Relationship between Urban Land Use Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Indicator Selection
2.2.1. Data Sources
2.2.2. Indicator Selection
2.3. Methodology
2.3.1. Super Efficiency SBM Model
2.3.2. Coefficient of Variation
2.3.3. Gravity Center Model
2.3.4. Tapio Decoupling Model
2.3.5. Environmental Kuznets Curve Model
3. Results
3.1. Analysis of Spatiotemporal Evolution Characteristics of ULUE
3.1.1. Temporal Evolution Characteristics of ULUE
3.1.2. Spatial Distribution Characteristics of ULUE
3.2. Relationship between ULUE and EDL
3.2.1. Decoupling Analysis of the ULUE and EDL
3.2.2. EKC Curve Relationship Test between ULUE and EDL
4. Discussion
4.1. ULUE in the BTH Region
4.2. Spatial Distribution Characteristics of Decoupling Relationship
4.3. EKC “U-Shaped” Curve Model
4.4. Research Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Li, Y.; Westlund, H.; Liu, Y. Urban-rural transformation in relation to cultivated land conversion in China: Implications for optimizing land use and balanced regional development. Land Use Policy 2015, 47, 218–224. [Google Scholar] [CrossRef]
- Cheng, L.; Jiang, P.; Chen, W.; Li, M.; Wang, L.; Gong, Y.; Pian, Y.; Xia, N.; Duan, Y.; Huang, Q. Farmland protection policies and rapid urbanization in China: A case study for Changzhou City. Land Use Policy 2015, 48, 552–566. [Google Scholar] [CrossRef]
- Urban Growth Models: Progress and Perspective|SpringerLink. Available online: https://link.springer.com/article/10.1007/s11434-016-1111-1 (accessed on 6 May 2022).
- Yin, C.; Meng, F.; Yang, X.; Yang, F.; Fu, P.; Yao, G.; Chen, R. Spatio-temporal evolution of urban built-up areas and analysis of driving factors—A comparison of typical cities in north and south China. Land Use Policy 2022, 117, 106114. [Google Scholar] [CrossRef]
- Chen, H.; Tan, Y.; Xiao, W.; Li, G.; Meng, F.; He, T.; Li, X. Urbanization in China drives farmland uphill under the constraint of the requisition–compensation balance. Sci. Total Environ. 2022, 831, 154895. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Wang, D.; Meng, X.; Li, H.; Liu, G.; Yuan, Q.; Hu, Y.; Zhang, Y. Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China. Energy 2022, 239, 122038. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Kong, X.; Jing, Y.; Cai, E.; Zhang, L.; Liu, Y.; Wang, Z.; Liu, Y. Spatial Patterns and Driving Forces of Conflicts among the Three Land Management Red Lines in China: A Case Study of the Wuhan Urban Development Area. Sustainability 2019, 11, 2025. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Liu, H.; Qi, Y. Construction land expansion and cultivated land protection in urbanizing China: Insights from national land surveys, 1996–2006. Habitat Int. 2015, 46, 13–22. [Google Scholar] [CrossRef]
- Babenko, V.; Zomchak, L.; Nehrey, M. Ecological and economic aspects of sustainable development of Ukrainian regions. E3S Web Conf. 2021, 280, 02003. [Google Scholar] [CrossRef]
- Farafonova, N.V. Essence and Components of Economic Efficiency of Business Activities Within Agrarian Sector. Actual Probl. Econ. 2011, 124, 176–185. [Google Scholar]
- Ren, C. Discussion on the Relationship of Administrative Efficiency and Administrative Efficacy. In Proceedings of the 2014 International Conference on Global Economy, Finance and Humanities Research, Tianjin, China, 27–28 March 2014; Zheng, F., Ed.; Atlantis Press: Paris, France, 2014; Volume 112, pp. 238–240. [Google Scholar]
- Liu, J.; Jin, X.; Xu, W.; Gu, Z.; Yang, X.; Ren, J.; Fan, Y.; Zhou, Y. A new framework of land use efficiency for the coordination among food, economy and ecology in regional development. Sci. Total Environ. 2020, 710, 135670. [Google Scholar] [CrossRef]
- Herzig, A.; Nguyen, T.T.; Ausseil, A.-G.E.; Maharjan, G.R.; Dymond, J.R.; Arnhold, S.; Koellner, T.; Rutledge, D.; Tenhunen, J. Assessing resource-use efficiency of land use. Environ. Model. Softw. 2018, 107, 34–49. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Chen, W.; Li, M.; Fang, X. Does improvement of industrial land use efficiency reduce PM2.5 pollution? Evidence from a spatiotemporal analysis of China. Ecol. Indic. 2021, 132, 108333. [Google Scholar] [CrossRef]
- Xue, D.; Yue, L.; Ahmad, F.; Draz, M.U.; Chandio, A.A.; Ahmad, M.; Amin, W. Empirical investigation of urban land use efficiency and influencing factors of the Yellow River basin Chinese cities. Land Use Policy 2022, 117, 106117. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.; Wang, J.; Wu, Q.; Wei, Y.D. How does industrial agglomeration affect urban land use efficiency? A spatial analysis of Chinese cities. Land Use Policy 2022, 119, 106178. [Google Scholar] [CrossRef]
- Jingxin, G.; Jinbo, S.; Lufang, W. A new methodology to measure the urban construction land-use efficiency based on the two-stage DEA model. Land Use Policy 2022, 112, 105799. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, F.-R.; An, P.-L.; Dong, M.-L.; Wang, Z.-Y.; Zhao, T. Industrial land-use efficiency and planning in Shunyi, Beijing. Landsc. Urban Plan. 2008, 85, 40–48. [Google Scholar] [CrossRef]
- Baráth, L.; Fertő, I. Heterogeneous technology, scale of land use and technical efficiency: The case of Hungarian crop farms. Land Use Policy 2015, 42, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Den, X.; Gibson, J. Sustainable land use management for improving land eco-efficiency: A case study of Hebei, China. Ann. Oper. Res. 2020, 290, 265–277. [Google Scholar] [CrossRef]
- Built-up land efficiency in urban China: Insights from the General Land Use Plan (2006–2020). Habitat Int. 2016, 51, 31–38. [CrossRef]
- Chen, Y. Measuring super-efficiency in DEA in the presence of infeasibility. Eur. J. Oper. Res. 2005, 161, 545–551. [Google Scholar] [CrossRef]
- Li, S.; Jahanshahloo, G.R.; Khodabakhshi, M. A super-efficiency model for ranking efficient units in data envelopment analysis. Appl. Math. Comput. 2007, 184, 638–648. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Jiang, H. Spatial–temporal differences of industrial land use efficiency and its influencing factors for China’s central region: Analyzed by SBM model. Environ. Technol. Innov. 2021, 22, 101489. [Google Scholar] [CrossRef]
- Lu, X.; Chen, D.; Wang, Y. Is Urban Sprawl Decoupled from the Quality of Economic Growth? Evidence from Chinese Cities. Sustainability 2020, 12, 218. [Google Scholar] [CrossRef] [Green Version]
- Saikku, L.; Mattila, T.J. Drivers of land use efficiency and trade embodied biomass use of Finland 2000–2010. Ecol. Indic. 2017, 77, 348–356. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Li, T.; Liao, W. Analysis of Spatial Pattern Evolution and Influencing Factors of Regional Land Use Efficiency in China Based on ESDA-GWR. Sci. Rep. 2019, 9, 520. [Google Scholar] [CrossRef]
- Han, X.; Zhang, A.; Cai, Y. Spatio-Econometric Analysis of Urban Land Use Efficiency in China from the Perspective of Natural Resources Input and Undesirable Outputs: A Case Study of 287 Cities in China. Int. J. Environ. Res. Public Health 2020, 17, 7297. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, R. Is Urban Economic Output Decoupling from Water Use in Developing Countries?-Empirical Analysis of Beijing and Shanghai, China. Water 2019, 11, 1335. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Sun, J.; Zhang, M.; Su, B. Using the Tapio-Z decoupling model to evaluate the decoupling status of China’s CO2 emissions at provincial level and its dynamic trend. Struct. Chang. Econ. Dyn. 2020, 52, 120–129. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Su, B.; Yang, X. Using a new two-dimensional decoupling model to evaluate the decoupling state of global energy footprint. Sustain. Cities Soc. 2020, 63, 102461. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhou, Y. Efficiency of construction land allocation in China: An econometric analysis of panel data. Land Use Policy 2018, 74, 261–272. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Z.; Zou, L.; Zou, L.; Zhang, H. Exploring the eco-efficiency of cultivated land utilization and its influencing factors in China’s Yangtze River Economic Belt, 2001–2018. J. Environ. Manag. 2021, 294, 112939. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.-H.; Lee, H.-S.; Hwang, S.-N.; Chung, C.-C. A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach. Omega-Int. J. Manag. Sci. 2013, 41, 731–734. [Google Scholar] [CrossRef]
- Tone, K.; Toloo, M.; Izadikhah, M. A modified slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2020, 287, 560–571. [Google Scholar] [CrossRef]
- Shao, J.; Ge, J. Investigation into Relationship between Intensive Land Use and Urban Heat Island Effect in Shijiazhuang City Based on the Tapio Decoupling Theory. J. Urban Plann. Dev. 2020, 146, 04020043. [Google Scholar] [CrossRef]
- Yang, W.; Yaning, C.; Zhi, L. Evolvement Characteristics of Population and Economic Gravity Centers in Tarim River Basin, Uygur Autonomous Region of Xinjiang, China. Chin. Geogr. Sci. 2013, 23, 765–772. [Google Scholar] [CrossRef] [Green Version]
- How do population and land urbanization affect CO2 emissions under gravity center change? A spatial econometric analysis. J. Clean. Prod. 2018, 202, 510–523. [CrossRef]
- Yasmeen, H.; Tan, Q. Assessing Pakistan’s energy use, environmental degradation, and economic progress based on Tapio decoupling model. Environ. Sci. Pollut Res. 2021, 28, 68364–68378. [Google Scholar] [CrossRef] [PubMed]
- Grossman, G.; Krueger, A. Economic-Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Xu, X.; Liu, X. Is there an EKC between economic growth and smog pollution in China? New evidence from semiparametric spatial autoregressive models. J. Clean. Prod. 2019, 220, 873–883. [Google Scholar] [CrossRef]
- Ajanaku, B.A.; Collins, A.R. Economic growth and deforestation in African countries: Is the environmental Kuznets curve hypothesis applicable? For. Policy Econ. 2021, 129, 102488. [Google Scholar] [CrossRef]
- Mills Busa, J.H. Dynamite in the EKC tunnel? Inconsistencies in resource stock analysis under the environmental Kuznets curve hypothesis. Ecol. Econ. 2013, 94, 116–126. [Google Scholar] [CrossRef]
- Badeeb, R.A.; Lean, H.H.; Shahbaz, M. Are too many natural resources to blame for the shape of the Environmental Kuznets Curve in resource-based economies? Resour. Policy 2020, 68, 101694. [Google Scholar] [CrossRef]
- Sesma-Martín, D.; Puente-Ajovín, M. The Environmental Kuznets Curve at the thermoelectricity-water nexus: Empirical evidence from Spain. Water Resour. Econ. 2022, 39, 100202. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, Q.; Zhan, L.; Jiang, G.; Si, H. Understanding the nonpoint source pollution loads’ spatiotemporal dynamic response to intensive land use in rural China. J. Environ. Manag. 2022, 315, 115066. [Google Scholar] [CrossRef]
- Esposito, P.; Patriarca, F.; Salvati, L. Tertiarization and land use change: The case of Italy. Econ. Model. 2018, 71, 80–86. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, Y.; Zhang, J. Decoupling economic development from municipal solid waste generation in China’s cities: Assessment and prediction based on Tapio method and EKC models. Waste Manag. 2021, 133, 37–48. [Google Scholar] [CrossRef]
- Li, Y.; Kong, X.; Zhu, Z. Multiscale analysis of the correlation patterns between the urban population and construction land in China. Sustain. Cities Soc. 2020, 61, 102326. [Google Scholar] [CrossRef]
- Hou, S.; Song, L.; Wang, J.; Ali, S. How Land Finance Affects Green Economic Growth in Chinese Cities. Land 2021, 10, 819. [Google Scholar] [CrossRef]
- Gao, H. Public land leasing, public productive spending and economic growth in Chinese cities. Land Use Policy 2019, 88, 104076. [Google Scholar] [CrossRef]
- Jin, W.; Zhou, C.; Luo, L. Impact of Land Input on Economic Growth at Different Stages of Development in Chinese Cities and Regions. Sustainability 2018, 10, 2847. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Li, J.; Li, X.; Zhang, Z. The Effects of Urban Sprawl and Industrial Agglomeration on Environmental Efficiency: Evidence from the Beijing-Tianjin-Hebei Urban Agglomeration. Sustainability 2019, 11, 3042. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Shen, Y.; Wang, Y.; Wu, Q. The effect of industrial relocation on industrial land use efficiency in China: A spatial econometrics approach. J. Clean. Prod. 2018, 205, 525–535. [Google Scholar] [CrossRef]
- Bao, H.X.H.; Robinson, G.M. Behavioural land use policy studies: Past, present, and future. Land Use Policy 2022, 115, 106013. [Google Scholar] [CrossRef]
- Shen, L.; Cheng, G.; Du, X.; Meng, C.; Ren, Y.; Wang, J. Can urban agglomeration bring “1 + 1 > 2Effect”? A perspective of land resource carrying capacity. Land Use Policy 2022, 117, 106094. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, A.; Su, H.; Su, S.; Chen, F.; Wang, W.; Weng, M. Does the establishment of development zones really improve industrial land use efficiency? Implications for China’s high-quality development policy. Land Use Policy 2020, 90, 104265. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Wang, H.; Zhang, C.; Li, J.; Lv, Y. Interoperable scenario simulation of land-use policy for Beijing–Tianjin–Hebei region, China. Land Use Policy 2018, 75, 155–165. [Google Scholar] [CrossRef]
- Wong, Z.; Li, R.; Zhang, Y.; Kong, Q.; Cai, M. Financial services, spatial agglomeration, and the quality of urban economic growth-based on an empirical analysis of 268 cities in China. Financ. Res. Lett. 2021, 43, 101993. [Google Scholar] [CrossRef]
- Huang, Y.; Hong, T.; Ma, T. Urban network externalities, agglomeration economies and urban economic growth. Cities 2020, 107, 102882. [Google Scholar] [CrossRef]
- Influential Intensity of Urban Agglomeration on Evolution of Eco-Environmental Pressure: A Case Study of Changchun, China|SpringerLink. Available online: https://link.springer.com/article/10.1007/s11769-017-0891-9 (accessed on 6 May 2022).
- Surya, B.; Salim, A.; Hernita, H.; Suriani, S.; Menne, F.; Rasyidi, E.S. Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia. Land 2021, 10, 556. [Google Scholar] [CrossRef]
- Song, Y.; Yeung, G.; Zhu, D.; Xu, Y.; Zhang, L. Efficiency of urban land use in China’s resource-based cities, 2000–2018. Land Use Policy 2022, 115, 106009. [Google Scholar] [CrossRef]
- Hecht, B.; Moxley, E. Terabytes of Tobler: Evaluating the First Law in a Massive, Domain-Neutral Representation of World Knowledge. In Proceedings of the Spatial Information Theory, Proceedings, Aber Wrac’h, France, 21–25 September 2009; Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G., Eds.; Springer: Berlin, Germany, 2009; Volume 5756, pp. 88–105. [Google Scholar]
Type | Indicators | Reason for Selection |
---|---|---|
Input indicators | Construction land area/km2 | Reflect natural resource inputs |
Fixed asset investment/billion | Reflect capital factors inputs | |
Persons employed in urban non-private units per year/million | Reflect human resource inputs | |
Desirable output indicators | GDP/billion | Reflect economic benefits outputs |
Average wage/CNY | Reflect social benefits outputs | |
Area of green land/hectare | Reflect positive ecological benefits outputs | |
Undesirable output indicators | Volume of sulfur dioxide emission/ton | Reflect negative ecological effects outputs |
Volume of industrial wastewater emission/10,000 tons | Reflect negative ecological effects outputs | |
Volume of industrial soot emission/ton | Reflect negative ecological effects outputs |
Decoupling States | Explanations |
---|---|
Expansive negative decoupling state (ENDS) | The change rate of ULUE (positive value) is obviously bigger than that of EDL. |
Recessive decoupling state (RDS) | The change rate of ULUE (negative value) is obviously smaller than that of EDL. |
Expansive coupling state (ECS) | The change rate of ULUE (positive value) is approximately equal to that of EDL. |
Recessive coupling state (RCS) | The change rate of ULUE (negative value) is approximately equal to that of EDL. |
Weak decoupling state (WDS) | The change rate of ULUE (positive value) is obviously smaller than that of EDL. |
Weak negative decoupling state (WNDS) | The change rate of ULUE (negative value) is obviously bigger than that of EDL. |
Strong decoupling state (SDS) | ULUE declines while EDL increases. |
Strong negative decoupling state (SNDS) | ULUE increases while EDL declines. |
Year | Longitude | Latitude | Migration Direction | Migration Distance |
---|---|---|---|---|
1999–2001 | 116°29′12″ | 39°05′48″ | ||
2002–2004 | 116°26′23″ | 39°10′15″ | Northwest | 12.016 km |
2005–2007 | 116°33′58″ | 39°09′48″ | Southeast | 14.177 km |
2008–2010 | 116°35′32″ | 39°07′06″ | Southeast | 7.153 km |
2011–2013 | 116°30′07″ | 39°10′53″ | Northwest | 13.484 km |
2014–2016 | 116°29′20″ | 39°05′50″ | Southwest | 12.153 km |
2017–2019 | 116°27′36″ | 39°07′06″ | Northwest | 4.491 km |
Methods | Fixed Effects | |
---|---|---|
Model | E1 | E2 |
Constant term () | 1.302924 | 1.204806 |
(13.87186) *** | (21.54487) *** | |
g | −9.74 × 10−5 | −3.61 × 10−5 |
(−1.851827) * | (−1.550219) * | |
g2 | 6.27 × 10−9 | 1.79 × 10−9 |
(1.782909) * | (2.599233) *** | |
g3 | −8.86 × 10−14 | - |
(−1.299166) | ||
R2 | 0.550402 | 0.567271 |
DW | 1.038638 | 1.056241 |
F-test | 8.632249 *** | 8.811032 *** |
Inflection point | g1 = 9804.83, g2 = 37,373.5 | g = 10,083.81 |
Curve Type | “N” | “U” |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Fu, M.; Tian, Y.; Xiong, Y.; Wei, C. Relationship between Urban Land Use Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei Region. Land 2022, 11, 976. https://doi.org/10.3390/land11070976
Li S, Fu M, Tian Y, Xiong Y, Wei C. Relationship between Urban Land Use Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei Region. Land. 2022; 11(7):976. https://doi.org/10.3390/land11070976
Chicago/Turabian StyleLi, Sijia, Meichen Fu, Yi Tian, Yuqing Xiong, and Cankun Wei. 2022. "Relationship between Urban Land Use Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei Region" Land 11, no. 7: 976. https://doi.org/10.3390/land11070976
APA StyleLi, S., Fu, M., Tian, Y., Xiong, Y., & Wei, C. (2022). Relationship between Urban Land Use Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei Region. Land, 11(7), 976. https://doi.org/10.3390/land11070976