A GIS Plugin for Susceptibility Modeling: Case Study of Wildfires in Vila Nova de Foz Côa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Implementation of the GIS Plugin
2.3.1. Main Script
2.3.2. Validation Script
3. Results
3.1. Determination of the Ideal Training Area
3.2. Determination of the Most Adequate Wildfire Occurrence Period
3.3. Determination of the Environmental Variables to Use
3.3.1. Determination of the Ideal COS Level
3.3.2. Determination of the Best Individual Environmental Variables
3.3.3. Determination of the Best Combination of Environmental Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, M.G.; Aranha, J.; Amraoui, M. Land cover fire proneness in Europe. For. Syst. 2014, 23, 598–610. [Google Scholar] [CrossRef]
- Nunes, A.N. Regional variability and driving forces behind forest fires in Portugal an overview of the last three decades (1980–2009). Appl. Geogr. 2012, 34, 576–586. [Google Scholar] [CrossRef]
- Aranha, J.; Enes, T.; Calvão, A.; Viana, H. Shrub biomass estimates in former burnt areas using Sentinel 2 images processing and classification. Forests 2020, 11, 555. [Google Scholar] [CrossRef]
- Oliveira, S.; Pereira, J.; Carreiras, J. Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps. Int. J. Wildland Fire 2011, 21, 48–60. [Google Scholar] [CrossRef]
- Tedim, F.; Remelgado, R.; Borges, C.; Carvalho, S.; Martins, J. Exploring the occurrence of mega-fires in Portugal. For. Ecol. Manag. 2013, 294, 86–96. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Guiomar, N.; Rossa, C.G. Analysing eucalypt expansion in Portugal as a fire-regime modifier. Sci. Total Environ. 2019, 666, 79–88. [Google Scholar] [CrossRef]
- Turco, M.; Jerez, S.A.; Tarín-Carrasco, P.; Ratola, N.; Jiménez-Guerrero, P.; Trigo, R.M. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 2019, 9, 13886. [Google Scholar] [CrossRef]
- Meyers, R.L. Living with Fire—Sustaining Ecosystems & Livelihoods through Integrated Fire Management; The Nature Conservancy: Tallahssee, FL, USA, 2006; pp. 3–5. [Google Scholar]
- NICIF—Núcleo de Investigação Científica de Incêndios Florestais. Os Incêndios Florestais: Em Busca de um novo Paradigma—II Diálogo entre Ciência e Utilizadores; Faculdade de Letras da Universidade de Coimbra: Coimbra, Portugal, 2019; pp. 68–69. [Google Scholar]
- Novo, I.; Pinto, P.; Rio, J.; Gouveia, C. Fires in Portugal on 15th October 2017: A catastrophic evolution. In Advances in Forest Fire Research; Viegas, D.X., Ed.; Association for the Development of Industrial Aerodynamics / Forest Fire Research Centre, University of Coimbra: Coimbra, Portugal, 2018; pp. 57–70. [Google Scholar]
- Verde, J.C. Avaliação da Perigosidade de Incêndio Florestal. Ph.D. Thesis, School of Arts and Humanities, Departament of Geography, University of Lisbon, Lisbon, Portugal, 2008. [Google Scholar]
- Bachmann, A.; Allgöwer, B. A consistent wildland fire risk terminology is needed! In Fire Management Today; Brown, R.H., Dillon, M., Eds.; United States Department of Agriculture Forest Service: Washington, DC, USA, 2001; Volume 61, pp. 28–33. [Google Scholar]
- Mahmud, A.R.; Setiawan, I.; Mansor, S.; Shariff, A.R.M.; Pradhan, B.; Nuruddin, A. Utilization of geoinformation tools for the development of forest fire hazard mapping system: Example of Pekan fire, Malaysia. Cent. Eur. J. Geosci. 2009, 1, 456–462. [Google Scholar] [CrossRef]
- Akay, A.E.; Wing, M.G.; Zengin, M.; Kose, O. Determination of fire-access zones along road networks in fire-sensitive forests. J. For. Res. 2017, 28, 557–564. [Google Scholar] [CrossRef]
- Teodoro, A.C.; Duarte, L. Forest fire risk maps: A GIS open source application—A case study in Norwest of Portugal. Int. J. Geogr. Inf. Sci. 2013, 27, 699–720. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.M. Ubiquitous GIS-based forest fire susceptibility mapping using artificial intelligence methods. Remote Sens. 2020, 12, 1689. [Google Scholar] [CrossRef]
- Baranovskiy, N.V.; Yankovich, E.P. GIS-technologies and mathematical simulation to predict lightning-caused forest fire danger. Radio Electron. Comput. Sci. Control 2018, 1, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Bonazountas, M.; Kallidromitou, D.; Kassomenos, P.; Passas, N. A decision support system for managing forest fire casualties. J. Environ. Manag. 2007, 84, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Güllüce, Y.; Çelik, R.N. FireAnalyst: An effective system for detecting fire geolocation and fire behavior in forests using mathematical modeling. Turk. J. Agric. For. 2020, 44, 127–139. [Google Scholar] [CrossRef]
- Volokitina, A.; Kalachev, A.; Korets, M.; Sofronova, T. Fire behavior prediction in larch forests of the Kazakhstan Altai. Symmetry 2021, 13, 578. [Google Scholar] [CrossRef]
- Institute for Nature Conservation and Forests. Plano Municipal de Defesa da Floresta contra Incêndios (PMDFCI)—Guia Técnico; Autoridade Florestal Nacional: Lisbon, Portugal, 2012. [Google Scholar]
- Shengping, Y.; Gilbert, B. The receiver operating characteristic (ROC) curve. Southwest Respir. Crit. Care Chron. 2017, 5, 34–36. [Google Scholar]
- National Geographic Information System. Available online: https://snig.dgterritorio.gov.pt/ (accessed on 1 March 2021).
- Institute for Nature Conservation and Forests Geocatalog. Available online: https://geocatalogo.icnf.pt/ (accessed on 1 April 2021).
- Fernandes, P.M.; Loureiro, C.; Magalhães, M.; Ferreira, P.; Fernandes, M. Fuel age, weather and burn probability in Portugal. Int. J. Wildland Fire 2012, 21, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Monteiro-Henriques, T.; Guiomar, N.; Loureiro, C.; Barros, A.M. Bottom-up variables govern large-fire size in Portugal. Ecosystems 2016, 19, 1362–1375. [Google Scholar] [CrossRef]
- Verde, J.C.; Zêzere, J.L. Assessment and validation of wildfire susceptibility and hazard in Portugal. Nat. Hazards Earth Syst. Sci. 2010, 10, 485–497. [Google Scholar] [CrossRef]
- Adab, H.; Kanniah, K.D.; Solaimani, K. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat. Hazards 2013, 65, 1723–1743. [Google Scholar] [CrossRef]
- Parente, J.; Pereira, M.G. Structural fire risk: The case of Portugal. Sci. Total Environ. 2016, 573, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Feizizadeh, B.; Omarzadeh, D.; Mohammadnejad, V.; Khallaghi, H.; Sharifi, A.; Karkarg, B.G. An integrated approach of artificial intelligence and geoinformation techniques applied to forest fire risk modeling in Gachsaran, Iran. J. Environ. Plan. Manag. 2022, 1–23. [Google Scholar] [CrossRef]
- Vaiopoulos, D.; Skianis, G.A.; Nikolakopoulos, K. The contribution of probability theory in assessing the efficiency of two frequently used vegetation indices. Int. J. Remote Sens. 2004, 25, 4219–4236. [Google Scholar] [CrossRef]
- Cheret, V.; Denux, J.P. Analysis of MODIS NDVI time series to calculate indicators of Mediterranean forest fire susceptibility. GIScience Remote Sens. 2011, 48, 171–194. [Google Scholar] [CrossRef]
- Florath, J.; Keller, S. Supervised machine learning approaches on multispectral remote sensing data for a combined detection of Ffire and burned area. Remote Sens. 2022, 14, 657. [Google Scholar] [CrossRef]
- Oliveira, E.R.; Disperati, L.; Alves, F.L. A New Method (MINDED-BA) for automatic detection of burned areas using remote rensing. Remote Sens. 2021, 13, 5164. [Google Scholar] [CrossRef]
- Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 1 April 2021).
- Horn, B.K.P. Hill shading and the reflectance map. Proc. IEEE 1981, 69, 14–47. [Google Scholar] [CrossRef] [Green Version]
- Open Accessed Hub. Available online: https://scihub.copernicus.eu/ (accessed on 1 May 2021).
- Index Data Base. Available online: https://www.indexdatabase.de/ (accessed on 1 June 2021).
- National Environmental Information System. Available online: https://sniamb.apambiente.pt/ (accessed on 1 March 2021).
- National Hydrological Resources Information System. Available online: https://snirh.apambiente.pt/ (accessed on 1 March 2021).
- Montgomery, K. Variation in temperature with altitude and latitude. J. Geogr. 2006, 105, 133–135. [Google Scholar] [CrossRef]
- Welcome to the QGIS Project! Available online: http://www.qgis.org/ (accessed on 10 March 2022).
- Miscellaneous Operating System Interfaces. Available online: https://docs.python.org/3/library/os.html (accessed on 10 March 2022).
- Python Data Analysis Library. Available online: https://pandas.pydata.org/ (accessed on 10 March 2022).
- Zêzere, J.L. Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat. Hazards Earth Syst. Sci. 2002, 2, 73–82. [Google Scholar] [CrossRef]
- Oliveira, A.; Bateira, C.; Soares, L.; Faria, A.; Fernandes, J.; Hermenegildo, C.; Teixeira, M.; Gonçalves, J.A. Estabilidade de taludes em terraços agrícolas na Região Demarcada do Douro: Modelação de base estatística. In Proceedings of the VII Congresso Nacional de Geomorfologia, Lisboa, Portugal, 8–9 October 2015. [Google Scholar]
- Cumbane, R.N.; Zêzere, J.L. Susceptibilidade de incêndios urbanos nos bairros do município de Maputo. Rev. Científica Acad. Ciências Polic. 2018, 19–33. [Google Scholar]
- Araujo, A.S.; Queiroz Filho, A.P. Mapping socio-spatial segregation in the city of Marília/SP (Brazil). Rev. Bras. Geogr. Física 2018, 11, 431–441. [Google Scholar] [CrossRef] [Green Version]
- CSV File Reading and Writing. Available online: https://docs.python.org/3/library/csv.html (accessed on 10 March 2022).
- Matplotlib: Visualization with Python. Available online: https://matplotlib.org/ (accessed on 10 March 2022).
- The Fundamental Package for Scientific Computing with Python. Available online: https://numpy.org/ (accessed on 10 March 2022).
- La Torre, G. Sensitivity, specificity and ROC curves. In Applied Epidemiology and Biostatistics, 1st ed.; SEEd: Turin, Italy, 2010; pp. 261–278. [Google Scholar]
- Moreira, F.; Vaz, P.; Catry, F.; Silva, J.S. Regional variations in wildfire susceptibility of land-cover types in Portugal: Implications for landscape management to minimize fire hazard. Int. J. Wildland Fire 2009, 18, 563–574. [Google Scholar] [CrossRef]
- Carmo, M.; Moreira, F.; Casimiro, P.; Vaz, P. Land use and topography influences on wildfire occurrence in northern Portugal. Landsc. Urban Plan. 2011, 100, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Tsangaratos, P.; Ilia, I.; Liub, J.; Zhub, A.-X.; Xu, C. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Sci. Total Environ. 2018, 630, 1044–1056. [Google Scholar] [CrossRef] [PubMed]
- Kalantar, B.; Ueda, N.; Idrees, M.O.; Janizadeh, S.; Ahmadi, K.; Shabani, F. Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data. Remote Sens. 2020, 12, 3682. [Google Scholar] [CrossRef]
- De Santana, R.O.; Delgado, R.C.; Schiavetti, A. Modeling susceptibility to forest fires in the Central Corridor of the Atlantic Forest using the frequency ratio method. J. Environ. Manag. 2021, 296, 113343. [Google Scholar] [CrossRef]
- Eskandari, S.; Pourghasemi, H.R.; Tiefenbacher, J.P. Fire-susceptibility mapping in the natural areas of Iran using new and ensemble data-mining models. Environ. Sci. Pollut. Res. 2021, 28, 47395–47406. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, S.; Wu, W.; Wang, Y.; Senthilnath, J. Multitemporal time series analysis using machine learning models for ground deformation in the Erhai region, China. Environ. Monit. Assess. 2020, 192, 464. [Google Scholar] [CrossRef]
- Marjanović, M.; Kovacevic, M.; Bajat, B.; Vozenílek, V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol. 2011, 123, 225–234. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef] [Green Version]
Distance Interval (m) | Reclassified Value |
---|---|
Between 0 and 100 | 1 |
Between 100 and 200 | 2 |
Between 200 and 400 | 3 |
Between 400 and 800 | 4 |
Between 800 and 1600 | 5 |
Over 1600 | 6 |
Slope Interval (°) | Reclassified Value |
---|---|
Between 0 and 4 | 1 |
Between 4 and 8 | 2 |
Between 8 and 16 | 3 |
Between 16 and 32 | 4 |
Between 32 and 90 | 5 |
Aspect Interval (° North) | Reclassified Value |
---|---|
Plain (999) | 0 |
Between 315 and 360 | 1 |
Between 0 and 45 | 1 |
Between 45 and 135 | 2 |
Between 135 and 225 | 3 |
Between 225 and 315 | 4 |
NDVI/GVMI Interval | Reclassified Value |
---|---|
Between −1.0 and −0.3 | 1 |
Between −0.3 and −0.1 | 2 |
Between −0.1 and 0.1 | 3 |
Between 0.1 and 0.3 | 4 |
Between 0.3 and 1.0 | 5 |
Precipitation Interval (mm) | Reclassified Value |
---|---|
Between 0 and 400 | 1 |
Between 400 and 500 | 2 |
Between 500 and 600 | 3 |
Between 600 and 700 | 4 |
Between 700 and 800 | 5 |
Between 800 and 1000 | 6 |
Between 1000 and 1200 | 7 |
Between 1200 and 1400 | 8 |
Training Area | AUC (Training) | AUC (Prediction) |
---|---|---|
TA1 | 0.80 | 0.70 |
TA2 | 0.69 | 0.72 |
TA3 | 0.72 | 0.72 |
TA4 | 0.71 | 0.72 |
Years | AUC (Training) | AUC (Prediction) |
---|---|---|
2 | 0.70 | 0.67 |
4 | 0.69 | 0.67 |
6 | 0.72 | 0.72 |
8 | 0.72 | 0.72 |
10 | 0.72 | 0.72 |
COS Level | AUC (Training) | AUC (Prediction) |
---|---|---|
1 | 0.70 | 0.70 |
2 | 0.72 | 0.72 |
3 | 0.73 | 0.73 |
4 | 0.73 | 0.5 |
Variable | AUC (Training) | AUC (Prediction) |
---|---|---|
COS level 3 | 0.73 | 0.73 |
Distance to artificialized territories | 0.56 | 0.57 |
Terrain slope | 0.39 | 0.39 |
Terrain aspect | 0.57 | 0.52 |
Winter NDVI | 0.42 | 0.44 |
Summer NDVI | 0.55 | 0.51 |
GVMI | 0.44 | 0.52 |
Precipitation | 0.60 | 0.35 |
Days with Tmin > 20 °C | 0.56 | 0.46 |
Variable | Class | Score |
---|---|---|
COS level 3 | 1.1.1 Continuous edified fabric | −3.88 |
1.1.2 Discontinuous urban fabric | −5.65 | |
1.1.3 Empty spaces in built fabric | −1.36 | |
1.2.1 Industry | −1.05 | |
1.2.2 Trade | −1.2 | |
1.2.3 Agricultural facilities | −2.56 | |
1.3.1 Energy production infrastructure | −3.85 | |
1.3.2 Water infrastructure and waste treatment | −2.12 | |
1.4.1 Road and rail networks and associated spaces | −5.39 | |
1.5.1 Inert extraction areas | −1.74 | |
1.5.2 Waste deposition areas | −0.13 | |
1.5.3 Areas under construction | −3.51 | |
1.6.1 Sports equipment | −2.88 | |
1.6.2 Leisure facilities and campsites | −2.41 | |
1.6.3 Cultural equipment | −1.88 | |
1.6.4 Cemeteries | −1.27 | |
1.6.5 Other tourist equipment and facilities | −3.78 | |
1.7.1 Parks and gardens | −2.12 | |
2.1.1 Temporary rainfed and irrigated crops and rice fields | −0.5 | |
2.2.1 Vineyards | −3.31 | |
2.2.2 Orchards | −0.89 | |
2.2.3 Olive groves | −1.31 | |
2.3.1 Temporary crops and/or improved pasture associated with permanent crops | −4.38 | |
2.3.2 Complex cultural and partial mosaics | −1.2 | |
2.3.3 Agriculture with natural and semi-natural spaces | −0.36 | |
2.4.1 Protected agriculture and nurseries | −1.44 | |
3.1.1 Improved pastures | −0.05 | |
3.1.2 Spontaneous grazing | 0.04 | |
4.1.1 Agroforestry | 0.8 | |
5.1.1 Hardwood forests | −0.13 | |
5.1.2 Softwood forests | 0.15 | |
6.1.1 Shrubland | 0.67 | |
7.1.2 Bare rock | −1.73 | |
7.1.3 Sparse vegetation | 1.17 | |
9.1.1 Water courses | 0.41 | |
9.1.2 Water plains | −0.95 | |
Distance to artificialized territories | Between 0 and 100 m | −2.26 |
Between 100 and 200 | −1.22 | |
Between 200 and 400 | −0.73 | |
Between 400 and 800 | −0.24 | |
Between 800 and 1600 | 0.14 | |
Over 1600 | 0.36 | |
Terrain slope | Between 0 and 4° | −0.14 |
Between 4 and 8° | −0.05 | |
Between 8 and 16° | 0.09 | |
Between 16 and 32° | −0.01 | |
Between 32 and 90° | −0.04 | |
Terrain aspect | Plain | −4.52 |
North | −0.07 | |
East | 0.27 | |
South | 0.18 | |
West | −0.38 | |
Winter NDVI | Between −1.0 and −0.3 | −0.45 |
Between −0.3 and −0.1 | −0.58 | |
Between −0.1 and 0.1 | −0.72 | |
Between 0.1 and 0.3 | −0.54 | |
Between 0.3 and 1.0 | 0.16 | |
Summer NDVI | Between −1.0 and −0.3 | 1.10 |
Between −0.3 and −0.1 | −0.69 | |
Between −0.1 and 0.1 | −0.45 | |
Between 0.1 and 0.3 | 0.47 | |
Between 0.3 and 1.0 | −0.09 | |
GVMI | Between −1.0 and −0.3 | 0.37 |
Between −0.3 and −0.1 | 0.60 | |
Between −0.1 and 0.1 | 0.22 | |
Between 0.1 and 0.3 | 0.53 | |
Between 0.3 and 1.0 | 0.40 | |
Precipitation | Between 0 and 400 mm | −5.58 |
Between 400 and 500 mm | −0.27 | |
Between 500 and 600 mm | −0.00 | |
Between 600 and 700 mm | −0.26 | |
Between 700 and 800 mm | −0.32 | |
Between 800 and 1000 mm | 0.68 | |
Days with Tmin > 20 °C | 3 | 0.15 |
4 | 0.19 | |
5 | −0.20 | |
6 | −0.83 | |
7 | −2.63 |
Level 3 COS | Distance to Artificialized Territories | Terrain Slope | Terrain Aspect | Winter NDVI | Summer NDVI | GVMI | Precipitation | Days with Tmin > 20 °C | |
---|---|---|---|---|---|---|---|---|---|
Level 3 COS | |||||||||
Distance to artificialized territories | 75; 75 | ||||||||
Terrain slope | 73; 74 | 60; 64 | |||||||
Terrain aspect | 75; 74 | 65; 64 | 58; 55 | ||||||
Winter NDVI | 73; 74 | 65; 67 | 56; 63 | 61; 59 | |||||
Summer NDVI | 75; 74 | 64; 63 | 56; 57 | 60; 53 | 61; 59 | ||||
GVMI | 75; 74 | 67; 67 | 61; 64 | 64; 62 | 64; 64 | 63; 61 | |||
Precipitation | 75; 71 | 67; 59 | 61; 50 | 65; 51 | 63; 54 | 63; 47 | 68; 56 | ||
Days with Tmin > 20 °C | 74; 72 | 67; 60 | 58; 50 | 62; 50 | 57; 50 | 61; 50 | 66; 59 | 64; 48 |
Distance to Artificialized Territories | Terrain Slope | Terrain Aspect | Winter NDVI | Summer NDVI | GVMI | Precipitation | Days with Tmin > 20 °C | |
---|---|---|---|---|---|---|---|---|
Level 3 COS + Distance (…) | ||||||||
Level 3 COS + Terrain slope | 75; 76 | |||||||
Level 3 COS + Terrain aspect | 76; 76 | 75; 74 | ||||||
Level 3 COS + NDVI Winter | 75; 76 | 73; 76 | 75; 75 | |||||
Level 3 COS + NDVI Summer | 77; 76 | 75; 76 | 76; 75 | 75; 75 | ||||
Level 3 COS + GVMI | 77; 76 | 76; 75 | 76; 74 | 76; 75 | 76; 74 | |||
Level 3 COS + Precipitation | 77; 74 | 75; 72 | 77; 72 | 75; 72 | 77; 72 | 77; 72 | ||
Level 3 COS + Days Tmin > 20 | 76; 74 | 74; 73 | 75; 72 | 73; 72 | 76; 73 | 77; 73 | 75; 71 |
Terrain Aspect | NDVI Winter | NDVI Summer | GVMI | |
---|---|---|---|---|
Level 3 COS + Distance (…) + Terrain slope | 76; 76 | 75; 77 | 77; 77 | 77; 76 |
Level 3 COS + Distance (…) + Terrain aspect | ||||
Level 3 COS + Distance (…) + NDVI Winter | 76; 77 | |||
Level 3 COS + Distance (…) + NDVI Summer | 78; 76 | 77; 77 | ||
Level 3 COS + Distance (…) + GVMI | 78; 76 | 78; 77 | 78; 76 | |
Level 3 COS + Terrain slope + NDVI Winter | 75; 75 | 78; 77 | ||
Level 3 COS + Terrain slope + NDVI Summer | 76; 75 | 75; 76 | 78; 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padrão, A.; Duarte, L.; Teodoro, A.C. A GIS Plugin for Susceptibility Modeling: Case Study of Wildfires in Vila Nova de Foz Côa. Land 2022, 11, 1093. https://doi.org/10.3390/land11071093
Padrão A, Duarte L, Teodoro AC. A GIS Plugin for Susceptibility Modeling: Case Study of Wildfires in Vila Nova de Foz Côa. Land. 2022; 11(7):1093. https://doi.org/10.3390/land11071093
Chicago/Turabian StylePadrão, André, Lia Duarte, and Ana Cláudia Teodoro. 2022. "A GIS Plugin for Susceptibility Modeling: Case Study of Wildfires in Vila Nova de Foz Côa" Land 11, no. 7: 1093. https://doi.org/10.3390/land11071093
APA StylePadrão, A., Duarte, L., & Teodoro, A. C. (2022). A GIS Plugin for Susceptibility Modeling: Case Study of Wildfires in Vila Nova de Foz Côa. Land, 11(7), 1093. https://doi.org/10.3390/land11071093