; Springer Briefs in Geography; Springer: Oxford, UK, 2015. [Google Scholar]
- Thornbush, M. Urban agriculture in the transition to low carbon cities through urban greening. AIMS Environ. Sci. 2015, 2, 852–867. [Google Scholar] [CrossRef]
- Voskamp, I.M.; Van de Ven, F.H.M. Planning support system for climate change: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events. Build. Environ. 2014, 83, 159–167. [Google Scholar] [CrossRef]
- Soussana, J.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [Green Version]
- USDA. Riparian Forest Buffers. Available online: https://www.fs.usda.gov/nac/practices/riparian-forest-buffers.php (accessed on 1 May 2022).
- U.S. EPA. Functions and Values of Wetlands. Fact Sheet. Available online: https://www.epa.gov/sites/default/files/2021-01/documents/functions_values_of_wetlands.pdf (accessed on 1 May 2022).
- Dahl, T.E.; Stedman, S.M. Status and Trends of Wetlands in the Coastal Watersheds of the Conterminous United States 2004 to 2009. U.S. Department of the Interior, Fish and Wildlife Service and National Oceanic and Atmospheric Administration, National Marine Fisheries Service. 2013. Available online: https://www.fws.gov/wetlands/Documents/Status-and-Trends-of-Wetlands-In-the-Coastal-Watersheds-of-the-Conterminous-US-2004-to-2009.pdf (accessed on 1 May 2022).
- Li, X.; Bellerby, R.; Craft, C.; Widney, S.E. Coastal wetland loss, consequences, and challenges for restoration. Anthr. Coasts 2018, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- US. EPA. Classification and Types of Wetlands. Available online: https://www.epa.gov/wetlands/classification-and-types-wetlands#undefined (accessed on 1 May 2022).
- Plascencia-Escalante, F. An Analysis of some Components of the Nitrogen Cycle as Affected by Land Use Adjacent to the Riparian Zone of a Southern Ontario Stream. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2008. [Google Scholar]
- US. EPA. Constructed Treatment Wetlands. Factsheet. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/30005UPS.PDF?Dockey=30005UPS.PDF (accessed on 1 May 2022).
- USDA. Working Tree: What Is a Riparian Forest Buffer? 2012. Available online: https://www.fs.usda.gov/nac/assets/documents/workingtrees/infosheets/rb_info_050712v3.pdf (accessed on 1 May 2022).
- Dropkin, E.M.; Bassuk, N.; Signorelli, S. Woody Shrubs for Stormwater Retention Practices, 2nd ed.; Cornell University: Ithaca, NY, USA, 2017; Available online: http://www.hort.cornell.edu/uhi/outreach/pdfs/woody_shrubs_stormwater_hi_res.pdf (accessed on 1 May 2022).
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Devito, K.J.; Hokanson, K.; Moore, P.A.; Kettridge, N.; Anderson, A.; Chasmer, L.; Hopkinson, C.; Lukenbach, M.C.; Mendoza, C.A.; Morissette, J.; et al. Landscape controls on long-term runoff in subhumid heterogeneous Boreal Plains catchments. Hydrol. Process. 2017, 31, 2737–2751. [Google Scholar] [CrossRef]
- Sheweka, S.M.; Mohamed, N.M. Green facades as a new sustainable approach towards climate change. Energy Procedia 2012, 18, 507–520. [Google Scholar] [CrossRef] [Green Version]
- Hoelscher, M.T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying cooling effects of façade greening: Shading, transpiration and insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W. Harnessing the Four Horsemen of Climate Change: A Framework for Deep Resilience, Decarbonization, and Planetary Health in Ontario, Canada. Sustainability 2021, 13, 379. [Google Scholar] [CrossRef]
- Hillel, D.; Rosenzweig, C. Biodiversity and food production. In Sustaining Life: How Human Health Depends on Biodiversity; Chivian, E., Bernstein, A., Eds.; Oxford University Press: New York, NY, USA, 2008; pp. 325–381. [Google Scholar]
- Whittinghill, L.J.; Rowe, D.B.; Schutzki, R.; Cregg, B.M. Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landsc. Urban Plan. 2014, 123, 41–48. [Google Scholar] [CrossRef]
- Montagnini, F.; Nair, P.K.R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. In Advances in Agroforestry; Springer: Berlin/Heidelberg, Germany, 2004; pp. 281–295. [Google Scholar] [CrossRef]
- Peichl, M.; Thevathasan, N.V.; Gordon, A.M.; Huss, J.; Abohassan, R.A. Carbon Sequestration Potentials in Temperate Tree-Based Intercropping Systems, Southern Ontario, Canada. Agrofor. Syst. 2006, 66, 243–257. [Google Scholar] [CrossRef]
- Howard, J.; Sutton-Grier, A.; Herr, D.; Kleypas, J.; Landis, E.; Mcleod, E.; Simpson, S. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 2017, 15, 42–50. [Google Scholar] [CrossRef]
- NOAA. Protecting Coastal Blue Carbon Through Habitat Conservation. 2022. Available online: https://www.fisheries.noaa.gov/national/habitat-conservation/protecting-coastal-blue-carbon-through-habitat-conservation (accessed on 1 May 2022).
- Schuman, G.; Janzen, H.; Herrick, J. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 2002, 116, 391–396. [Google Scholar] [CrossRef]
- Jones, M.B.; Donnelly, A. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 2004, 164, 423–439. [Google Scholar] [CrossRef]
- Wang, X.; VandenBygaart, A.; McConkey, B.C. Land Management History of Canadian Grasslands and the Impact on Soil Carbon Storage. Rangel. Ecol. Manag. 2014, 67, 333–343. [Google Scholar] [CrossRef]
- Soussana, J.F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Carter, V. Technical Aspects of Wetlands: Wetland Hydrology, Water Quality, and Associated Functions. In United States Geological Survey Water Supply Paper 2425; United States Geological Survey: Reston, VA, USA, 1997. [Google Scholar]
- Costanza, R.O.; Pérez-Maqueo, M.L.; Martinez, P.; Sutton, S.J.; Anderson, K.M. The value of coastal wetlands for hurricane protection. Ambio 2008, 37, 241–248. [Google Scholar] [CrossRef]
- Dalton, J.; Murti, R. Utilizing Integrated Water Resource Management Approaches to Support Disaster Risk Reduction. In The Role of Ecosystems in Disaster Risk Reduction; Sudmeier-Rieux, K., Estrella, M., Eds.; United Nations University Press: Bonn, Germany, 2013. [Google Scholar]
- Smith, M. Water for Nature, Nature for Water. In The Post 2015 Water Thematic Consultation-Water Resources Management Stream Framing Paper; IUCN: Gland, Switzerland, 2013. [Google Scholar]
- Ozment, S.; DiFrancesco, K.; Gartner, T. The role of natural infrastructure in the water, energy and food nexus. In Nexus Dialogue Synthesis Papers; IUCN: Gland, Switzerland, 2015. [Google Scholar]
- Martin, D.M.; Morton, T.; Dobrzynski, T.; Valentine, B. Estuaries on the Edge: The Vital Link Between Land and Sea. In A Report by American Oceans Campaign. 1996. Available online: https://tamug-ir.tdl.org/handle/1969.3/27595 (accessed on 6 July 2022).
- Colgan, C.S.; Yakovleff, D.; Merrill, S.B. An Assessment of the Economics of Natural and Built Infrastructure for Water Resources in Maine. 2013. Available online: http://muskie.usm.maine.edu/Publications/AssessmentWaterResourcesMaine.pdf (accessed on 1 May 2022).
- Parkyn, S. Review of Riparian Buffer Zone Effectiveness. Maf Technical Paper No: 2004/05. 2004. Available online: https://www.researchgate.net/publication/250179940_Review_of_Riparian_Buffer_Zone_Effectiveness (accessed on 6 July 2022).
- Davies, P.M.; Bunn, S.E.; Hamilton, S.K. Primary Production in Tropical Streams and Rivers. In Aquatic Ecology, Tropical Stream Ecology; David, D., Ed.; Academic Press: Cambridge, MA, USA, 2008; pp. 23–42. ISBN 9780120884490. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Whittinghill, L.J.; Rowe, D.B.; Andresen, J.A.; Cregg, B.M. Comparison of stormwater runoff from sedum, native prairie, and vegetable producing green roofs. Urban Ecosyst. 2014, 18, 13–29. [Google Scholar] [CrossRef]
- de la Cretaz, A.L.; Barten, P.K. Land Use Effects on Streamflow and Water Quality in the Northeastern United States; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Enanga, E.M.; Shivoga, W.A.; Maina-Gichaba, C.; Creed, I.F. Observing Changes in Riparian Buffer Strip Soil Properties Related to Land Use Activities in the River Njoro Watershed, Kenya. Water Air Soil Pollut. 2010, 218, 587–601. [Google Scholar] [CrossRef]
- Schmidt, R.; Batker, D. Nature’s Value in the Mckenzie Watershed: A Rapid Ecosystem Service Valuation; Earth Economics and Eugene Water and Electric Board: Tacoma, WA, USA, 2012. [Google Scholar]
- Mazzotta, M.; Bousquin, J.; Berry, W.; Ojo, C.; McKinney, R.; Hyckha, K.; Druschke, C.G. Evaluating the ecosystem services and benefits of wetland restoration by use of the rapid benefit indicators approach. Integr. Environ. Assess. Manag. 2018, 15, 148–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahjahan, A.; Ahmed, K.; Said, I. Study on Riparian Shading Envelope for Wetlands to Create Desirable Urban Bioclimates. Atmosphere 2020, 11, 1348. [Google Scholar] [CrossRef]
- Xu, X.; Chen, M.; Yang, G.; Jiang, B.; Zhang, J. Wetland ecosystem services research: A critical review. Glob. Ecol. Conserv. 2020, 22, e01027. [Google Scholar] [CrossRef]
- Alikhani, S.; Nummi, P.; Ojala, A. Urban Wetlands: A Review on Ecological and Cultural Values. Water 2021, 13, 3301. [Google Scholar] [CrossRef]
- Stevens, C.J. Recent advances in understanding grasslands. F1000Research 2018, 7, 1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands-more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Wu, J. Grassland ecosystem services: A systematic review of research advances and future directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Paudel, S.; Cobb, A.B.; Boughton, E.H.; Spiegal, S.; Boughton, R.K.; Silveira, M.L.; Swain, H.M.; Reuter, R.; Goodman, L.E.; Steiner, J.L. A framework for sustainable management of ecosystem services and disservices in perennial grassland agroecosystems. Ecosphere 2021, 12, e03837. [Google Scholar] [CrossRef]
- Nowak, D.J.; Wang, J.; Endreny, T. Environmental and Economic Benefits of Preserving Forests within Urban Areas: Air and Water. In The Economic Benefits of Land Conservation; De Brun, C.T.F., Ed.; The Trust for Public Land: Los Angeles, CA, USA, 2007; Chapter 4; pp. 28–47. [Google Scholar]
- Karjalainen, E.; Sarjala, T.; Raitio, H. Promoting human health through forests: Overview and major challenges. Environ. Heal. Prev. Med. 2009, 15, 1–8. [Google Scholar] [CrossRef]
- Macura, B.; Secco, L.; Pullin, A.S. Does the effectiveness of forest protected areas differ conditionally on their type of governance? Environ. Évid. 2013, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Michel, A.; Seidling, W. Forest Condition in Europe: 2016 Technical Report of ICP Forests: Report under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). 2016. Available online: https://www.icp-forests.org/pdf/TR2016.pdf (accessed on 6 July 2022).
- Scullion, J.J.; Vogt, K.A.; Drahota, B.; Winkler-Schor, S.; Lyons, M. Conserving the Last Great Forests: A Meta-Analysis Review of the Drivers of Intact Forest Loss and the Strategies and Policies to Save Them. Front. For. Glob. Chang. 2019, 2, 62. [Google Scholar] [CrossRef]
- Ulrich, R.S. View through a window may influence recovery from surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef] [Green Version]
- Crouse, D.L.; Pinault, L.; Balram, A.; Hystad, P.; Peters, P.A.; Chen, H.; van Donkelaar, A.; Martin, R.V.; Ménard, R.; Robichaud, A.; et al. Urban greenness and mortality in Canada’s largest cities: A national cohort study. Lancet Planet. Health 2017, 1, e289–e297. [Google Scholar] [CrossRef]
- James, P.; Hart, J.E.; Banay, R.F.; Laden, F. Exposure to Greenness and Mortality in a Nationwide Prospective Cohort Study of Women. Environ. Health Perspect. 2016, 124, 1344–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vienneau, D.; de Hoogh, K.; Faeh, D.; Kaufmann, M.; Wunderli, J.M.; Röösli, M.; SNC Study Group. More than clean air and tranquillity: Residential green is independently associated with decreasing mortality. Environ. Int. 2017, 108, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, P.J.; Jerrett, M.; Su, J.G.; Burnett, R.T.; Chen, H.; Wheeler, A.J.; Goldberg, M.S. A cohort study relating urban green space with mortality in Ontario, Canada. Environ. Res. 2012, 115, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Tsunetsugu, Y.; Takayama, N.; Park, B.-J.; Li, Q.; Song, C.; Komatsu, M.; Ikei, H.; Tyrväinen, L.; Kagawa, T.; et al. Influence of Forest Therapy on Cardiovascular Relaxation in Young Adults. Evid. Based Complement. Altern. Med. 2014, 2014, 834360. [Google Scholar] [CrossRef]
- Song, C.; Ikei, H.; Miyazaki, Y. Physiological Effects of Nature Therapy: A Review of the Research in Japan. Int. J. Environ. Res. Public Health 2016, 13, 781. [Google Scholar] [CrossRef]
- Jo, H.; Song, C.; Miyazaki, Y. Physiological Benefits of Viewing Nature: A Systematic Review of Indoor Experiments. Int. J. Environ. Res. Public Health 2019, 16, 4739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defries, R.S.; Foley, J.; Asner, G. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Goldberg, T.L.; Gillespie, T.R.; Rwego, I.B.; Estoff, E.L.; Chapman, C.A. Forest Fragmentation as Cause of Bacterial Transmission among Nonhuman Primates, Humans, and Livestock, Uganda. Emerg. Infect. Dis. 2008, 14, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Ostfeld, R.S.; Keesing, F.; Eviner, V. Infectious Disease Ecology: Effects of Ecosystems on Disease and of Disease on Ecosystems; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Gottdenker, N.L.; Streicker, D.; Faust, C.L.; Carroll, C.R. Anthropogenic Land Use Change and Infectious Diseases: A Review of the Evidence. EcoHealth 2014, 11, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Warwick, F.; Charlesworth, S. Sustainable drainage devices for carbon mitigation. Manag. Environ. Qual. Int. J. 2012, 24, 123–136. [Google Scholar] [CrossRef]
- Government of Canada. Healthy Environment and a Healthy Economy. 2021. Available online: https://www.canada.ca/content/dam/eccc/documents/pdf/climate-change/climate-plan/healthy_environment_healthy_economy_plan.pdf (accessed on 15 June 2022).
- Revi, A.; Satterthwaite, D.E.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, R.B.R.; Pelling, M.; Roberts, D.C.; Solecki, W. Urban areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 535–612. [Google Scholar]
- Smith, K.R.; Woodward, A.; Campbell-Lendrum, D.A.; Chadee, D.D.; Honda, Y.; Liu, Q.; Olwoch, J.M.; Revich, B.; Sauerborn, R. Human health: Impacts, adaptation, and co-benefits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 709–754. [Google Scholar]
- URBES. Green Infrastructure, a Wealth for Cities. Fact Sheet. 2014. Available online: https://www.iucn.org/sites/dev/files/import/downloads/urbes_factsheet_06_web.pdf (accessed on 25 June 2022).
- European Commission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. 2013. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.04/DOC_1&format=PDF (accessed on 25 June 2022).
UN Sustainable Development Goals | |
---|---|
Goal 1. No Poverty | End poverty in all its forms everywhere |
Goal 2. Zero Hunger | End hunger, achieve food security and improved nutrition and promote sustainable agriculture |
Goal 3. Health and Well-being | Ensure healthy lives and promote well-being for all at all ages |
Goal 4. Quality Education | Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all |
Goal 5. Gender Equality | Achieve gender equality and empower all women and girls |
Goal 6. Clean Water and Sanitation | Ensure availability and sustainable management of water and sanitation for all |
Goal 7. Affordable and Clean Energy | Ensure access to affordable, reliable, sustainable, and modern energy for all |
Goal 8. Decent Work and Economic Growth | Promote sustained, inclusive, and sustainable economic growth, full and productive employment, and decent work for all |
Goal 9. Industry, Innovation, and Infrastructure | Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation |
Goal 10. Reduced Inequalities | Reduce inequality within and among countries |
Goal 11. Sustainable Cities and Communities | Make cities and human settlements inclusive, safe, resilient, and sustainable |
Goal 12. Responsible Production and Consumption | Ensure sustainable consumption and production patterns |
Goal 13. Climate Action | Take urgent action to combat climate change and its effects |
Goal 14. Life Below Water | Conserve and sustainably use the oceans, seas, and marine resources for sustainable development |
Goal 15. Life on Land | Protect, restore, and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss |
Goal 16. Peace, Justice, and Strong Institutions | Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable, and inclusive institutions at all levels |
Goal 17. Partnerships for the Goals | Strengthen the means of implementation and revitalize the global partnership for sustainable development |
IUCN Category | IUCN Example | Application | Corresponding UN SDG |
---|---|---|---|
Ecosystem Restoration Approaches | Ecological restoration |
| UN SDG 11-Sustainable Cities and Communities Targets–11a, b; 11.5; 11.6; 11.7 UN SDG 14-Life below water|Targets–14.1; 14.2 UN SDG 15-Life on land Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Ecological engineering |
| UN SDG 11-Sustainable Cities and Communities Targets–11a, b; 11.5; 11.6; 11.7 UN SDG 14-Life below water|Targets–14.1; 14.2 UN SDG 15-Life on land Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Forest landscape restoration |
| UN SDG 15-Life on land Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Issue-specific Ecosystem-Related Approaches | Ecosystem-based Adaptation |
| UN SDG 2-No hunger|Target–2.4 UN SDG 11-Sustainable cities and communities Targets–11a, b; 11.5; 11.6; 11.7 UN SDG 13-Climate action|Target–13.1 UN SDG 15-Life on land Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Ecosystem-based Mitigation |
| UN SDG 13–Climate action Target–13.1 | |
Ecosystem-based Disaster Risk Management |
| UN SDG 11-Sustainable cities and communities Targets–11a, b; 11.5; 11.6; 11.7 UN SDG 13-Climate action|Target–13.1 UN SDG 15-Life on land Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Infrastructure-related Approaches | Natural Infrastructure |
| UN SDG 11-Sustainable cities and communities Targets–11a, b; 11.5; 11.6; 11.7 UN SDG 14-Life below water|Targets–14.1; 14.2 UN SDG 15-Life on land Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Green Infrastructure |
| UN SDG 11-Sustainable cities and communities Targets–11a, b; 11.5; 11.6; 11.7 | |
Ecosystem-based Management Approaches | Integrated Coastal Zone Management |
| UN SDG 11-Sustainable Cities and Communities Targets–11a, b; 11.5; 11.6; 11.7 UN SDG 14-Life below water|Targets–14.1; 14.2 UN SDG 15-Life on land Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Integrated Water Resources Management |
| UN SDG 11-Sustainable Cities and Communities Targets–11a, b; 11.5; 11.6; 11.7 UN SDG 15-Life on land Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 data | |
Ecosystem-based Protection Approaches | Area-based Conservation |
| UN SDG 11-Sustainable Cities and Communities Targets–11a, b; 11.5; 11.6; 11.7 UN SDG 14-Life below water|Targets–14.1; 14.2 UN SDG 15-Life on land Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Protected Area Management |
| UN SDG 11-Sustainable Cities and Communities Targets–11a, b; 11.5; 11.6; 11.7 UN SDG 14-Life below water|Targets–14.1; 14.2 UN SDG 15-Life on land Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Descriptive Nomenclature | Aspirational Nomenclature |
---|---|
Bioswales | Biophilic design, Living architecture, Low-impact design, Regenerative urban design, Resilient infrastructure, Sustainable urban drainage systems |
Coastal/Inland wetlands | Natural infrastructure, Resilient infrastructure, Sustainable landscapes |
Community gardens | Multi-productive landscapes, Sustainable landscapes |
Engineered wetlands | Biophilic design, Low-impact design, Regenerative urban design, Resilient infrastructure, Sustainable urban drainage systems |
Forest & vegetation systems | Living architecture, Natural infrastructure, Resilient infrastructure, Sustainable landscapes, Sustainable urban drainage systems |
Grasslands | Multi-productive landscapes, Natural infrastructure, Sustainable landscapes |
Green roofs | Biophilic design, Living architecture, Low-impact design, Regenerative urban design, Resilient infrastructure, Sustainable urban drainage systems |
Green walls | Biophilic design, Living architecture, Low-impact design, Regenerative urban design, Resilient infrastructure, Sustainable urban drainage systems |
Growing roofs | Biophilic design, Living architecture, Low-impact design, Regenerative urban design, Resilient infrastructure, Sustainable urban drainage systems |
Rain gardens | Biophilic design, Living architecture, Low-impact design, Regenerative urban design, Resilient infrastructure, Sustainable urban drainage systems |
Riparian buffer zones | Low-impact design, Natural infrastructure, Regenerative urban design, Resilient infrastructure, Sustainable landscapes, Sustainable urban drainage systems |
Street trees | Biophilic design, Low-impact design, Natural infrastructure, Regenerative urban design, Resilient infrastructure, Sustainable urban drainage systems |
Tree-based intercropping systems | Multi-productive landscapes, Sustainable landscapes |
Vertical gardens/greening systems | Biophilic design, Living architecture, Low-impact design, Regenerative urban design, Resilient infrastructure, Sustainable urban drainage systems |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, V.; Gough, W.A. A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications. Land 2022, 11, 1072. https://doi.org/10.3390/land11071072
Anderson V, Gough WA. A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications. Land. 2022; 11(7):1072. https://doi.org/10.3390/land11071072
Chicago/Turabian StyleAnderson, Vidya, and William A. Gough. 2022. "A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications" Land 11, no. 7: 1072. https://doi.org/10.3390/land11071072
APA StyleAnderson, V., & Gough, W. A. (2022). A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications. Land, 11(7), 1072. https://doi.org/10.3390/land11071072