Landscape Pattern Vulnerability of the Eastern Hengduan Mountains, China and Response to Elevation and Artificial Disturbance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Calculation of the LVI
2.4. Calculation of the LHAI
2.5. Spatial Analysis Methods
2.5.1. Delineation of the Unitary Mesh
2.5.2. Spatial Autocorrelation Analysis
2.6. Different Elevation Sub-Bands
3. Results
3.1. Spatial Differentiation of Landscape Pattern Vulnerability in Ganzi Prefecture
3.1.1. Analysis of Current Land Cover
3.1.2. Spatial Distribution of LVI
3.2. Characterization of the Landscape Intensity of Artificial Disturbance in Ganzi Prefecture
3.3. Spatial Autocorrelation Analysis
3.3.1. Global Autocorrelation
3.3.2. Local Autocorrelation
3.4. Vertical Distribution Characteristics of LVI and LHAI Values
3.5. Spearman Correlation Analysis of LVI, LHAI, and Elevation
4. Discussion
4.1. Analysis of Landscape Pattern Vulnerability Drivers
4.2. How Elevation Impacts LVI and LHAI
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J. Landscape Ecology-Pattern, Process, Scale and Hierarchy; Higher Education Press: Beijing, China, 2000; pp. 100–110. [Google Scholar]
- Turner, M.G.; Romme, W.H.; Gardner, R.H.; O’Neill, R.V.; Kratz, T.K. A revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes. Landsc. Ecol. 1993, 8, 213–227. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Shi, Q.; Zhang, M.; Liu, D. Spatiotemporal evolution and driving factors of landscape ecological vulnerability in Shaanxi Province. Arid Zone Res. 2020, 37, 496–505. [Google Scholar] [CrossRef]
- Yang, L.; Ao, Y.; Ke, J.; Lu, Y.; Liang, Y. To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults. J. Transp. Geogr. 2021, 94, 103099. [Google Scholar] [CrossRef]
- Yang, L.; Tang, X.; Yang, H.; Meng, F.; Liu, J. Using a system of equations to assess the determinants of the walking behavior of older adults. Trans. GIS 2022, 26, 1339–1354. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liang, Y.; He, B.; Lu, Y.; Gou, Z. COVID-19 effects on property markets: The pandemic decreases the implicit price of metro accessibility. Tunn. Undergr. Space Technol. 2022, 125, 104528. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Liang, Y.; Lu, Y.; Yang, H. Spatially varying effects of street greenery on walking time of older adults. ISPRS Int. J. Geo-Inf. 2021, 10, 596. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, C.; Wang, G.; Bao, S. An integrated sustainable development approach to modeling the eco-environmental effects from urbanization. Ecol. Indic. 2011, 11, 1599–1608. [Google Scholar] [CrossRef]
- Chen, L.; Sun, R.; Liu, H. Eco-environmental effects of urban landscape pattern changes: Progresses, problems, and perspectives. Acta Ecol. Sin. 2013, 33, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Sharifi, A.; Dong, X.; Shen, L.; He, B.-J. Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization. Remote Sens. 2021, 13, 4338. [Google Scholar] [CrossRef]
- Qi, J.; He, B.; Wang, M.; Zhu, J.; Fu, W. Do grey infrastructures always elevate urban temperature? No, utilizing grey infrastructures to mitigate urban heat island effects. Sustain. Cities Soc. 2019, 46, 101392. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, F.; Johnson, V.C.; Duan, P.; Kung, H. Spatio-temporal variation of oasis landscape pattern in arid area: Human or natural driving? Ecol. Indic. 2021, 125, 107495. [Google Scholar] [CrossRef]
- Zang, Y.; Liu, Y.; Yang, Y. Land use pattern change and its topographic gradient effect in the mountainous areas: A case study of Jinggangshan city. J. Nat. Resour. 2019, 34, 1391–1404. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, D.; Tian, X.; Zhao, L. Landscape pattern dynamics and driving forces analysis in the Sanjiang Plain from 1954 to 2010. Acta Ecol. Sin. 2014, 34, 3234–3244. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Dong, S. Ecological Security Assessment of Yuan River Watershed Based on Landscape Pattern and Soil Erosion. Procedia Environ. Sci. 2010, 2, 613–618. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef]
- Wang, L.; Xi, C.; Fu, Q.; Su, Y. Landscape Pattern-Based Eco-Environment Vulnerability Assessment of Three Gorges Reservoir Area. Res. Environ. Sci. 2010, 23, 1268–1273. [Google Scholar] [CrossRef]
- Bourgoin, C.; Oszwald, J.; Bourgoin, J.; Gond, V.; Blanc, L.; Dessard, H.; Phan, T.V.; Sist, P.; Läderach, P.; Reymondin, L. Assessing the ecological vulnerability of forest landscape to agricultural frontier expansion in the Central Highlands of Vietnam. Int. J. Appl. Earth Obs. 2020, 84, 101958. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Liu, S.; Liu, J.; Wang, Z.; Li, M. Regional assessment of environmental vulnerability in the Tibetan Plateau: Development and application of a new method. J. Arid Environ. 2008, 72, 1929–1939. [Google Scholar] [CrossRef]
- Feyissa, N.; Gebremariam, E. Mapping of landscape structure and forest cover change detection in the mountain chains around Addis Ababa: The case of Wechecha Mountain, Ethiopia. Remote Sens. Appl. Soc. Environ. 2018, 11, 254–264. [Google Scholar] [CrossRef]
- Kumar, M.; Kalra, N.; Singh, H.; Sharma, S.; Rawat, P.S.; Singh, R.K.; Gupta, A.K.; Kumar, P.; Ravindranath, N.H. Indicator-based vulnerability assessment of forest ecosystem in the Indian Western Himalayas: An analytical hierarchy process integrated approach. Ecol. Indic. 2021, 125, 107568. [Google Scholar] [CrossRef]
- Campagnaro, T.; Frate, L.; Carranza, M.L.; Sitzia, C. Multi-scale analysis of alpine landscapes with different intensities of abandonment reveals similar spatial pattern changes: Implications for habitat conservation. Ecol. Indic. 2017, 74, 147–159. [Google Scholar] [CrossRef]
- Kulakowski, D.; Bebi, P.; Rixen, C. The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss Alps. Oikos 2011, 120, 216–225. [Google Scholar] [CrossRef]
- Song, G.; Chen, Y.; Tian, M.; Lv, S.; Zhang, S.; Liu, S. The Ecological Vulnerability Evaluation in Southwestern Mountain Region of China Based on GIS and AHP Method. Procedia Environ. Sci. 2010, 2, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Zhang, H. Effects of land use change on landscape pattern vulnerability in Yinchuan Basin, Northwest China. Chin. J. Appl. Ecol. 2016, 27, 243–249. [Google Scholar] [CrossRef]
- Ren, J.; Yang, K.; Chen, Q.; Mo, S.; Wang, Z.; Feng, T. Spatio-Temporal Variation of Vulnerability of Landscape Ecology of Caohai Wetland. J. Ecol. Rural Environ. 2018, 34, 232–239. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, X.; Zhang, D.; Shan, R.; Liu, F. Landscape pattern and its vulnerability of Nansihu Lake basin during 1980–2015. Chin. J. Appl. Ecol. 2018, 29, 635–642. [Google Scholar] [CrossRef]
- Qian, D.; Yang, C.; Xiu, L. Land cover change and landscape pattern vulnerability response in Muli mining and its surrounding areas in the Qinghai-Tibet Platea. J. Glaciol. Geocryol. 2020, 42, 1334–1343. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Hou, L. Changes and ecological vulnerability of landscape pattern in Eastern Qilian Mountain. Arid Land Geogr. 2012, 35, 795–805. [Google Scholar] [CrossRef]
- Guo, B.; Jiang, L.; Luo, W.; Yang, G.; Ge, D. Study of an evaluation method of ecosystem vulnerability based on remote sensing in a southwestern karst mountain area under extreme climatic conditions. Acta Ecol. Sin. 2017, 37, 7219–7231. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Zhang, W.; Chen, H.; He, X. The quantitative assessment of eco-environment vulnerability in karst regions of Northwest Guangxi. Acta Ecol. Sin. 2009, 29, 749–757. [Google Scholar] [CrossRef]
- Donoso, M.E.; Sarmiento, F.O. Changing mountain farmscapes: Vulnerability and migration drivers in the Paute River watershed, Southern Ecuador. J. Mt. Sci. 2021, 18, 1902–1919. [Google Scholar] [CrossRef]
- Jha, S.K.; Negi, A.K.; Alatalo, J.M.; Negi, R.S. Socio-ecological vulnerability and resilience of mountain communities residing in capital-constrained environments. Mitig. Adapt. Strateg. Glob. Chang. 2021, 26, 38. [Google Scholar] [CrossRef] [PubMed]
- Schneiderbauer, S.; Fontanella Pisa, P.; Delves, J.L.; Pedoth, L.; Rufat, S.; Erschbamer, M.; Thaler, T.; Carnelli, F.; Granados-Chahin, S. Risk perception of climate change and natural hazards in global mountain regions: A critical review. Sci. Total Environ. 2021, 784, 146957. [Google Scholar] [CrossRef]
- Fan, J.; Yang, C.; Bao, W.; Liu, J.; Li, X. Distribution Scope and District Statistical Analysis of Dry Valleys in Southwest China. Mt. Res. 2020, 38, 303–313. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, G.; Rong, L.; Fang, H.; He, D.; Feng, D. Spatial distribution and environmental factors of catchment scale soil heavy metal contamination in the dry–hot valley of Upper Red River in southwestern China. Catena 2015, 135, 59–69. [Google Scholar] [CrossRef]
- Dong, Y.; Xiong, D.; Su, Z.; Li, J.; Yang, D.; Shi, L.; Liu, G. The distribution of and factors influencing the vegetation in a gully in the dry–hot valley of southwest China. Catena 2014, 116, 60–67. [Google Scholar] [CrossRef]
- Wang, G.; Liu, G.; Shen, Z.; Wang, W. Research progress and future perspectives on the landscape ecology of mountainous areas. Acta Ecol. Sin. 2017, 37, 3967–3981. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Zhao, D. Characteristics of natural environment of the Tibetan Plateau. Sci. Technol. Rev. 2017, 35, 13–22. [Google Scholar]
- Zhao, G.; Hong, D.; Wei, X. A review grassland desertification characteristics of Qinghai-Tibet Plateau. Grassl. Turf. 2012, 32, 83–89. [Google Scholar] [CrossRef]
- Rong, T.; Liu, E.; Zhang, Y.; Schinnerl, J.; Sun, W.; Chen, G. Genetic diversity and population structure of Amorphophallus albus, a plant species with extremely small populations (PSESP) endemic to dry–hot valley of Jinsha River. BMC Genet. 2020, 21, 102–113. [Google Scholar] [CrossRef]
- Shi, Z.; Deng, W.; Zhang, S. Spatial pattern and spatio temporal change of territory space in Hengduan mountains region in recent 25 years. Geogr. Res. 2018, 37, 607–621. [Google Scholar] [CrossRef]
- Zong, H.; Sun, J.; Zhou, L.; Bao, F.; Zheng, X. Effect of altitude and climatic parameters on shrub-meadow community composition and diversity in the dry valley region of the eastern Hengduan Mountains, China. J. Mt. Sci. 2022, 19, 1139–1155. [Google Scholar] [CrossRef]
- Zhang, X. A Case Study of Geological Hazards Risk Assessement in a Large Scale Mountainous Environment. Doctoral Dissertation, Chengdu University of Technology, Chengdu, China, 2011. [Google Scholar]
- Wang, Q.; Han, Y.; Guo, B.; Wang, M.; Ran, W.; Chen, J. Temporal and spatial evolution of climate dry and wet conditions in ganzi in the past 57 years. Chin. J. Agrometeorol. 2019, 40, 435–443. [Google Scholar] [CrossRef]
- Ganzi Tibetan Autonomous Prefecture Bureau of Natural Resource and Planning. Available online: http://gtj.gzz.gov.cn/gzzrzy/c101362/202007/06ab0a26a95f41a38289b52bbe8d1f7d.shtml (accessed on 15 April 2022).
- Sichuan Statistical Yearbook. Available online: https://www.yearbookchina.com/navipage-n3020013151000107.html (accessed on 15 April 2022).
- Zhao, D.; Arshad, M.; Wang, J.; Triantafilis, J. Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking. Comput. Electron. Agric. 2021, 182, 105990. [Google Scholar] [CrossRef]
- Zhao, D.; Li, N.; Zare, E.; Wang, J.; Triantafilis, J. Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data. Soil Tillage Res. 2020, 200, 104618. [Google Scholar] [CrossRef]
- Information Service Platform for Standardization of Natural Resources. Available online: http://www.nrsis.org.cn/portal/stdDetail/210854. (accessed on 15 April 2022).
- Geospatial Data Cloud. Available online: http://www.gscloud.cn. (accessed on 15 April 2022).
- Han, Z.; Li, J.; Shentu, Y.; Xu, C. Analysis of ecological security of wetland in Liaohe River delta based on the landscape pattern. Ecol. Environ. Sci. 2010, 19, 701–705. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, J.; Li, D.; Ye, M.; He, Q. Study of the Landscape Pattern Vulnerability and Spatial Correlation Patterns in the Harbin Section of the Songhua River Basin. Geogr. Geo-Inf. Sci. 2019, 35, 105–110. [Google Scholar]
- Sun, H.; Zhang, Z. Change of Landscape Pattern Vulnerability in the Songhua River Basin in Jilin Province and Its Driving Forces. Arid Zone Res. 2019, 36, 1005–1014. [Google Scholar] [CrossRef]
- Wu, X.; Tang, S. Comprehensive evaluation of ecological vulnerability based on the AHP-CV method and SOM model: A case study of Badong County, China. Ecol. Indic. 2022, 137, 108758. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Zhang, L.; Song, J. Research Progresses on Driving Forces of the Changes of Landscape Pattern. Prog. Geogr. 2012, 31, 1739–1746. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Yuan, Q.; Shi, X.; Pu, R.; Yang, L.; Lu, X. Comparative research on the impact of human activities on changes in coastline and landscape in bay areas: A case study with Xiangshangang Bay, China and Tampa Bay, USA. Acta Geogr. Sin. 2016, 71, 86–103. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, W. Effects of land consolidation on ecological environment. Trans. Chin. Soc. Agric. Eng. 2007, 23, 281–285. [Google Scholar]
- Singh, M.; Sinha, R. Evaluating dynamic hydrological connectivity of a floodplain wetland in North Bihar, India using geostatistical methods. Sci. Total Environ. 2019, 651, 2473–2488. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Tao, W.; Wang, L.; Li, X. Study on hierarchical transformation mechanisms of regional ecological vulnerability and its applicability. Ecol. Indic. 2020, 114, 106343. [Google Scholar] [CrossRef]
- Yang, L.; Chau, K.W.; Szeto, W.Y.; Cui, X.; Wang, X. Accessibility to transit, by transit, and property prices: Spatially varying relationships. Transp. Res. Part D-Transp. Environ. 2020, 85, 102387. [Google Scholar] [CrossRef]
- Yang, L.; Chu, X.; Gou, Z.; Yang, H.; Lu, Y.; Huang, W. Accessibility and proximity effects of bus rapid transit on housing prices: Heterogeneity across price quantiles and space. J. Transp. Geogr. 2020, 88, 102850. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Wang, J.; Ren, Y.; Wang, D. Evaluation of the Landscape Patterns Vulnerability and Analysis of Spatial-Temporal Patterns in the Typical Region of the Ebinur Lake. J. Catastrophol. 2016, 31, 222–229. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, W.; Qian, J.; Li, B.; Zhang, B. Research on the Classification System of Digital Land Geomorphology of 1:1000000 in China. J. Geogr. Inf. Sci. 2009, 11, 707–724. [Google Scholar] [CrossRef]
- Pema, D.; Xiao, Y.; Ouyang, Z.; Wang, L. Gross ecosystem product accounting for the Garzê Tibetan Autonomous Prefecture. Acta Ecol. Sin. 2017, 37, 6302–6312. [Google Scholar] [CrossRef]
- Salvati, L.; Tombolini, I.; Perini, L.; Ferrara, A. Landscape changes and environmental quality: The evolution of land vulnerability and potential resilience to degradation in Italy. Reg. Environ. Chang. 2013, 13, 1223–1233. [Google Scholar] [CrossRef]
- Zhou, Y.; Pu, L.; Zhu, M. Coastal Landscape Vulnerability Analysis in Eastern China-Based on Land-Use Change in Jiangsu Province. Int. J. Environ. Res. Public Health 2020, 17, 1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Li, W.; Kou, X.; Fu, J.; Hu, H. Temporal and Spatial Evolution Characteristics of Landscape Pattern and Ecological Vulnerability in Yongtaiwen Coastal Zone. Bull. Soil Water Conserv. 2020, 40, 297–303+325. [Google Scholar] [CrossRef]
- Assari, A.; Mahesh, T. Demographic comparative in heritage texture of Isfahan City. J. Geogr. Reg. Plan. 2011, 4, 463–470. [Google Scholar]
- Sun, Y.; Liu, S.; Dong, Y.; An, Y.; Shi, F.; Dong, S.; Liu, G. Spatio-temporal evolution scenarios and the coupling analysis of ecosystem services with land use change in China. Sci. Total Environ. 2019, 681, 211–225. [Google Scholar] [CrossRef]
- Wang, B.; Ding, M.; Li, S.; Liu, L.; Ai, J. Assessment of landscape ecological risk for a cross-border basin: A case study of the Koshi River Basin, central Himalayas. Ecol. Indic. 2020, 117, 106621. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Luo, J.; Shen, Z.; Zhong, Q. Spatial distribution of land cover and vegetation activity along topographic gradient in an arid river valley, SW China. J. Mt. Sci. 2009, 6, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Oliva, G.; Gaitan, J.; Ferrante, D. Humans Cause Deserts: Evidence of Irreversible Changes in Argentinian Patagonia Rangelands. In The End of Desertification; Behnke, R., Mortimore, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 363–386. [Google Scholar]
- Cai, X.; Li, Z.; Liang, Y. Tempo-spatial changes of ecological vulnerability in the arid area based on ordered weighted average model. Ecol. Indic. 2021, 133, 108398. [Google Scholar] [CrossRef]
- Huang, M.; Li, Y.; Li, M.; Chen, S.; Zeng, C.; Zhang, B.; Xia, C. Coupling response of human activity intensity and landscape pattern in the Three Gorges Reservoir Area. Acta Ecol. Sin. 2022, 10, 1–15. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Nakagoshi, N. Changes in landscape spatial pattern in the highly developing state of Selangor, peninsular Malaysia. Landsc. Urban Plan. 2006, 77, 263–275. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Impact of landscape pattern changes on hydrological ecosystem services in the Beressa watershed of the Blue Nile Basin in Ethiopia. Sci. Total Environ. 2021, 793, 148559. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Jin, Y.; Mao, X. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes—Case study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Song, G.; Wang, P. Spatial Pattern of Land Use Along the Terrain Gradient of County in Songnen High Plain: A Case Study of Bayan County. Sci. Geogr. Sin. 2017, 37, 1218–1225. [Google Scholar] [CrossRef]
- Feng, C.; Yu, Y.; Gao, J.; Han, Y. Influences of Topographic on Distribution and Change of Land Use and Cover in Mentougou District, Beijing. J. Mt. Sci. 2007, 3, 274–279. [Google Scholar] [CrossRef]
- Grubb, P. Interpretation of the ‘Massenerhebung’ Effect on Tropical Mountains. Nature 1971, 229, 44–45. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, M.; Zhang, B. The implication of mass elevation effect of the Tibetan Plateau for altitudinal belts. J. Geogr. Sci. 2015, 25, 1411–1422. [Google Scholar] [CrossRef]
- Buzhdygan, O.Y.; Tietjen, B.; Rudenko, S.S.; Nikorych, V.A.; Petermann, J.S. Direct and indirect effects of land-use intensity on plant communities across elevation in semi-natural grasslands. PLoS ONE. 2020, 15, e0231122. [Google Scholar] [CrossRef]
- Kamusoko, C.; Aniya, M. Land use/cover change and landscape fragmentation analysis in the Bindura District, Zimbabwe. Land Degrad. Dev. 2007, 18, 221–233. [Google Scholar] [CrossRef]
- Bocchiola, D.; Brunetti, L.; Soncini, A.; Polinelli, F.; Gianinetto, M. Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal. Agric. Syst. 2019, 171, 113–125. [Google Scholar] [CrossRef]
- Thapa, U.K.; George, S.S. Detecting the influence of climate and humans on pine forests across the dry valleys of eastern Nepal’s Koshi River basin. For. Ecol. Manag. 2019, 440, 12–22. [Google Scholar] [CrossRef]
- Paudel, B.; Gao, J.; Zhang, Y.; Wu, X.; Li, S.; Yan, J. Changes in Cropland Status and Their Driving Factors in the Koshi River Basin of the Central Himalayas, Nepal. Sustainability 2016, 8, 933. [Google Scholar] [CrossRef] [Green Version]
Landscape Type | Environmental Impact of Landscape Resources | Impact Factors |
---|---|---|
Cultivated land | Has a small impact on resources and the environment, some of which is reversible, but is greatly affected by human activities | 0.25 |
Forest | Has the function of ecological maintenance and has little impact on resources and the environment. Orchards and tea gardens are clearly affected by human activities | 0.1 |
Grassland | Has the function of ecological maintenance and has a low impact on resources and the environment | 0.1 |
Water body | Rivers and lakes have little impact on resources and the environment and are less influenced by human activities | 0.37 |
Construction land | It is greatly affected by human activities, most of which are irreversible and have a significant impact on resources and the environment | 0.85 |
Unused land | Has a slight impact on resources and the environment, most of which are irreversible | 0.48 |
LVI | Value | LHAI | Value |
---|---|---|---|
Very low-vulnerability | 0.03–0.28 | Very low-intensity | 0.10–0.12 |
Low-vulnerability | 0.28–0.38 | Low-intensity | 0.12–0.17 |
Middle-vulnerability | 0.38–0.47 | Middle-intensity | 0.17–0.28 |
High-vulnerability | 0.47–0.57 | High-intensity | 0.28–0.31 |
Very high-vulnerability | 0.57–0.82 | Very high-intensity | 0.31–0.47 |
Classification | Elevation (m) | Proportion (%) |
---|---|---|
Low-level elevation | <1200 | 0.01 |
Medium-level elevation | 1200–3600 | 12.56 |
High-level elevation | 3600–5100 | 86.74 |
Extremely high-level elevation | >5100 | 0.69 |
Number | Country | Construction Land (%) | Forest (%) | Grassland (%) | Cultivated Land (%) | Unused Land (%) | Water Body (%) |
---|---|---|---|---|---|---|---|
1 | Baiyu | 0.19 | 49.40 | 42.08 | 3.41 | 4.52 | 0.39 |
2 | Batang | 0.08 | 45.64 | 35.49 | 1.49 | 16.94 | 0.35 |
3 | Danba | 0.23 | 74.13 | 15.28 | 2.19 | 7.46 | 0.70 |
4 | Daochen | 0.17 | 58.24 | 34.61 | 1.08 | 5.11 | 0.79 |
5 | Daofu | 0.26 | 52.69 | 39.40 | 1.73 | 5.50 | 0.42 |
6 | Dege | 0.17 | 34.76 | 48.94 | 4.20 | 11.56 | 0.38 |
7 | Derong | 0.22 | 60.64 | 17.56 | 1.91 | 19.33 | 0.35 |
8 | Ganzi | 0.21 | 43.39 | 48.70 | 2.95 | 4.49 | 0.26 |
9 | Jiulong | 0.24 | 56.02 | 31.30 | 1.54 | 10.55 | 0.36 |
10 | Kangding | 0.50 | 41.71 | 48.41 | 1.50 | 7.48 | 0.40 |
11 | Litang | 0.12 | 55.34 | 35.51 | 0.69 | 7.97 | 0.36 |
12 | Luding | 0.33 | 66.41 | 14.05 | 5.18 | 13.36 | 0.67 |
13 | Luohuo | 0.35 | 58.23 | 33.39 | 1.90 | 5.90 | 0.24 |
14 | Seda | 0.08 | 35.84 | 61.59 | 0.23 | 0.79 | 1.47 |
15 | Shiqu | 0.05 | 11.25 | 73.94 | 0.23 | 12.92 | 1.62 |
16 | Xiangchen | 0.34 | 63.80 | 26.95 | 1.00 | 7.63 | 0.28 |
17 | Xinlong | 0.06 | 56.49 | 36.66 | 0.66 | 5.85 | 0.27 |
18 | Yajiang | 0.08 | 63.59 | 33.60 | 1.13 | 1.31 | 0.30 |
Total | 0.18 | 45.25 | 44.17 | 1.57 | 8.19 | 0.64 |
Country | LVI (%) | LHAI (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Very Low | Low | Middle | High | Very High | Very Low | Low | Middle | High | Very High | |
Baiyu | 19.13 | 36.72 | 32.07 | 10.67 | 1.42 | 64.26 | 25.67 | 6.84 | 2.42 | 0.80 |
Batang | 5.70 | 17.03 | 27.41 | 30.63 | 19.23 | 28.73 | 29.93 | 23.61 | 12.51 | 5.22 |
Danba | 16.53 | 32.64 | 25.27 | 18.02 | 7.53 | 46.28 | 37.66 | 14.33 | 1.72 | 0.00 |
Daochen | 15.76 | 36.23 | 29.51 | 13.84 | 4.65 | 66.10 | 21.66 | 8.96 | 3.03 | 0.24 |
Daofu | 10.94 | 34.68 | 26.62 | 19.75 | 8.01 | 63.08 | 23.93 | 10.09 | 2.90 | 0.00 |
Dege | 1.97 | 22.04 | 30.50 | 24.51 | 20.99 | 53.22 | 24.86 | 7.95 | 7.01 | 6.96 |
Derong | 9.53 | 13.19 | 20.49 | 37.71 | 19.08 | 21.16 | 26.58 | 30.59 | 19.02 | 2.65 |
Ganzi | 59.51 | 27.45 | 5.92 | 3.93 | 3.19 | 77.55 | 10.34 | 6.09 | 3.79 | 2.23 |
Jiulong | 7.84 | 20.89 | 28.65 | 26.42 | 16.20 | 41.33 | 32.51 | 19.35 | 5.40 | 1.42 |
Kangding | 30.26 | 33.74 | 20.21 | 11.67 | 4.12 | 60.00 | 20.72 | 11.44 | 4.89 | 2.94 |
Litang | 28.02 | 33.89 | 20.79 | 11.17 | 6.12 | 66.93 | 17.49 | 8.53 | 4.20 | 2.84 |
Luding | 45.18 | 22.06 | 11.38 | 10.50 | 10.89 | 41.85 | 33.13 | 6.10 | 8.31 | 10.61 |
Luohuo | 27.06 | 38.94 | 25.31 | 8.14 | 0.56 | 64.78 | 22.15 | 9.51 | 2.66 | 0.91 |
Seda | 8.41 | 60.85 | 22.02 | 5.92 | 2.79 | 94.19 | 4.75 | 0.64 | 0.40 | 0.01 |
Shiqu | 0.14 | 9.82 | 43.02 | 26.91 | 20.11 | 50.50 | 17.59 | 15.01 | 13.17 | 3.73 |
Xiangchen | 8.19 | 31.72 | 34.77 | 19.55 | 5.78 | 56.21 | 28.19 | 10.28 | 5.24 | 0.07 |
Xinlong | 13.92 | 31.05 | 30.87 | 19.40 | 4.76 | 49.65 | 41.44 | 7.52 | 1.30 | 0.09 |
Yajiang | 36.50 | 46.48 | 12.23 | 4.26 | 0.53 | 89.46 | 9.36 | 1.18 | 0.00 | 0.00 |
Total | 17.00 | 29.47 | 26.98 | 17.08 | 9.46 | 59.37 | 22.11 | 10.53 | 5.66 | 2.32 |
- | LVI | LHAI |
---|---|---|
Moran’s I | 0.5242 | 0.3113 |
z | 55.9278 | 25.8204 |
p | <0.01 | <0.01 |
Elevation (m) | LVI | LHAI | LVI and LHAI |
---|---|---|---|
985–1200 | 0.700 | −0.400 | −0.900 * |
1200–1500 | −0.040 | 0.120 | −0.143 |
1500–1800 | −0.083 | −0.055 | −0.114 |
1800–2100 | 0.093 | 0.180 | 0.403 ** |
2100–2400 | 0.069 | −0.008 | 0.438 ** |
2400–2700 | −0.026 | −0.057 | 0.581 ** |
2700–3000 | 0.035 | −0.100 * | 0.570 ** |
3000–3300 | −0.038 | −0.057 | 0.519 ** |
3300–3600 | −0.008 | −0.092 ** | 0.488 ** |
3600–3900 | −0.058 ** | −0.093 ** | 0.570 ** |
3900–4200 | −0.022 | −0.067 ** | 0.642 ** |
4200–4500 | 0.053 ** | 0.051 ** | 0.646 ** |
4500–4800 | 0.171 ** | 0.188 ** | 0.770 ** |
4800–5100 | 0.049 | 0.124 ** | 0.751 ** |
5100–5400 | −0.251 ** | 0.032 | 0.450 ** |
5400–5700 | −0.167 | −0.132 | 0.485 ** |
5700–6000 | 0.036 | −0.205 | 0.597 ** |
6000–6300 | 0.000 | 0.258 | 0.775 |
Total | 0.168 ** | 0.082 ** | 0.674 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Zhou, L.; Zong, H. Landscape Pattern Vulnerability of the Eastern Hengduan Mountains, China and Response to Elevation and Artificial Disturbance. Land 2022, 11, 1110. https://doi.org/10.3390/land11071110
Sun J, Zhou L, Zong H. Landscape Pattern Vulnerability of the Eastern Hengduan Mountains, China and Response to Elevation and Artificial Disturbance. Land. 2022; 11(7):1110. https://doi.org/10.3390/land11071110
Chicago/Turabian StyleSun, Jiarui, Lu Zhou, and Hua Zong. 2022. "Landscape Pattern Vulnerability of the Eastern Hengduan Mountains, China and Response to Elevation and Artificial Disturbance" Land 11, no. 7: 1110. https://doi.org/10.3390/land11071110
APA StyleSun, J., Zhou, L., & Zong, H. (2022). Landscape Pattern Vulnerability of the Eastern Hengduan Mountains, China and Response to Elevation and Artificial Disturbance. Land, 11(7), 1110. https://doi.org/10.3390/land11071110