Territorial Prospective to Sustainability: Strategies for Future Successful of Water Resource Management on Andean Basins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Prospective Analysis
2.2.1. Systematic Characterization of the Basin
2.2.2. Relationships Description among Variables and Identification of Key Variables
2.2.3. Future Scenarios Construction
2.2.4. Strategic-Tactical Plans
3. Results
3.1. Basin Systemic Characterization
3.1.1. Physical-Natural Domain
3.1.2. Socioeconomic Dimension
3.1.3. Political-Institutional Dimension
3.2. System Variables
3.3. Key System Variables
3.4. Future Scenarios
3.5. IWRM Strategies and Tactics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manzano, L.R.; Díaz, C.; Gómez, M.A.; Mastachi, C.A.; Soares, D. Use of structural systems analysis for the integrated water resources management in the Nenetzingo river watershed, Mexico. Land Use Policy 2019, 87, 2–11. [Google Scholar] [CrossRef]
- Dourojeanni, A. Los desafíos de la gestión integrada de cuencas y recursos en América Latina y el Caribe. Desarro. Local Sosten. 2009, 3, 8. [Google Scholar]
- Ketema, H.; Wei, W.; Legesse, A.; Wolde, Z.; Temesgen, H.; Yimer, F.; Mamo, A. Quantifying smallholder farmers’ managed land use/land cover dynamics and its drivers in contrasting agro-ecological zones of the East African Rift. Glob. Ecol. Conserv. 2020, 21, e00898. [Google Scholar] [CrossRef]
- Estuardo, G.; Amílear, R.; Gómez, L. Identificación prospectiva de componentes en el proceso de gestión ambiental del Cantón La Concordia, Ecuador. Ciencia en su PC 2016, 3, 16–33. [Google Scholar]
- Rubio, D. Diseño de un Modelo Metodológico Para la Fase Prospectiva en Los Estudios de Ordenamiento Territorial y su Aplicación a Algunos Casos Centroamericanos. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2012. [Google Scholar]
- Gibbs, D.A.; Flotemersch, J. How environmental futures can inform decision making: A review. Futures 2019, 108, 37–52. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Wanders, N.; AghaKouchak, A.; Kuil, L.; Rangecroft, S.; Veldkamp, T.I.E.; Garcia, M.; van Oel, P.R.; Breinl, K.; Van Loon, A.F. Water shortages worsened by reservoir effects. Nat. Sustain. 2018, 1, 617–622. [Google Scholar] [CrossRef]
- Benavides Muñoz, H.M.; Zari, J.E.A.; Fries, A.E.; Sánchez-Paladines, J.; Gallegos Reina, A.J.; Hernández-Ocampo, R.V.; Ochoa Cueva, P. Management of Hydrological Systems; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781003024576. [Google Scholar]
- McNabb, D.E. Integrated Water Resource Management. In Water Resource Management; Springer International Publishing: Cham, Switzerland, 2017; pp. 329–349. [Google Scholar]
- Kumar, P.; Liu, W.; Chu, X.; Zhang, Y.; Li, Z. Integrated water resources management for an inland river basin in China. Watershed Ecol. Environ. 2019, 1, 33–38. [Google Scholar] [CrossRef]
- UNEP. UN-Water Status Report on the Application of Integrated Approaches to Water Resources Management; UNEP: Geneva, Switzerland, 2012; ISBN 978-92-807-3264-1. [Google Scholar]
- Kennedy, K.; Simonovic, S.; Tejada-Guibert, A.; De França Doria, M.; Martin, J.L. IWRM Implementation in Basins, Sub-Basins and Aquifers: State of the Art Review; UN: Geneva, Switzerland, 2009; pp. 1–23. [Google Scholar]
- Bhushan, B. Introduction: Water Supply and Management. In Bioinspired Water Harvesting, Purification, and Oil-Water Separation; Springer: Cham, Switzerland, 2020; pp. 1–10. [Google Scholar]
- Arteaga, J.; Ochoa, P.; Fries, A.; Boll, J. Identification of Priority Areas for Integrated Management of Semiarid Watersheds in the Ecuadorian Andes. JAWRA J. Am. Water Resour. Assoc. 2020, 56, 270–282. [Google Scholar] [CrossRef]
- Magalhães, R.C.; Barp, A.R.B. Inovações Metodológicas Para Construção De Cenários Estratégicos Em Bacias Hidrográficas. Rev. Adm. Innov. RAI 2014, 11, 200. [Google Scholar] [CrossRef]
- Godet, M.; Durance, P.; García, K.; Cercle, E.; Lipsor, C.; Giget, M.; Godet, M.; Bassaler, N.; Durance, P.; Hammami, K.; et al. La Perspective Stratégique Pour Les Entreprises et Les Territoires; El Cercle des Entrepreneurs du Futur: Paris, France, 2009. [Google Scholar]
- Salas-Bourgoin, M. Prospectiva Territorial. Aproximación a Una Base Conceptual y Metodológica; Vicerrectorado Administrativo y del Consejo de Desarrollo Científico, Humanístico, Tecnológico y de las Artes de la Universidad de Los Andes: Mérida, Venezuela, 2013; ISBN 9789801116035. [Google Scholar]
- Delgado, A.M.; Pantoja, F. Structural analysis for the identification of key variables in the Ruta del Oro, Nariño Colombia. Dyna 2015, 82, 27–33. [Google Scholar] [CrossRef]
- Vargas-Lama, F.; Osorio-Vera, F.J. The Territorial Foresight for the construction of shared visions and mechanisms to minimize social conflicts: The case of Latin America. Futures 2020, 123, 102625. [Google Scholar] [CrossRef]
- INAMHI. Tipo de Climas. Available online: https://www.inamhi.gob.ec/geoinformacion-hidrometeorologica/ (accessed on 18 October 2021).
- Oñate-Valdivieso, F.; Uchuari, V.; Oñate-Paladines, A. Large-Scale Climate Variability Patterns and Drought: A Case of Study in South America. Water Resour. Manag. 2020, 34, 2061–2079. [Google Scholar] [CrossRef]
- Ochoa-Cueva, P.; Fries, A.; Montesinos, P.; Rodríguez-Díaz, J.A.; Boll, J. Spatial Estimation of Soil Erosion Risk by Land-cover Change in the Andes of Southern Ecuador. Land Degrad. Dev. 2015, 26, 565–573. [Google Scholar] [CrossRef]
- Alvarez, L. Disponibilidad y Demanda del Recurso Hídrico Superficial. Estudio de Caso: Subcuenca Zamora Huayco, Ecuador; Universidad Nacional de la Plata: Buenos Aires, Argentina, 2017. [Google Scholar]
- Mera-Parra, C.; Oñate-Valdivieso, F.; Massa-Sánchez, P.; Ochoa-Cueva, P. Establishment of the Baseline for the IWRM in the Ecuadorian Andean Basins: Land Use Change, Water Recharge, Meteorological Forecast and Hydrological Modeling. Land 2021, 10, 513. [Google Scholar] [CrossRef]
- Ochoa-Cueva, P.; Chamba, Y.M.; Arteaga, J.G.; Capa, E.D. Estimation of Suitable Areas for Coffee Growth Using a GIS Approach and Multicriteria Evaluation in Regions with Scarce Data. Appl. Eng. Agric. 2017, 33, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Zarate, C. Hacia un Modelo de Ordenación Para los Territorios de Protección Natural del Área de Influencia Inmediata de la Ciudad de Loja. Microcuenca El Carmen; Universidad de Cuenca: Cuenca, Ecuador, 2011. [Google Scholar]
- Mejía-Veintimilla, D.; Ochoa-Cueva, P.; Samaniego-Rojas, N.; Félix, R.; Arteaga, J.; Crespo, P.; Oñate-Valdivieso, F.; Fries, A. River Discharge Simulation in the High Andes of Southern Ecuador Using High-Resolution Radar Observations and Meteorological Station Data. Remote Sens. 2019, 11, 2804. [Google Scholar] [CrossRef] [Green Version]
- Rojas Arboleda, M.; Pfeiffer, A.; Bezama, A.; Thrän, D. Anticipatory study for identifying the key influential factors of the biogas system in Germany contributing to the energy system of 2050. Futures 2021, 128, 102704. [Google Scholar] [CrossRef]
- Hsueh, S.L. Assessing the effectiveness of community-promoted environmental protection policy by using a Delphi-fuzzy method: A case study on solar power and plain afforestation in Taiwan. Renew. Sustain. Energy Rev. 2015, 49, 1286–1295. [Google Scholar] [CrossRef] [Green Version]
- Godet, M. Introduction to la prospective. Futures 1986, 18, 134–157. [Google Scholar] [CrossRef]
- Arcade, J.; Godet, M.; Meunier, F.; Roubelat, F.; Mendieta, M. Structural analysis with the MICMAC method & Actor’s strategy with MACTOR method. In Futures Research Methodology, American Council for the United Nations University: The Millennium Project; BCNA: Buenos Aires, Argentina, 2010. [Google Scholar]
- Fraile, A.; Larrodé, E.; Magrenán, A.; Sicilia, J.A. Decision model for siting transport and logistic facilities in urban environments: A methodological approach. J. Comput. Appl. Math. 2016, 291, 478–487. [Google Scholar] [CrossRef]
- Oliveira, A.S.; de Barros, M.D.; de Carvalho Pereira, F.; Gomes, C.F.S.; da Costa, H.G. Prospective scenarios: A literature review on the Scopus database. Futures 2018, 100, 20–33. [Google Scholar] [CrossRef]
- Godet, M. Integration of scenarios and strategic management. Using relevant, consistent and likely scenarios. Futures 1990, 22, 730–739. [Google Scholar] [CrossRef]
- EcoCiencia. Plan de Manejo del Parque Nacional Podocarpus; EcoCiencia: Loja, Ecuador, 2014. [Google Scholar]
- INEC. Población y Tasas de Crecimeinto Intercensal de 2010–2001—1990 por Sexo Según Parroquias; INEC: Quito, Ecuador, 2010. [Google Scholar]
- MAE. Políticas y Plan Estratégico del Sistema Nacional de Áreas Protegidas del Ecuador; MAE: Quito, Ecuador, 2016. [Google Scholar]
- Viracocha, I. Cooperación Internacional y Áreas Naturales Protegidas. El Sistema Nacional de Áreas Protegidas del Ecuador (SNAP): Un Patrimonio al Servicio de la Nación; Universidad Internacional del Ecuador: Quito, Ecuador, 2018. [Google Scholar]
- Gobierno Provincial de Loja. Plan de Desarrollo y Ordenamiento Territorial de la Provincia de Loja; Gobierno Provincial de Loja: Loja, Ecuador, 2013. [Google Scholar]
- Municipio de Loja. Plan de Desarrollo y Ordenamiento Territorial de Loja 2014–2022; Municipio de Loja: Loja, Ecuador, 2014; p. 547. [Google Scholar]
- NCI. Protegiendo las Fuentes de Agua en el Sur de Ecuador. Available online: http://www.naturalezaycultura.org/spanish/htm/ecuador/areas-watersheds.htm (accessed on 19 August 2021).
- Municipio de Loja. Recopilación Codificada de la Legislación Municipal Loja 2015; Municipio de Loja: Loja, Ecuador, 2015. [Google Scholar]
- Municipio de Loja. Reforma a la Ordenanza Para la Protección de las Micro Cuencas y Otras Áreas Prioritarias Para la Conservación del Cantón Loja; Municipio de Loja: Loja, Ecuador, 2015; pp. 1–5. [Google Scholar]
- Foragua. Mecanismo Financiero. FORAGUA. Available online: http://www.foragua.org/ (accessed on 19 August 2021).
- MAE. Plan Estratégico de Viabilidad y Sostenibilidad del Proceso de Adaptación y del Plan de Manejo Adaptativo; MAE: Quito, Ecuador, 2012. [Google Scholar]
- Peñarreta, D. La Influencia de los Estilos de Liderazgo en los Niveles de Satisfacción Laboral de los Empleados del GAD Municipal de Loja; Universidad Andina Simón Bolívar: Sucre, Bolivia, 2010. [Google Scholar]
- Municipio de Loja Capacitaciones. Available online: https://www.loja.gob.ec/search/node/capacitación (accessed on 18 July 2021).
- Khamis, N.; Sin, T.C.; Hock, G.C. Segmentation of Residential Customer Load Profile in Peninsular Malaysia using Jenks Natural Breaks. In Proceedings of the 7th International Conference on Power and Energy (PECon), Kuala Lumpur, Malaysia, 3–4 December 2018; pp. 128–131. [Google Scholar]
- Drenkhan, F.; Huggel, C.; Guardamino, L.; Haeberli, W. Managing risks and future options from new lakes in the deglaciating Andes of Peru: The example of the Vilcanota-Urubamba basin. Sci. Total Environ. 2019, 665, 465–483. [Google Scholar] [CrossRef] [PubMed]
- Nolivos, I.; Villacís, M.; Vázquez, R.F.; Mora, D.E.; Domínguez-Granda, L.; Hampel, H.; Velarde, E. Challenges for a sustainable management of Ecuadorian water resources. Sustain. Water Qual. Ecol. 2015, 6, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Ostovar, A.L. Investing upstream: Watershed protection in Piura, Peru. Environ. Sci. Policy 2019, 96, 9–17. [Google Scholar] [CrossRef]
- Bremer, L.L.; Farley, K.A.; Lopez-Carr, D. What factors influence participation in payment for ecosystem services programs? An evaluation of Ecuador’s SocioPáramo program. Land Use Policy 2014, 36, 122–133. [Google Scholar] [CrossRef]
Domain | Variable | Short Name |
---|---|---|
Natural-physical | LULC, extent of forest. | Bsq |
LULC, extent of shrub vegetation. | Varb | |
LULC, extension of grassland. | Past | |
LULC, extension of bare ground. | Sd | |
LULC, extension of agriculture. | Agr | |
LULC, extension of urban infrastructure. | Urb | |
Extreme weather events, floods. | Ind | |
Hydric recharge. | Rhi | |
Climate change, increase in average temperature and extreme rainfall. | CC | |
Streamflow | Cau | |
Socioeconomic | Agricultural activities in the basin. | Aagr |
Public entities response to extreme events. | Aex | |
Population increase. | Pob | |
Access routes to the basin. | AccV | |
Educational infrastructure. | Infed | |
Hygienic services and wastewater disposal (sewer/septic tank/latrine). | SerHig | |
Political-institutional | PNP territorial management through the MAE in the upper part (eastern flank) of the basin, as part of the SNAP. | SNAP |
SNAP financing to achieve institutional objectives. | FSNAP | |
Municipal domain properties, areas for the conservation of water sources | CFA | |
Municipal legislation, penalty fees for negative externalities associated with the degradation of supply basins. | LMun | |
Conservation of water resources through the execution of investment plans financed with ET. | FCFA | |
Qualified human resources to achieve institutional objectives at municipal level. | ReHum | |
Strategic institutional alliances to ensure the availability, sustainable use and quality of water resources. | AeIn |
Ranges | Dependence | Influence | Variables |
---|---|---|---|
Low | 17 | 17 | 2 |
Close low | 29 | 34 | 2 |
Close o high | 38 | 47 | 6 |
High | 48 | 59 | 13 |
Short Name | Change Hypothesis | Characteristic |
---|---|---|
Bsq | Forest cover will occupy more than 58.71% of the basin’s extension | Link variable |
Varb | Shrub vegetation cover will occupy more than 13.71% of the basin’s extension | Link variable |
Past | Grassland coverage will occupy less than 22.45% of the basin’s extension | Link variable |
Sd | Bare soil cover will occupy less than 0.45% of the basin’s extension | Resulting variable |
Agr | Agriculture cover will occupy less than 0.64% of the basin’s extension | Link variable |
Urb | Urban cover will occupy less than 4.03% of the basin’s extension | Link variable |
Ind | Storm-associated flow for 50 years return period will be lower than 3.00 m3/s and the flood plain generated for a storm-associated flow for 500 years return period will be limited, on average, to 30 m from the main channel. | Link variable |
Rhi | Multi-annual average water recharge will be greater than 618.45 mm, areas with the highest recharge are above 2350 masl. | Link variable |
CC | An elevation greater than 0.11 °C in annual average temperature and an important increase of high intensity rainfall will present. | Link variable |
Cau | A stream flow greater than 328 l/s will circulate with a 90% probability of exceedance. | Link variable |
Aagr | Less than 62% of the population in the upper part of the basin will carry out agricultural activities | Link variable |
Aex | Public entities response to the occurrence of extreme events will be outstanding in time and in actions. | Link variable |
Pob | Population of the area will decrease at an annual rate greater than 1.56%. | Link variable |
SNAP | PNP policies around monitoring and protection of the territory shared with the basin become inter-institutional, a high conservation priority is maintained, it’s part of SNAP and PANE. Any exploitation or occupation is prohibited. | Link variable |
FSNAP | A percentage greater than 2.28% of SNAP budget will go to PNP. | Link variable |
CFA | Conservation areas will increase, constituted as municipal domain properties. | Link variable |
LMun | There will be greater control and collection of fines through a coercive way to limit agricultural activities, deforestation and forest fires. Most of the territory will be assigned for conservation. There will be financial support programs for the conservation and protection of shrub and tree species. | Link variable |
FCFA | ET will be adjusted according to the conditions of the different supply basins in Loja city. | Link variable |
AeIn | FORAGUA will be strengthened, will administer the resources coming from ET and will obtain different lines of financing. Will implement activities oriented to the integrated management of water resources channeled to conservation, recovery and protection of environmental services. | Link variable |
Short Name | Change Hypothesis | Characteristic |
---|---|---|
Bsq | Forest cover will occupy 58.71% of the basin’s extension | Link variable |
Varb | Shrub vegetation cover will occupy 13.71% of the basin’s extension | Link variable |
Past | Grassland coverage will occupy 22.45% of the basin’s extension | Link variable |
Sd | Bare soil cover will occupy 0.45% of the basin’s extension | Resulting variable |
Agr | Agriculture cover will occupy 0.64% of the basin’s extension | Link variable |
Urb | Urban cover will occupy 4.03% of the basin’s extension | Link variable |
Ind | Storm-associated flow for 50 years return period will be 3.00 m3/s and the flood plain generated for a storm-associated flow for 500 years return period will be located, on average, to 30 m from the main channel. | Link variable |
Rhi | Multi-annual average water recharge will be 618.45 mm, areas with the highest recharge are above 2350 masl. | Link variable |
CC | An elevation of 0.11 °C in annual average temperature and an increase of high intensity rainfall will present. | Link variable |
Cau | A stream flow of 328 l/s will circulate with a 90% probability of exceedance. | Link variable |
Aagr | About 62% of the population in the upper part of the basin will carry out agricultural activities | Link variable |
Aex | Public entities response to the occurrence of extreme events will be appropriated in time and in actions. | Link variable |
Pob | Population of the area will decrease at an annual rate of 1.56%. | Link variable |
SNAP | PNP policies around monitoring and protection of the territory shared with the basin continues independent, a high conservation priority is maintained, it’s part of SNAP and PANE. Any exploitation or occupation is prohibited. | Link variable |
FSNAP | A percentage of 2.28% of SNAP budget will go to PNP. | Link variable |
CFA | Conservation areas maintain, constituted as municipal domain properties. | Link variable |
LMun | There will be fines through a coercive way to limit agricultural activities, deforestation and forest fires. Most of the territory will be assigned for conservation. | Link variable |
FCFA | ET will be maintained. | Link variable |
AeIn | FORAGUA will administer the resources coming from ET. Will implement activities oriented to the integrated management of water resources channeled to conservation, recovery and protection of environmental services. | Link variable |
Short Name | Change Hypothesis | Characteristic |
---|---|---|
Bsq | Forest cover will occupy less than 58.71% of the basin’s extension | Link variable |
Varb | Shrub vegetation cover will occupy less than 13.71% of the basin’s extension | Link variable |
Past | Grassland coverage will occupy more than 22.45% of the basin’s extension | Link variable |
Sd | Bare soil cover will occupy more than 0.45% of the basin’s extension | Resulting variable |
Agr | Agriculture cover will occupy more than 0.64% of the basin’s extension | Link variable |
Urb | Urban cover will occupy more than 4.03% of the basin’s extension | Link variable |
Ind | Storm-associated flow of a 50 years return period will be greater than 3.00 m3/s and the flood plain generated of a storm-associated flow for 500 years return period will extend, on average, further 30 m from the main channel. | Link variable |
Rhi | Multi-annual average water recharge will be lower than 618.45 mm, areas with the highest recharge are above 2350 masl. | Link variable |
CC | An elevation lower than 0.11 °C in annual average temperature and a minimum increase of high intensity rainfall will present. | Link variable |
Cau | A stream flow lower than 328 l/s will circulate with a 90% probability of exceedance. | Link variable |
Aagr | More than 62% of the population in the upper part of the basin will carry out agricultural activities | Link variable |
Aex | Public entities response to the occurrence of extreme events will be deficient in time and in actions. | Link variable |
Pob | Population of the area will decrease at an annual rate lower than 1.56%. | Link variable |
SNAP | PNP policies around monitoring and protection of the territory shared with the basin become inter-institutional, there is overlap of functions with other institutional instances, a high conservation priority is maintained, it’s part of SNAP and PANE. Despite being prohibited, there are areas with exploitation or occupation. Control is minimum. | Link variable |
FSNAP | A percentage lower than 2.28% of SNAP budget will go to PNP. | Link variable |
CFA | Conservation areas will decrease, constituted as municipal domain properties. | Link variable |
LMun | There will be greater control and collection of fines through a coercive way to limit agricultural activities, deforestation and forest fires. Most of the territory will be assigned for conservation. There will be financial support programs for the conservation and protection of shrub and tree species. However, due to lack of control, those aren’t executed | Link variable |
FCFA | ET is not applied. | Link variable |
AeIn | The agreements with FORAGUA end unilaterally, the resources from ET are passed to UMAPAL. | Link variable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mera-Parra, C.; Massa-Sánchez, P.; Oñate-Valdivieso, F.; Ochoa-Cueva, P. Territorial Prospective to Sustainability: Strategies for Future Successful of Water Resource Management on Andean Basins. Land 2022, 11, 1100. https://doi.org/10.3390/land11071100
Mera-Parra C, Massa-Sánchez P, Oñate-Valdivieso F, Ochoa-Cueva P. Territorial Prospective to Sustainability: Strategies for Future Successful of Water Resource Management on Andean Basins. Land. 2022; 11(7):1100. https://doi.org/10.3390/land11071100
Chicago/Turabian StyleMera-Parra, Christian, Priscilla Massa-Sánchez, Fernando Oñate-Valdivieso, and Pablo Ochoa-Cueva. 2022. "Territorial Prospective to Sustainability: Strategies for Future Successful of Water Resource Management on Andean Basins" Land 11, no. 7: 1100. https://doi.org/10.3390/land11071100
APA StyleMera-Parra, C., Massa-Sánchez, P., Oñate-Valdivieso, F., & Ochoa-Cueva, P. (2022). Territorial Prospective to Sustainability: Strategies for Future Successful of Water Resource Management on Andean Basins. Land, 11(7), 1100. https://doi.org/10.3390/land11071100