Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring
Abstract
:1. Introduction
2. Research Objects and Methods
- –
- This building was constructed in 2017 and after the geotechnical studies it was decided to use low-moisture sand up to 4 m thick at the construction site of the house as a filling. On average, the moisture content of such sand was about 10%.
- –
- The sand was completed by two layers of rubble and a concrete slab. The slab of 12 cm protects the soil from the thawed water in the PF zone.
- –
- Lateral movements of the water are not typical for this terrain.
- –
- Groundwater is mainly below the foundation piles level.
- –
- For the models that take into account the movement of water in frozen soil, some heuristic parameters are used, determined by the properties of the soil. These parameters are not known to the authors for a specific soil in the pile foundation zone for this residential building or are determined without rigorous justification. Under these circumstances, an increase the number of additional parameters in the model can lead to a decrease in the accuracy of the obtained numerical solutions.
- –
- Monitoring of the temperature regime of the soil by SAM stations in the area of the PF started in 2020. The SAM wells were drilled in the ventilated underground of the building and no detailed studies of the soil samples were carried out.
- –
3. Results
3.1. Temperature Fields in the Piling Foundation Area
3.2. The Results of the Calculation of the Bearing Capacity of the Soil under Building I
3.3. Validation of Numerical Calculations
4. Discussion
5. Conclusions
- A new model and software are proposed for finding nonstationary thermal fields under Building I in the city of Salekhard, considering the data of thermometric observations from 20 thermometric wells that are sent to the server in real time.
- The developed software was validated and calibrated for the specific characteristics of the piling foundation (geometric arrangement of piles, seasonal cooling devices, locations of thermometric wells, and soil lithology).
- This building’s designed load for one pile is from 28.2 tf/m2 to 53.8 tf/m2. The numerical results in Figure 21 show that by decreasing the temperature of soil of the PF by using SCDs thermal stabilizers, the bearing capacities of the piles increase over time and are also kept in the specified design values.
- Comparison of the thermometry data for the wells with the calculated data showed a good agreement in the summer and autumn periods. The difference between the thermometry data and the data obtained using computer simulation indicates the presence of additional heat sources, such as, for example, the presence of heat networks.
- In computer modeling, it is necessary to use the average daily temperature obtained as a result of temperature monitoring or a set, taking into account predicted climate changes. The accuracy of obtaining numerical results is also affected by the setting of the initial temperature distribution in the soil. For Building I, it was shown that it is necessary to consider at least three previous years of operation of seasonally operating devices around the piling foundation.
- The calculations for Building I indicate the bearing capacity of piles increases over time because of seasonal freezing of the soil.
- The combination of temperature monitoring methods with mathematical modeling methods makes it possible to create a digital model of a piling foundation and study changes in its various characteristics throughout the entire life of Building I. In the case of a predicted decrease in the bearing capacity of individual piles below the design values, it is necessary to use methods for thermal stabilization of the soil.
- The proposed method, which uses the data of a network of thermometric wells, can also be used for other construction projects with piling foundations in the permafrost zone.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ATM | automatic remote temperature monitoring; |
SCDs | seasonal cooling devices; |
PF | piling foundation; |
VU | ventilated underground in the permafrost zone is an open space under the building between the ground surface and the ceiling of the first (basement, technical) ventilated floor; |
AMT | average monthly temperatures; |
ADT; | average daily temperatures |
Ω | computational domain Ω for Building I; |
T = T(t, x, y, z) | soil temperature at point (x, y, z) at time t; |
ρ = ρ(x, y, z) | density; |
cν(T) | the specific heat capacity; |
λ(T) | the thermal conductivity coefficient; k the specific heat of the phase transition; |
T* = T*(x, y, z) | the temperature of the phase transition; |
SAM | system of automatic temperature monitoring; |
ALT | active-layer thickness. |
References
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 136–155. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Drozdov, D.S.; Oberman, N.G.; Malkova, G.V.; Kholodov, A.L.; Marchenko, S.S.; Moskalenko, N.G.; Sergeev, D.O.; Ukraintseva, N.G.; Abramov, A.; et al. Thermal state of permafrost in Russia. Permafr. Periglac. Process. 2010, 21, 136–155. [Google Scholar] [CrossRef]
- Hassol, S.J. ACIA, Impacts of a Warming Arctic: Arctic Climate Impact Assessment; Cambridge University Press: Cambridge, UK, 2004; pp. 28–44. Available online: https://www.amap.no/documents/doc/impacts-of-a-warming-arctic-2004/786 (accessed on 19 March 2021).
- Nelson, F.E.; Outcalt, S.I. A computational method for prediction and regionalization of permafrost. Arct. Alp. Res. 1987, 3, 279–288. [Google Scholar] [CrossRef]
- Anisimov, O.A.; Nelson, F.E. Application of mathematical models to investigate the interaction between the climate and permafrost. Sov. Meteorol. Hydrol. 1990, 10, 8–13. [Google Scholar]
- Daanen, R.P.; Ingeman-Nielsen, T.; Marchenko, S.S.; Romanovsky, V.E.; Foged, N.; Stendel, M.; Christensen, J.H.; Svendsen, K.H. Permafrost degradation risk zone assessment using simulation models. Cryosphere 2011, 5, 1043–1056. [Google Scholar] [CrossRef] [Green Version]
- Jafarov, E.E.; Marchenko, S.S.; Romanovsky, V.E. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset. Cryosphere 2012, 6, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Westermann, S.; Langer, M.; Boike, J.; Heikenfeld, M.; Peter, M.; Etzelmüller, B.; Krinner, G. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3. Geosci. Model Dev. 2016, 9, 523–546. [Google Scholar] [CrossRef] [Green Version]
- Filimonov, M.; Vaganova, N. Numerical Simulation of Technogenic and Climatic Influence on Permafrost. In Book Environmental Research; Daniels, J.A., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2017; Volume 54, pp. 117–142. [Google Scholar]
- Rasmussen, L.H.; Zhang, W.; Hollesen, J.; Cable, S.; Christiansen, H.H.; Jansson, P.-E.; Bo, E. Modelling present and future permafrost thermal regimes in Northeast Greenland. Cold Reg. Sci. Technol. 2018, 146, 199–213. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Shiklomanov, N.I.; Nelson, F.E. Spatial variability of permafrost active-layer thickness under contemporary and projected climate in northern Alaska. Polar Geogr. 2012, 35, 95–116. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, T.; Frauenfeld, O.W.; Kang, W.; Luo, D.; Cao, B.; Hang, S.; Jin, H.; Wu, Q. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the northern hemisphere. J. Clim. 2018, 31, 251–266. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, T.; Frauenfeld, O.W.; Du, R.; Wei, Q.; Liang, B. Soil freeze depth variability across Eurasia during 1850–2100. Clim. Chang. 2020, 158, 531–549. [Google Scholar] [CrossRef]
- Shestakova, A.A.; Fedorov, A.N.; Torgovkin, Y.I.; Konstantinov, P.Y.; Vasyliev, N.F.; Kalinicheva, S.V.; Samsonova, V.V.; Hiyama, T.; Iijima, Y.; Park, H.; et al. Mapping the Main Characteristics of Permafrost on the Basis of a Permafrost-Landscape Map of Yakutia Using GIS. Land 2021, 10, 462. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Drozdov, D.S.; Gravis, A.G.; Nikitin, K.A. Permafrost degradation in YANAO. Results of the long-term monitoring. In Proceedings of the International Conference “Modern Studies of Cryosphere Transformation and Geotechnical Safety Issues for Construction in the Arctic, 2021”, Salekhard, Russia, 8–12 November 2021. [Google Scholar]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature 2001, 410, 889–890. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. CMIP5 permafrost degradation projection: A comparison among different regions. J. Geophys. Res. Atmos. 2016, 121, 4499–4517. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. Permafrost degradation and associated ground settlement estimation under 2 °C global warming. Clim. Dyn. 2017, 49, 2569–2583. [Google Scholar] [CrossRef]
- Chadburn, S.E.; Burke, E.J.; Cox, P.M.; Friedlingstein, P.; Hugelius, G.; Westermann, S. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 2017, 7, 340–344. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, T.; Zhang, X.; Gray, C.; Jafarov, E.; Overeem, I.; Romanovsky, V.; Peng, X.; Cao, B. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus. Geophys. Res. Lett. 2017, 44, 9029–9038. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Drozdov, D.S.; Gravis, A.G.; Malkova, G.V.; Nyland, K.E.; Streletskiy, D.A. Permafrost degradation in the Western Russian Arctic. Environ. Res. Lett. 2020, 15, 045001. [Google Scholar] [CrossRef]
- Alexandrov, G.A.; Ginzburg, V.A.; Insarov, G.E.; Romanovskaya, A.A. CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario. Clim. Chang. 2021, 169, 42. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrandost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Filimonov, M.Y.; Vaganova, N.A. Simulation of technogenic and climatic influences in permafrost for northern oil fields exploitation. In Finite Difference Methods, Theory and Applications. FDM 2014. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9045, pp. 185–192. [Google Scholar] [CrossRef]
- Vaganova, N.; Filimonov, M.Y. Different shapes of constructions and their effects on permafrost. AIP Conf. Proc. 2016, 1789, 020019. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Z.; Gao, S.; Ma, W. Thermal impacts of engineering activities on permafrost in different alpine ecosystems in Qinghai-Tibet plateau, China. Cryosphere 2016, 10, 1695–1706. [Google Scholar] [CrossRef] [Green Version]
- Filimonov, M.; Vaganova, N. Permafrost thawing from different technical systems in Arctic regions. IOP Conf. Ser. Earth Environ. Sci. 2017, 72, 012006. [Google Scholar] [CrossRef] [Green Version]
- Gladkikh, V.S.; Ilin, V.P.; Petukhov, A.V.; Krylov, A.M. Numerical modeling of non-stationary heat problems in a two-phase medium. J. Phys. Conf. Ser. 2021, 1715, 012002. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Shiklomanov, N.I.; Grebenets, V.I. Changes of foundation bearing capacity due to climate warming in Northwest Siberia. Earth Cryosphere 2012, 16, 22–32. (In Russian) [Google Scholar]
- Shiklomanov, N.I.; Streletskiy, D.A.; Swales, T.B.; Kokorev, V.A. Climate change and stability of urban infrastructure in Russian permafrost regions: Prognostic assessment based on GCM climate projections. Geogr. Rev. 2017, 107, 125–142. [Google Scholar] [CrossRef]
- Hjort, J.; Karjalainen, O.; Aalto, J.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Etzelmüller, B.; Luoto, M. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 2018, 9, 5147. [Google Scholar] [CrossRef]
- Suter, L.; Streletskiy, D.; Shiklomanov, N. Assessment of the cost of climate change impacts on critical infrastructure in the circumpolar Arctic. Polar Geogr. 2019, 42, 267–286. [Google Scholar] [CrossRef]
- Schneider von Deimling, T.; Ingeman-Nielsen, T.; Lee, H.; Westermann, S. Modelling consequences of permafrost degradation for Arctic infrastructure and related risks to the environment and society. In Proceedings of the Arctic Science Summit Week 2021, Lisbon, Portugal, 20–26 March 2021; Available online: https://orbit.dtu.dk/en/publications/modelling-consequences-of-permafrost-degradation-for-arctic-infra (accessed on 19 March 2021).
- Amosova, E.V.; Kropachev, D.Y.; Pazderin, D.S. Temperature monitoring system for extended objects in permafrost. Equip. Technol. Oil Gas Complex 2011, 2, 67–70. [Google Scholar]
- Vaganova, N.; Filimonov, M. Simulation of freezing and thawing of soil in Arctic regions. IOP Conf. Ser. Earth Environ. 2017, 72, 012006. [Google Scholar] [CrossRef] [Green Version]
- Streletskiy, D.A.; Suter, L.J.; Shiklomanov, N.I.; Porfiriev, B.N.; Eliseev, D.O. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environ. Res. Lett. 2019, 14, 025003. [Google Scholar] [CrossRef]
- Smith, S.L.; Burgess, M.M.; Riseborough, D.; Nixon, F.M. Recent Trends from Canadian Permafrost Thermal Monitoring Network Sites. Permafr. Periglac. Process. 2005, 16, 19–30. [Google Scholar] [CrossRef]
- Yeltsov, I.N.; Olenchenko, V.V.; Faguet, A.N. Electrotomography in the Russian Arctic based on field studies and three-dimensional numerical modeling. Bus. Mag. Neftegaz. RU 2017, 2, 54–64. (In Russian) [Google Scholar]
- You, Y.; Yu, Q.; Pan, X.; Wang, X.; Guo, L. Application of electrical resistivity tomography in investigating depth of permafrost base and permafrost structure in Tibetan Plateau. Cold Reg. Sci. Technol. 2013, 87, 19–26. [Google Scholar] [CrossRef]
- Gryaznova, E. Geotechnical monitoring to ensure reliability of construction and operation of buildings and structures. IOP Conf. Ser. Mater. Sci. Eng. 2018, 365, 052014. [Google Scholar] [CrossRef] [Green Version]
- Gromadsky, A.N.; Arefiev, S.V.; Volkov, N.G.; Kamnev, Y.K.; Sinitsky, A.I. Remote monitoring of the temperature regime of permafrost soils under the buildings of Salekhard. Sci. Bull. Yamalo-Nenets Auton. Okrug 2019, 3, 17–21. [Google Scholar] [CrossRef]
- Kamnev, Y.K.; Filimonov, M.Y.; Shein, A.N.; Vaganova, N.A. Automated Monitoring the Temperature Under Buildings with Pile Foundations in Salekhard (Preliminary Results). Geogr. Environ. Sustain. 2021, 14, 75–82. [Google Scholar] [CrossRef]
- Potapov, A.I.; Shikhov, A.I.; Dunaeva, E.N. Geotechnical monitoring of frozen soils: Problems and possible solutions. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1064, 012038. [Google Scholar] [CrossRef]
- Varlamov, S.P.; Skachkov, Y.B.; Skryabin, P.N. Long-Term Variability in Ground Thermal State in Central Yakutia’s Tuymaada Valley. Land 2021, 10, 1231. [Google Scholar] [CrossRef]
- Bouffard, T.J.; Uryupova, E.; Dodds, K.; Romanovsky, V.E.; Bennett, A.P.; Streletskiy, D. Scientific Cooperation: Supporting Circumpolar Permafrost Monitoring and Data Sharing. Land 2021, 10, 590. [Google Scholar] [CrossRef]
- Alekseev, A.; Shilova, L.; Mefedov, E. An approach for automatization of geotechnical monitoring in cryolithozone. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1083, 012080. [Google Scholar] [CrossRef]
- System of Automated Geocryological Monitoring. Available online: https://monitoring.arctic.yanao.ru/ (accessed on 15 February 2021).
- Ishkov, A.; Anikin, G.V.; Dolgikh, G.M.; Okunev, S.N. Horizontal evaporator tube (HET) thermosyphons: Physicalmathematical modeling and experimental data, compared. Earth’s Cryosphere 2018, 22, 57–64. (In Russian) [Google Scholar]
- Baisheva, L.M.; Permyakov, P.P.; Bolshakov, A.M. Heat and Mass Transfer of a Coolant in Horizontal Seasonal Cooling Devices. IOP Conf. Ser. Mater. Sci. Eng. 2020, 753, 042092. [Google Scholar] [CrossRef]
- Filimonov, M.Y.; Vaganova, N.A. Simulation of thermal stabilization of soil around various technical systems operating in permafrost. Appl. Math. Sci. 2013, 7, 7151–7160. [Google Scholar] [CrossRef]
- Perreault, P.; Shur, Y. Seasonal thermal insulation to mitigate climate change impacts on foundations in permafrost regions. Cold Reg. Sci. Technol. 2016, 132, 7–18. [Google Scholar] [CrossRef]
- Harlan, R.; Nixon, J. Ground Thermal Regime. Geotechnical Engineering for Cold Regions; Andersland, O.B., Anderson, D.M., Eds.; McGraw-Hill: New York, NY, USA, 1978; pp. 103–163. [Google Scholar]
- SP 25.13330.2021; Soil Bases and Foundations on Permafrost Soils. The Federal Agency for Technical Regulation and Metrology (Rosstandart): Moscow, Russia, 2021. (In Russian)
- Pustovoit, G.P. On the potential of seasonal in-ground cooling devices. Soil Mech. Found. Eng. 2015, 42, 142–146. [Google Scholar] [CrossRef]
- Vaganova, N.A. Simulation of Thermal Stabilization of Bases under Engineering Structures in Permafrost Zone. AIP Conf. Proc. 2018, 2048, 030010. [Google Scholar] [CrossRef] [Green Version]
- Vaganova, N.A.; Filimonov, M.Y. Simulation of Cooling Devices and Effect for Thermal Stabilization of Soil in a Cryolithozone with Anthropogenic Impact. In Finite Difference Methods, Theory and Applications. FDM 2014. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11386, pp. 580–587. [Google Scholar] [CrossRef]
- Gorelik, J.B.; Khabitov, A.K.; Zemerov, I.V. Affectivity of surface cooling of the building’s bases on permafrost. In Proceedings of the International Conference “Modern Studies of Cryosphere Transformation and Geotechnical Safety Issues for Construction in the Arctic, 2021”, Salekhard, Russia, 8–12 November 2021. [Google Scholar]
- Okorokov, N.S.; Korkishko, A.N.; Korzhikova, A.P. An experimental study of a forced ventilation pile. Vestnik MGSU 2020, 15, 665–677. [Google Scholar] [CrossRef]
- Klimov, A.S.; Emelyanov, R.T.; Chumakova, E.V.; Klimova, O.L. Cooling of near-pile permafrost soils in the arctic region. J. Constr. Archit. 2021, 23, 138–146. (In Russian) [Google Scholar] [CrossRef]
- Filimonov, M.Y.; Vaganova, N.A. Thawing of Permafrost During the Operation of Wells of North-Mukerkamyl Oil and Gas Field. J. Sib. Fed. Univ. Math. Phys. 2021, 14, 795–804. [Google Scholar] [CrossRef]
- Alekseeva, M.N.; Yashchenko, I.G. Ecological Aspects of Hydrocarbon Extraction in the Purovsky Region of Yamalo-Nenets Autonomous District. Chem. Sustain. Dev. 2021, 29, 116–122. [Google Scholar] [CrossRef]
- Samarskii, A.A.; Moiseyenko, B.D. An economic continuous calculation scheme for the Stefan multidimensional problem. USSR Comput. Math. Math. Phys. 1965, 5, 43–58. Available online: http://samarskii.ru/articles/1965/1965-002.pdf (accessed on 19 March 2021). [CrossRef]
- Samarsky, A.A.; Vabishchevich, P.N. Computational Heat Transfer, Volume 2, the Finite Difference Methodology; Wiley: Chichester, UK, 1995. [Google Scholar]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost—A review. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Grenier, C.; Anbergen, H.; Bense, V.; Chanzy, Q.; Coon, E.; Collier, N.; Costard, F.; Ferry, M.; Frampton, A.; Frederick, J.; et al. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases. Adv. Water Resour. 2018, 114, 196–218. [Google Scholar] [CrossRef]
- Lamontagne-Hallé, P.; McKenzie, J.M.; Molson, J.; Lyon, B.L.; Kurylyk, L.N. Guidelines for cold-regions groundwater numerical modeling. WIREs Water 2020, 7, e1467. [Google Scholar] [CrossRef]
- Yang, X.; Hu, J.; Ma, R.; Sun, Z. Integrated Hydrologic Modelling of Groundwater-Surface Water Interactions in Cold Regions. Front. Earth Sci. 2021, 9, 721009. [Google Scholar] [CrossRef]
- Hinkel, K.M.; Outcalt, S.I.; Taylor, A.E. Seasonal patterns of coupled flow in the active layer at three sites in northwest North America. Can. J. Earth Sci. 1997, 34, 667–678. [Google Scholar] [CrossRef]
- Kane, D.L.; Hinkel, K.M.; Goering, D.J.; Hinzman, L.D.; Outcalt, S.I. Non-conductive heat transfer associated with frozen soils. Glob. Planet. Chang. 2001, 29, 275–292. [Google Scholar] [CrossRef]
- Zhirkov, A.; Permyakov, P.; Wen, Z.; Kirillin, A. Influence of Rainfall Changes on the Temperature Regime of Permafrost in Central Yakutia. Land 2021, 10, 1230. [Google Scholar] [CrossRef]
- Filimonov, M.Y.; Vaganova, N.A. On Boundary Conditions Setting for Numerical Simulation of Thermal Fields Propagation in Permafrost Soils. CEUR-WS Proc. 2018, 2109, 18–24. Available online: http://ceur-ws.org/Vol-2109/paper-04.pdf (accessed on 14 July 2022).
- Huang, X.; Rudolph, D.L. A hybrid analytical-numerical technique for solving soil temperature during the freezing process. Adv. Water Resour. 2022, 162, 104163. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; Watanabe, K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils. Adv. Water Resour. 2013, 60, 160–177. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; Hayashi, M.; Quinton, W.L.; McKenzie, J.M.; Voss, C.I. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour. Res. 2016, 52, 1286–1305. [Google Scholar] [CrossRef] [Green Version]
- Magnússon, R.Í.; Hamm, A.; Karsanaev, S.V.; Limpens, J.; Kleijn, D.; Frampton, A.; Maximov, T.C.; Heijmans, M.M.P.D. Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nat. Commun. 2022, 13, 1556. [Google Scholar] [CrossRef]
- Painter, S.L.; Karra, S. Constitutive model for unfrozen water content in subfreezing unsaturated soils. Vadose Zone J. 2014, 13, 1–8. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Coon, E.; Sannel, A.B.K.; Pannetier, R.; Harp, D.; Frampton, A.; Painter, S.L.; Lyon, S.W. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling. Water Resour. Res. 2016, 52, 1591–1606. [Google Scholar] [CrossRef] [Green Version]
- Orgogozo, L.; Prokushkin, A.S.; Pokrovsky, O.S.; Grenier, C.; Quintard, M.; Viers, J.; Audry, S. Water and energy transfer modelling in a permafrost-dominated, forested catchment of Central Siberia: The key role of rooting depth. Permafr. Periglac. Process. 2019, 30, 75–89. [Google Scholar] [CrossRef]
- Zipper, S.C.; Lamontagne-Hallé, P.; McKenzie, J.M.; Rocha, A.V. Groundwater controls on postfire permafrost thaw: Water and energy balance effects. J. Geophys. Res. Earth Surf. 2018, 123, 2677–2694. [Google Scholar] [CrossRef]
- Vaganova, N.A. Existence of a solution of an initial-boundary value difference problem for a linear heat equation with a nonlinear boundary condition. Proc. Steklov Inst. Math. 2008, 261 (Suppl. 1), S260–S271. [Google Scholar] [CrossRef]
Soil | Thermal Conductivity Coefficient, W/(mK) | Volumetric Heat Capacity, J/(m3K) | k, J/(m3K) | T*, C | |||
---|---|---|---|---|---|---|---|
Frozen | Thawed | Frozen | Thawed | ||||
1 | Clay * is not used | 0.80 | 1.69 | 1.70 × 106 | 1.70 × 106 | 0.00 | 0.00 |
2 | Concrete | 1.69 | 1.69 | 2.10 × 106 | 2.10 × 106 | 0.00 | 0.00 |
3 | Rubble | 0.47 | 0.47 | 2.56 × 106 | 2.56 × 106 | 0.00 | 0.00 |
4 | Loose low-wet sand | 2.30 | 1.97 | 2.16 × 106 | 1.89 × 106 | 7.04 × 107 | −0.15 |
5 | Dusty low-wet sand | 2.23 | 1.90 | 1.74 × 106 | 1.89 × 106 | 7.04 × 107 | −0.15 |
6 | Fine wet sand | 2.75 | 2.26 | 2.02 × 106 | 2.48 × 106 | 1.38 × 108 | −0.15 |
7 | Fine water-saturated sand | 3.05 | 2.67 | 2.14 × 106 | 2.31 × 106 | 1.64 × 108 | −0.15 |
8 | Water-soaked sand | 2.92 | 2.50 | 2.35 × 106 | 3.15 × 106 | 3.02 × 108 | −0.15 |
9 | Flooded loam | 2.05 | 1.86 | 2.41 × 106 | 3.17 × 106 | 3.35 × 108 | −0.15 |
10 | Plastic loam | 1.83 | 1.68 | 2.26 × 106 | 2.78 × 106 | 3.02 × 108 | −0.15 |
11 | Loamy sand | 1.78 | 1.74 | 2.26 × 106 | 2.68 × 106 | 1.64 × 108 | −0.15 |
12 | Semi-solid heavy loam | 1.86 | 1.57 | 2.04 × 106 | 2.42 × 106 | 1.38 × 108 | −0.20 |
13 | Soft-plastic fluid loam | 1.94 | 168 | 2.41 × 106 | 3.17 × 106 | 3.02 × 108 | −0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filimonov, M.Y.; Kamnev, Y.K.; Shein, A.N.; Vaganova, N.A. Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring. Land 2022, 11, 1102. https://doi.org/10.3390/land11071102
Filimonov MY, Kamnev YK, Shein AN, Vaganova NA. Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring. Land. 2022; 11(7):1102. https://doi.org/10.3390/land11071102
Chicago/Turabian StyleFilimonov, Mikhail Yu., Yaroslav K. Kamnev, Aleksandr N. Shein, and Nataliia A. Vaganova. 2022. "Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring" Land 11, no. 7: 1102. https://doi.org/10.3390/land11071102
APA StyleFilimonov, M. Y., Kamnev, Y. K., Shein, A. N., & Vaganova, N. A. (2022). Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring. Land, 11(7), 1102. https://doi.org/10.3390/land11071102