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Abstract: The degree of land use reflects the progress of social and economic development; however,
it also has a direct impact on land resources. Maximizing the ecosystem services of land resources in
a limited space is a key issue in China’s rapid urbanization. Therefore, this study aims to analyze the
spatial relationship between land use patterns and ecosystem services to enhance the benefits of urban
ecology. First, we used the landscape pattern index to represent land use patterns and the equivalence
factor method to quantify the ecosystem services value (ESV); second, spatial autocorrelation and
spatial autoregression were used to explore the spatial relationship between the landscape pattern
index and ESV. Our main conclusions were that (1) the landscape pattern index and ESV both showed
obvious spatial aggregation, but that of ESV was more significant; (2) the largest patch index and
contagion index had a greater degree of influence on ESV than other variables, with the largest patch
index having a positive effect and the contagion index having a negative effect; (3) it was necessary
to cultivate the landscape dominance of land patches in ecological spatial regulation and to form
large-scale ecological agglomeration in key ecological source areas and nodes. The research results
can ensure that land resources exert a higher level of ecological value by adjusting the spatial form of
the landscape patch.

Keywords: land use pattern; ecosystem services value; spatial autocorrelation; spatial autoregression;
Nanjing

1. Introduction

Land use refers to the development and utilization of land by human beings such
as crop [1], industrial, and commercial lands. Ecosystem services refer to the life support
products and services that are obtained directly or indirectly through the structure, process,
and function of ecosystems [2]. Anthropogenic land use change [3] alters the structure
and process of ecosystems, thus impacting the ecosystem services value (ESV) [4–6]. The
evaluation of ESV is an important basis and foundation of eco-environmental protec-
tion, ecofunctional zoning, environmental economic accounting, and eco-compensation
decision-making [4,7–9]. Among global environmental change issues, land use/cover
change most closely intersects with natural and human processes. In 1995, the International
Geo–Biosphere Program and International Human Dimension Programme on Global Envi-
ronmental Change jointly initiated the Land Use and Land Cover Change research program.
International research on land use/cover change has a long history and has been a core
research hotspot in global change research [10–12]. Following the launch of the Future
Earth program [13] by the International Council for Science and the International Social
Science Council in 2014, research has increasingly focused on the relationships between
land use/cover change, ecosystem services, and human well-being at different scales. One
of the results of land system change is the transformation in ecosystem structure and
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function, which eventually affects ecosystem services [14]. Studies have shown that land
use pattern change has a direct impact on ecosystem services. Many previous studies
used landscape metrics to characterize patterns of land use change [15] and explored the
quantitative relationship between land use pattern change and ESV through correlation
or ordinary linear regression analysis. With changes in the dynamic attitudes of various
land types, landscape fragmentation could influence ecosystem services functions [16].
Different combinations of functions could produce different values; therefore, economic
and ecological benefits should be unified by converting cropland to forestland and crop-
land requisition–compensation balance conversion in central areas [17]. However, this
circumstance may not occur in urban fringe areas, where ecological resources are sufficient.
Along an urban–rural gradient, ESV could increase significantly beyond urban centers and
into a certain buffer zone [18]. Moreover, it has been concluded by some that woodland
contributes greatly to the value of regional ecosystem services, which can enhance ESV by
reducing landscape heterogeneity [19–21].

Spatial statistics states that “everything happens and develops in the context of a
certain geographical space, so all phenomena are bound to have certain local characteristics
and uneven characteristics of development” [22]. Multiperspective exploration may be an
effective way to analyze the environmental effects of land use change. Previous studies
were based on the assumption of independence in classical statistics, where variables
were independent of each other. Most were based on a single landscape metric and
ESV (one-to-one) correlation analysis. Few of them conducted several landscape metrics
and ESV (many-to-one) spatial regression analysis. However, this study was based on
spatial statistics and considered that spatial interaction should be taken into account when
exploring the correlation among variables in a spatial unit, aiming to explore the spatial
relationship between land use patterns and ecosystem services by visualizing them to better
reflect spatial autocorrelation attributes. Furthermore, this study hoped to find the effect
degree of different landscape pattern indexes on ESV by spatial autoregression and then
determine how to transform land use spatial structure to achieve a higher ESV.

2. Materials and Methods
2.1. Study Area

Nanjing, a city in eastern China, southwestern Jiangsu Province, along the lower
reaches of the Yangtze River, is a core city of the Yangtze River Delta, with the geographical
coordinates of 31◦14′–32◦37′ N and 118◦22′–119◦14′ E (see Figure 1). The city straddles the
Yangtze River, connecting the Jianghuai Plain to the north and Yangtze River Delta to the
east, with a maximum horizontal distance of approximately 70 km from east to west and
150 km from north to south. The city has a long north–south and narrow east–west plan,
covering an area of 6587 km2. Nanjing has experienced a high level of urbanization and
rapid economic development, which has led to dramatic changes in land use types and
an uneven land use structure conflicting with ecosystem gradually. This study analyzed
whether there was a spatial correlation between the landscape pattern index, which char-
acterized land use patterns, and ESV in Nanjing and, if so, further explored the impact of
changes in land use patterns on the ESV.

2.2. Data Sources

Land use data in this study were obtained from the National Earth System Science
Data Center (http://www.geodata.cn/, accessed on 10 February 2022) and the Data Sharing
and Service Portal (https://data.casearth.cn/, accessed on 10 February 2022) for the global
30 m land cover dataset for 2010, 2015, and 2020 [23–26]. The crop sown area was obtained
from the Nanjing Statistical Yearbook 2011–2019. The average net profit per unit area
of crops came from the National Compilation of Information on the Costs and Benefits
of Agricultural Products (2011–2019). Chinese net primary productivity (NPP), annual
precipitation interpolation, and soil erosion spatial distribution data were obtained from the
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Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on
18 February 2022).

Land 2022, 11, 1168 3 of 21 
 

 

 
Figure 1. Location of the study area. 

2.2. Data Sources 
Land use data in this study were obtained from the National Earth System Science 

Data Center (http://www.geodata.cn/, accessed on 10 February 2022) and the Data Sharing 
and Service Portal (https://data.casearth.cn/, accessed on 10 February 2022) for the global 
30 m land cover dataset for 2010, 2015, and 2020 [23–26]. The crop sown area was obtained 
from the Nanjing Statistical Yearbook 2011–2019. The average net profit per unit area of 
crops came from the National Compilation of Information on the Costs and Benefits of 
Agricultural Products (2011–2019). Chinese net primary productivity (NPP), annual pre-
cipitation interpolation, and soil erosion spatial distribution data were obtained from the 
Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on 
18 February 2022). 

2.3. Research Methods 
2.3.1. Landscape Pattern Index 

The landscape pattern index, based on land use/cover maps, is an important method 
for the analysis of spatial landscape patterns, making it possible to measure the intercon-
nection of ecological processes and spatial patterns [27]. Landscape spatial pattern refers 
to the spatial configuration of landscape patches of varying sizes and shapes, and is an 
expression of landscape heterogeneity, whereas landscape indices can highly condense 
landscape pattern information, reflecting certain aspects of composition and spatial con-
figuration [28–30]. 

Landscape indices that represent landscape patterns have ecological significance and 
each has differing emphasis and relevance [28,31]. To comprehensively reflect the overall 
land use pattern of the study area and reduce information redundancy, indicators with 
holistic characteristic were used to describe the spatial structure of land use patterns in 
Nanjing, considering the characteristics of the study area and referring to existing studies 
[32]. Using Fragstats v4.2.1 (produced by McGarigal, K., Cushman, S.A., and Ene, E., Bos-
ton, UK), at the landscape level, patch density (PD), largest patch index (LPI), contagion 

Figure 1. Location of the study area.

2.3. Research Methods
2.3.1. Landscape Pattern Index

The landscape pattern index, based on land use/cover maps, is an important method
for the analysis of spatial landscape patterns, making it possible to measure the inter-
connection of ecological processes and spatial patterns [27]. Landscape spatial pattern
refers to the spatial configuration of landscape patches of varying sizes and shapes, and
is an expression of landscape heterogeneity, whereas landscape indices can highly con-
dense landscape pattern information, reflecting certain aspects of composition and spatial
configuration [28–30].

Landscape indices that represent landscape patterns have ecological significance and
each has differing emphasis and relevance [28,31]. To comprehensively reflect the overall
land use pattern of the study area and reduce information redundancy, indicators with
holistic characteristic were used to describe the spatial structure of land use patterns
in Nanjing, considering the characteristics of the study area and referring to existing
studies [32]. Using Fragstats v4.2.1 (produced by McGarigal, K., Cushman, S.A., and
Ene, E., Boston, UK), at the landscape level, patch density (PD), largest patch index (LPI),
contagion index (CONTAG), Shannon diversity index (SHDI), splitting index (SPLIT), and
Shannon evenness index (SHEI) were selected for structural feature index calculations
(see Table 1 for specific ecological implications) to obtain results on the evolution of the
spatial pattern.

https://www.resdc.cn/
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Table 1. Landscape pattern indices and their ecological implications [32].

Landscape Pattern Indices Ecological Implications

Patch Density (PD) Reflects the number of all types of landscape patches within a unit area of landscape. Higher PD
values indicate a more fragmented landscape.

Largest Patch Index (LPI)
Reflects the dominant type in a landscape area and characterizes the proportion of the largest

patches of a given type to the area of the entire landscape region. Its value entangles the
landscape of the dominant species, the rich inner species, and other ecological characteristics.

Contagion Index (CONTAG)

Reflects the degree of aggregation or extension trend of different patch types in the landscape.
Smaller CONTAG values indicate the presence of many small patches in the landscape: a dense

pattern with multiple elements. When the value is closer to 100, it indicates the presence of
dominant patchwork types with very high connectivity in the landscape and a good degree

of connectedness.

Splitting Index (SPLIT)
Reflects the fragmentation of the landscape area. The complexity of landscape spatial structure
reflects the degree of human disturbance to landscape to a certain extent. In general, the greater

the degree of separation, the greater the human impact on the ecosystem.

Shannon Diversity
Index (SHDI)

Reflects the diversity of regional landscape types. An SHDI value of 0 indicates that the entire
regional landscape consists of only one patch. The higher the SHDI value, the higher the level of

landscape heterogeneity, and the more patch types or the fragmentation of the patches in
the landscape.

Shannon Evenness
Index (SHEI)

Reflects the evenness of patch type distribution in the landscape area. The SHEI upper bound is 1,
which indicates that there are no dominant types in the landscape and all kinds of patches are

evenly distributed in the landscape and can reflect the maximum diversity of the given
landscape richness.

2.3.2. Equivalence Factor Method

In this study, a method concerning the value equivalent factor per unit area (hereafter
referred to as the equivalence factor method) was used, which is based on differentiating
between types of ecosystem services functions, constructing value equivalents for various
service functions of different types of ecosystems based on quantifiable criteria, and then
assessing them in relation to the distribution area of the ecosystem [33]. The equivalence
factor method is intuitive, easy to use, requires fewer data, and is suitable for the valuation
of ecosystem services on regional and global scales [33–35].

Value of a Standard Unit of ESV Equivalent Factor

One standard unit of ESV equivalent factor (hereafter referred to as the standard
equivalent) is the economic value of the annual natural food production of 1 ha of nation-
ally averaged yielding farmland, which serves to characterize and quantify the potential
capacity of different types of ecosystems to contribute to ecological service functions [36].
In this study, the net profit-weighted averages of the three major crops of rice, wheat, and
soybeans in Nanjing from 2010 to 2018 were used to obtain the standard equivalent factor
economic value, referring to the treatment by Xie [33]. The calculation formula is as follows:

D =
1
9 ∑9

i=1

(
Sr

i × Fr
i+Sw

i × Fw
i +Sb

i × Fb
i

)
(1)

where D is one standard equivalent factor of ESV (USD/ha); Sr
i , Sw

i , and Sb
i are the propor-

tions (in %) of the sown area of rice, wheat, and soybean to the sown area of the three crops
in year i, respectively; and Fr

i , Fw
i , and Fb

i are the average net profit per unit area for rice,
wheat, and soybean in year i, respectively. The final D value was 299.01 USD/ha.

Value Coefficient of Ecosystem Services Function per Unit Area

The base equivalence of the ESV per unit area refers to the average annual value of
each type of service function per unit area for different types of ecosystems (hereinafter
referred to as the base equivalence). This study used the national base equivalence scale
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proposed by Xie [33] as a reference. Simultaneously, to reflect the internal heterogeneity
of the ecological function value equivalence factors of the same ecosystem type, the NPP
regulator (to correct the service functions of food production, raw materials, gas regulation,
climate regulation, environmental purification, nutrient cycling, biodiversity, and aesthetic
landscape), the precipitation regulator (to correct the service functions of water supply and
hydrological regulation), and soil conservation factor (to correct the service functions of
soil conservation) were used to correct the Nanjing ESV equivalence factors. The correction
factor is calculated as follows [37]:

Vif= Vf × Ein (2)

where Vif is the equivalent factor of the f-type service function in region i; Vf is the national
average equivalent factor of the f-type service function of the ecosystem; Ein is the spatial
regulating factor for the three service functions of the ecosystem in region i. Category 1
ecosystem services are food production, raw materials, gas regulation, climate regulation,
environmental purification, nutrient cycling, biodiversity, and aesthetic landscape. These
service functions positively correlate with biomass in general. Category 2 ecosystem
services are water supply and hydrological regulation, which are related to precipitation
change. Finally, category 3 ecosystem services include soil conservation.

Ei1 is the regulator of category 1 ecosystem services functions:

Ei1= NPPi/NPP (3)

where NPPI is the annual average NPP in area i of Nanjing (t/ha), and NPP is the average
annual NPP per unit area nationwide (t/ha).

Ei2 is the regulator of category 2 ecosystem services functions:

Ei2= Pi/P (4)

where PI is the annual average precipitation per unit area in area i of Nanjing (mm/ha),
and P is the national average annual precipitation per unit area (mm/ha).

Ei3 is the regulator of category 3 ecosystem services functions:

Ei3= Si/S or Ei3= ei/e (5)

where Si is the average annual soil retention simulation per unit area in area i (t/ha); S
is the national soil retention simulation per unit area (t/ha); ei is the average soil erosion
modulus in area i (t/km2/a); e is the national average soil erosion modulus (t/km2/a). As
the regional soil conservation function is governed by the amount of natural soil erosion in
the area, the spatial distribution data of soil erosion from the Resource and Environment
Science and Data Center was used in this study to obtain the regulating factors of the soil
conservation function.

The value coefficient of the ecosystem services function per unit area is then calculated by:

Cif= D × Vif (6)

where Cif is the coefficient of the ESV category f per unit area in area i, which is the product
of the standard equivalent D and base equivalent Vif.

2.3.3. Moving Window Approach

To improve precision, considering the total ESV and raster scale of land cover data, a
square window with a side length of 300 m was set-up using the Fragstats moving window
method. The landscape pattern index of each window was extracted and, finally, the raster
images of the landscape pattern index of 2010, 2015, and 2020 were obtained.
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In ArcGIS 10.5 (produced by Environmental Systems Research Institute, Redlands, CA,
USA), the landscape pattern index and total ESV were raster processed to form 1 × 1 km grid
units, and the raster data were normalized by min–max normalization using the formula:

xnorm =
x − xmin

xmax − xmin
(7)

where xnorm is the normalized value of the landscape pattern index or total ESV; x is the
value of the landscape pattern index or total ESV for a given grid; xmin is the minimum
value of a category of landscape pattern index or total ESV in the study area grid; xmax
is the maximum value of a category of landscape pattern index or total ESV in the study
area grid.

2.3.4. Spatial Autocorrelation
Univariate Spatial Autocorrelation

Moran’s I could be used to test for the presence of spatial autocorrelation against the
null hypothesis of no autocorrelation [38]; thus, this study chose the autocorrelation graph
of Moran’s I for analysis. The formula is as follows:

I =

n
n
∑

i=1

n
∑
j 6=i

wij(xi−x)
(
xj−x

)
(

n
∑

i=1

n
∑

j 6=1
wij

)
n
∑

i=1

(
xj−x

)2
(8)

where n is the number of spatial units (i.e., 6972 grid units); xi and xj are the values
of the landscape pattern index or ESV of grid units i and j; x is the mean value of the
landscape pattern index or the total ESV for all grid units; wij is the space weight matrix.
Moran’s I ε (−1,1). When I > 0, the landscape pattern index or total ESV is positively
spatially correlated, showing aggregated distribution characteristics. When I≈ 0, there is no
evidence of spatial autocorrelation, suggesting the hypothesis that the spatial distribution of
landscape pattern indexes or ESV is purely random. When I < 0, the landscape pattern index
or total ESV is negatively spatially correlated, showing discrete distribution characteristics.

Bivariate Spatial Autocorrelation

Bivariate spatial autocorrelation analysis, proposed by Anselin [39], can reveal correla-
tions between spatial variables and other variables in neighboring regions. This method
was applied here to verify whether there was a spatial correlation between a single land-
scape pattern index and ESV and to prepare for the next step in the spatial regression, with
Equations (9) and (10) [40]:

Ip
lm= Zp

l ·∑
n
q=1 Wpq·Zq

m (9)

Zp
l =

Xp
l − Xl

σl
, Zq

m =
Xq

m − Xm

σm
(10)

where Ip
lm is the Moran coefficient; Xp

l is the total ESV of the grid unit p; Xq
m is the value of

the landscape pattern index for grid unit q; Xl and σl are the mean and variance of the total
ESV; Xm and σm are the mean and variance of the landscape pattern index, respectively.

2.3.5. Spatial Autoregression

If there is a strong spatial dependence of variables in a geographical phenomenon,
contrary to the classical statistical assumption of sample independence, spatial interactions
must be incorporated into the classical regression model in the form of a spatial weight
matrix for spatial autoregressive analysis. According to the spatial correlation between the
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independent and dependent variables, Anselin [39] proposed a general form of the spatial
regression equation: 

y = ρW1y + βX + µ
µ = λW2µ + ε

ε : N
(

0, δ2I
) (11)

where y refers to ESV; X refers to landscape pattern index (i.e., PD, CONTAG, SPLIT, LPI,
and SHEI); β is the regression coefficient; µ is the random error term; ε is the random
error obeying a mean of 0 and a variance of δ2; W1 and W2 are the weight matrices of
ESV and residual; ρ is the coefficient of spatial lag term W1y; λ is the coefficient of spatial
error term W2µ. When the different parameter vectors are set to zero, four different spatial
model structures can be generated [41]. Because the effect of independent variables on
dependent variables is not considered in the first-order spatial autoregressive model (i.e.,
ρ 6= 0, β = λ = 0), this study only considered the ordinary linear regression (OLS), spatial
lag model (SLM), and spatial error model (SEM), with β 6= 0, as shown in Table 2.

Table 2. Spatial autoregressive models.

Model Forming Conditions Significance

Ordinary Linear Regression (OLS) ρ = 0, λ = 0

The model generally assumes that observations are
independent of each other and not influenced by other

factors and does not consider spatial variability
between regions.

Spatial Lag Model (SLM) ρ 6= 0, λ = 0

The model considers the spatial correlation of the
dependent variable, i.e., the dependent variable in a

given spatial region is not only related to the
independent variable in the same region but also to

the dependent variable in neighboring regions.

Spatial Error Model (SEM) ρ = 0, λ 6= 0

The model does not consider the spatial correlation of
the dependent variable but only the spatial

autocorrelation of the independent variable, i.e., the
dependent variable in a given spatial region is related

to the independent variable in the same region, the
independent variable in neighboring regions, and the

dependent variable.

The classical goodness-of-fit R2 can be used to compare the OLS model; however, in
the case of spatial autoregressive models, each model’s goodness-of-fit must be compared
using a combination of the maximum likelihood logarithm (LIK), Akaike information
criterion (AIC), and Schwartz criterion (SC). If the LIK of the model is larger and the AIC
and SC are smaller, the model’s goodness-of-fit will be better.

2.4. Research Framework

The technical framework of this study is illustrated in Figure 2. The landscape pattern
index was represented using the moving window method, and the ESV was represented
using the equivalence factor method. If the variables were spatially autocorrelated, the
effect degree of the landscape pattern index on the ESV would be analyzed by spatial au-
toregression. This study attempted to explore the response of ecosystem services triggered
by changes in land spatial structure due to the fact of urban land stress through a spatial
analysis approach.
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Figure 2. Technical framework.

3. Results
3.1. Evolution of Land Use Patterns

The results of the landscape pattern indices selected for the study were calculated
using Fragstats, as shown in Figure 3, and spatially characterized by differentiation at the
spatial unit scale, as shown in Figure S1. PD reflects the overall landscape fragmentation,
with a higher patch density, indicating a more fragmented landscape. Compared to 2010,
PD decreased in 2020, indicating that the regional landscape was less resilient to external
disturbance. The LPI reflects the degree of landscape-dominant species. Comparing
three years, LPI was the highest in 2010, showing a better patch integrity. Its rose from
2015 to 2020, indicating that dominant species recovered again. CONTAG reflects the
degree of clustering of the different patch types. The CONTAG first increased but then
decreased from 2010 to 2020, and the patch connectivity was the lowest in 2020 and highest
in 2015, indicating a decreasing trend in patch connectivity and a dense distribution of
elements in the landscape. The SPLIT reflects the degree of landscape patch segmentation.
The degree of disturbance in the first 5 years was higher than that in the last 5 years
and the degree of separation in 2020 was higher than that in 2010. The SHDI reflects
landscape heterogeneity and type richness. The SHDI increased over the 10 year period,
with the average change decreasing from 0.0835 to 0.0074, indicating increasing landscape
heterogeneity, diversification of landscape types, complexity of each landscape type, and a
tendency to weaken. The SHEI reflects the evenness of patches in the landscape area. The
increase in SHEI in the first 5 years was smaller than that in the last 5 years, indicating that
landscape evenness increased.

In general, during the 10 year period, the land patch in Nanjing had a decreased
density, with a tendency towards clustering and a weakening of the dominant patch type.
The connectivity level of the patches decreased, and the distribution was even, indicating
an increased landscape heterogeneity.
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3.2. Spatial–Temporal Change of ESV
3.2.1. Coefficient of ESV per Unit Area in Nanjing

Based on the national-scale base equivalence table proposed by Xie [33], a modified
equivalence factor table was obtained using three types of moderating factors, as shown in
Table 3.

Based on the D-value and Table 3, the value coefficients of the ecosystem services
functions in Nanjing can be obtained as shown in Table 4.
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Table 3. Modified equivalent factors for ESV per unit area in Nanjing.

Classification of Ecosystems Provision Regulation Support Culture

Grade 1
Classification

Grade 2
Classification

Food
Production

Raw
Materials

Water
Supply

Gas
Regulation

Climate
Regulation

Environmental
Purification

Hydrological
Regulation

Soil
Conservation

Nutrient
Cycling Biodiversity Aesthetic

Landscape

Cropland Dry land 1.11 0.52 0.05 0.88 0.47 0.13 0.63 0.63 0.16 0.17 0.08
Paddy field 1.78 0.12 −6.12 1.45 0.75 0.22 6.33 0.01 0.25 0.27 0.12

Forest

Needle-leaved forest 0.29 0.68 0.63 2.23 6.64 1.95 7.77 1.27 0.21 2.46 1.07
Mixed leaf forest 0.41 0.93 0.86 3.08 9.20 2.60 8.17 1.76 0.29 3.40 1.49

Broad-leaved forest 0.38 0.86 0.79 2.84 8.51 2.53 11.03 1.63 0.26 3.15 1.39
Shrubland 0.25 0.56 0.51 1.85 5.54 1.68 7.80 1.06 0.17 2.06 0.90

Grassland
Grassland 0.13 0.18 0.19 0.67 1.75 0.58 2.28 0.38 0.07 0.73 0.33

Scrub 0.50 0.73 0.72 2.58 6.82 2.25 8.89 1.48 0.24 2.85 1.26
Meadow 0.29 0.43 0.42 1.49 3.95 1.31 5.14 0.85 0.14 1.66 0.73

Wetland Wetland 0.67 0.65 6.03 2.49 4.71 4.71 56.38 1.42 0.24 10.30 6.19

Desert
Desert 0.01 0.04 0.05 0.14 0.13 0.41 0.49 0.08 0.01 0.16 0.07

Bare land 0.00 0.00 0.00 0.03 0.00 0.13 0.07 0.01 0.00 0.03 0.01

Water
Waterways 1.05 0.30 19.29 1.01 3.00 7.26 237.91 0.57 0.09 3.34 2.47

Glacial snow 0.00 0.00 5.03 0.24 0.71 0.21 16.59 0.00 0.00 0.01 0.12

Table 4. ESV coefficient per unit area in Nanjing. Unit: USD/ha.

Classification of Ecosystems Provision Regulation Support Culture

Grade 1
Classification

Grade 2
Classification

Food
Production

Raw
Materials

Water
Supply

Gas
Regulation

Climate
Regulation

Environmental
Purification

Hydrological
Regulation

Soil
Conservation

Nutrient
Cycling Biodiversity Aesthetic

Landscape

Cropland Dry land 332.70 156.56 13.91 262.24 140.91 39.14 187.87 189.41 46.97 50.88 23.49
Paddy field 532.32 35.23 −1829.96 434.47 223.10 66.54 1892.59 1.84 74.37 82.20 35.23

Forest

Needle-leaved forest 86.11 203.53 187.87 665.40 1984.45 583.20 2323.99 378.82 62.63 735.85 320.96
Mixed leaf forest 121.34 277.90 257.45 919.81 2751.61 778.91 2442.28 525.94 86.11 1017.66 446.21

Broad-leaved forest 113.51 258.33 236.57 849.36 2544.16 755.42 3298.12 487.32 78.28 943.30 414.89
Shrubland 74.37 168.31 153.08 551.89 1655.66 501.00 2330.95 316.30 50.88 614.51 270.07

Grassland
Grassland 39.14 54.80 55.67 199.62 524.49 172.22 681.89 114.01 19.57 219.19 97.85

Scrub 148.74 219.19 215.70 771.08 2039.24 673.22 2657.98 441.35 70.45 853.27 375.75
Meadow 86.11 129.17 125.24 446.21 1182.06 391.41 1537.73 255.61 43.06 497.09 219.19

Wetland Wetland 199.62 195.70 1802.14 743.68 1409.07 1409.07 16859.38 424.79 70.45 3080.39 1851.37

Desert
Desert 3.91 11.74 13.92 43.06 39.14 121.34 146.12 23.91 3.91 46.97 19.57

Bare land 0.00 0.00 0.00 7.83 0.00 39.14 20.87 3.68 0.00 7.83 3.91

Water
Waterways 313.13 90.02 5768.23 301.38 896.33 2172.32 71139.20 171.02 27.40 998.09 739.76

Glacial snow 0.00 0.00 1502.94 70.45 211.36 62.63 4961.10 0.00 0.00 3.91 35.23
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3.2.2. Changes in ESV

Based on the scope of Nanjing City, 1 × 1 km grid cells were selected as the scale of
analysis, the ESV of grid cells in the study area was calculated, and their spatial distribution
results were analyzed as shown in Figure 4. From 2010 to 2020, the ESV of the Nanjing grid
cell changed significantly, and the scale and ductility of ESV high-value areas decreased. In
2020, the high ESV concentration areas were the Hewangba Reservoir, Jinniu Lake, and
Shanhu Reservoirs in Liuhe District; Xuanwu Lake in Xuanwu District; Fangbian Reservoir
and Zhongshan Reservoir in Lishui District; Gucheng Lake in Gaochun District; Shijiu Lake
in Lishui District; Gaochun District. In 2010, the Huaihe River system in the northern part
of the city, the Chuhe River system in the northwestern part of the city, and the middle
and upper reaches of the Yangtze River in the Nanjing section were high-concentration
areas of ESV, which declined by varying degrees in 2015 and 2020. The main reason for this
was that large-scale polder and construction land occupation caused water, forests, and
unused land to decline, weakening the ecological value of the land. In 2015, the Huaiyang
Mountains, represented by the Laoshan Forest Farm in the central part of Pukou District;
the western part of the Ningzhen Mountains, represented by the Qinglong Mountains and
Tangshan Mountains in the northeast of Jiangning District; the river systems, represented
by the Lishui River and Jurong River in the south, formed large-scale concentrations of ESV.
In 2020, the river systems of the Lishui River and Jurong River were seriously eroded by
construction, and cropland and large areas of water disappeared, resulting in a significant
decrease in the ESV.
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3.3. Spatial Relationship between Land Use Pattern and ESV
3.3.1. Spatial Correlation between the Landscape Pattern Index and ESV
Univariate Spatial Autocorrelation Test

Moran’s I was used to test the global spatial autocorrelation for all panel data in GeoDa
1.18 (a software for raster data analysis, produced by Anselin, L., Ibnu, S. and Youngihn,
K., Chicago, USA), and the results are shown in Table 5. The table shows a significant
spatial autocorrelation for all six landscape pattern indices and ESV in 2010, 2015, and
2020 (Moran’s I 6= 0, and passes the randomization test at the 1% highly significant level,
|z-score| > 2.58 with 999 permutations). Among them, the 3 year Moran’s I of PD and
SHDI were greater than 0.5, which was more prominent in the landscape pattern index, and
the Moran’s I of SHEI in 2015 and 2020 were both 0.522, showing strong spatial aggregation.
Compared with the landscape pattern index, Moran’s I for ESV were all greater than 0.7,
with more significant spatial autocorrelation and significant aggregation. Therefore, spatial
interactions should be considered when exploring the correlations between variables.



Land 2022, 11, 1168 12 of 19

Table 5. Univariate global spatial autocorrelation analysis of landscape pattern index and ESV.

Variable
Moran’s I

2010 2015 2020

Landscape
Pattern Index

PD 0.509
(82.5941) ***

0.513
(81.7584) ***

0.531
(85.553) ***

CONTAG −0.264
(−60.0069) ***

0.523
(85.1399) ***

0.452
(75.8241) ***

SHDI 0.517
(81.9847) ***

0.514
(82.0632) ***

0.544
(87.5505) ***

SPLIT 0.491
(79.6394) ***

0.461
(74.5429) ***

0.489
(78.4835) ***

LPI −0.388
(−80.2644) ***

0.425
(67.8931) ***

0.397
(62.8753) ***

SHEI 0.456
(73.3209) ***

0.522
(83.1548) ***

0.522
(84.6176) ***

ESV ESV_sum 0.712
(119.5558) ***

0.754
(125.7984) ***

0.714
(121.2497) ***

The values within parentheses are z-scores. *** p < 0.001.

Bivariate Spatial Autocorrelation

In GeoDa, ESV was used as the first variable and the landscape pattern indices (i.e.,
PD, CONTAG, SPLIT, LPI, and SHEI) were used as the second variables to analyze the
spatial correlation between the two. To assess the degree of spatial autocorrelation between
the variables, Moran’s I and local indicators of spatial association (LISA) were calculated
and tested for the presence of aggregation and divergence against the null hypothesis of no
autocorrelation; both resulted significant by means of a z-test at a level p < 0.05. The results
are shown in Figure 5.

The Moran’s I of the bivariate spatial autocorrelation between ESV and each landscape
pattern index demonstrated clear spatial correlation between different groups of variables.
Except for SPLIT, where the correlation with ESV decreased, the absolute value of Moran’s
I for the other five landscape pattern indices with ESV increased gradually over time,
indicating an increasing correlation. CONTAG had the highest correlation with ESV and
was spatially negative, and SHEI had a slightly lower correlation with ESV and was again
spatially negative. The remaining four landscape pattern indices showed different positive
and negative characteristics in relation to ESV, as the land use type shifted in different years.
The LISA clustering distributions of PD, SHDI, SPLIT, and ESV were relatively complex
and highly similar. There was some complementarity in the LISA clustering distribution
maps between ESV-LPI and ESV-SHEI.

3.3.2. Effects of Land Use Pattern Change on ESV
Collinearity Diagnosis of Independent Variables

A preliminary diagnose of multicollinearity between the landscape pattern indices to
explain ESV for each of the considered years was performed in the SPSS statistical package
by calculating the variance inflation factor (VIF). Then, a variable selection procedure
suggested dropping SHDI, and all of the VIF values resulted in less than the usual threshold
of 10 [42] for the remaining independent variables (see Table 6); hence, they can be safely
considered in a multiple regression model of ESV for each year.

Degree of Influence Analysis

The impact of the land use pattern on ESV is influenced by a combination of factors,
such as PD, LPI, and SPLIT. Therefore, using ArcGIS and GeoDa, this study presented OLS,
SLM, and SEM with a concentrated likelihood function method and discussed the effect
degree of different landscape pattern indexes on ESV, and the results are shown in Table 7.
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Figure 5. Bivariate spatial autocorrelation analysis of ESV and the landscape pattern index. (a) clus-
ter distribution of ESV and PD; (b) cluster distribution of ESV and LPI; (c) cluster distribution of 
ESV and CONTAG; (d) cluster distribution of ESV and SPLIT; (e) cluster distribution of ESV and 
SHDI; (f) cluster distribution of ESV and SHEI. 

Figure 5. Bivariate spatial autocorrelation analysis of ESV and the landscape pattern index. (a) cluster
distribution of ESV and PD; (b) cluster distribution of ESV and LPI; (c) cluster distribution of ESV
and CONTAG; (d) cluster distribution of ESV and SPLIT; (e) cluster distribution of ESV and SHDI;
(f) cluster distribution of ESV and SHEI.
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Table 6. Multicollinearity diagnosis (dependent variable: ESV).

Landscape Pattern Index
VIF

2010 2015 2020

PD 6.100 5.544 7.227
CONTAG 3.030 2.065 2.163

SPLIT 7.557 6.745 8.373
LPI 3.463 2.596 2.369

SHEI 3.149 5.777 4.158

Table 7. Spatial autoregressive model parameters for ESV and the landscape pattern index.

Parameters
2010 2015 2020

OLS SLM SEM OLS SLM SEM OLS SLM SEM

R2 0.308 0.744 0.747 0.404 0.791 0.802 0.619 0.792 0.799
LIK 2332.190 5322.370 5250.765 1979.080 5182.170 5225.839 5022.140 6864.820 6759.669
AIC −4652.380 −10,630.700 −10,489.500 −3946.150 −10,350.300 −10,439.700 −10,032.300 −13,715.600 −13,507.300
SC −4611.280 −10,582.800 −10,448.400 −3905.060 −10,302.400 −10,398.600 −9991.190 −13,667.700 −13,466.200

Moran’s I
(error) 0.553 0.014 −0.006 0.616 0.034 −0.019 0.403 0.056 −0.015

ρ — 0.825
(109.637) *** — — 0.809

(110.531) *** — — 0.667
(75.303) *** —

λ — — 0.883
(127.352) *** — — 0.884

(128.003) *** — — 0.835
(98.108) ***

β

PD 0.076
(2.324) *

0.037
(1.843) ’

0.021
(0.832)

0.186
(4.624) ***

0.022
(0.924)

−0.096
(−2.866) **

0.125
(5.220) ***

0.079
(4.469) ***

0.024
(1.177)

CONTAG −1.130
(−45.492) ***

−0.385
(−23.257) ***

−0.463
(−22.215) ***

−0.944
(−52.008) ***

−0.338
(−26.522) ***

−0.514
(−31.444) ***

−1.007
(−74.942) ***

−0.478
(−39.147) ***

−0.578
(−41.721) ***

SPLIT 1.042
(19.373) ***

0.340
(10.229) ***

0.390
(9.956) ***

1.025
(11.962) ***

0.348
(6.832) ***

0.442
(7.500) ***

0.565
(16.725) ***

0.295
(11.630) ***

0.415
(14.719) ***

LPI 1.012
(42.499) ***

0.396
(25.514) ***

0.448
(24.141) ***

0.801
(40.789) ***

0.366
(28.453) ***

0.511
(35.281) ***

0.832
(63.516) ***

0.428
(38.179) ***

0.518
(42.804) ***

SHEI −0.454
(−21.968) ***

−0.119
(−9.360) ***

−0.124
(−7.572) ***

−0.326
(−12.549) ***

−0.035
(−2.278) *

−0.003
(−0.186)

−0.352
(−23.630) ***

−0.171
(−15.061) ***

−0.224
(−17.048) ***

Constant 0.005
(0.312)

−0.077
(−8.299) ***

0.017
(1.244)

0.062
(3.867) ***

−0.086
(−9.066) ***

0.016
(1.162)

0.040
(3.839) ***

−0.033
(−4.212) ***

0.031
(3.249) ***

The values within parentheses are t- or z-scores. *** p < 0.001, ** p < 0.01, * p < 0.05, and ’ p < 0.1.

First, we determined the unsuitability of the OLS model. The OLS model Moran’s I
(error) values for 2010, 2015, and 2020, respectively, were 0.553, 0.616, and 0.403, indicating
that OLS without consideration of spatial correlation could not effectively explain the
relationship between variables. Second, the models were compared using the Lagrange
multiplier term (LM) test. The OLS model was used to estimate the constrained model.
Two LM test items, LMlag and LMErr, and their robust values, R-LMlag and R-LMerr, were
highly significant (p < 0.001), indicating that both SLM and SEM could both explain the
relationship between the landscape pattern index and ESV. Finally, compared with the OLS
model, the LIK values of SLM (2010 and 2020) and SEM (2015) increased, the AIC and SC
values decreased, and the Moran’s I value of the model residuals approached 0, which
effectively reduced the model estimation error and better fitted the relationship among
variables. Therefore, it is more reasonable to use SLM in 2010, SEM in 2015, and SLM in
2020 to analyze the spatial relationship between ESV and the landscape pattern index.

The model parameters are shown in Figure 6. From 2010 to 2020, the absolute values
of the regression coefficients of LPI and CONTAG were higher than those of other pattern
indices. The regression coefficient of LPI increased from 0.396 (2010) to 0.511 (2015) and
finally decreased to 0.428 (2020). The regression coefficient of CONTAG decreased from
−0.385 (2010) to −0.514 (2015) and finally increased to −0.478 (2020). The absolute values
of the two coefficients still showed an overall increasing trend over time, indicating that the
influence of LPI and CONTAG on ESV gradually increased and became dominant, with
a significant positive effect of LPI on ESV and a significant negative effect of CONTAG.
The regression coefficient of SPLIT increased from 0.34 (2010) to 0.442 (2015) and finally
decreased to 0.295 (2020), with an overall decreasing trend. SPLIT was an index of landscape
patterns that significantly affected ESV, in addition to LPI and CONTAG, with which it
was spatially positively correlated. In addition, there was a significant negative correlation
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between SHEI and ESV in all three years, but with a weaker effect than LPI, CONTAG, and
SPLIT. The regression coefficient of PD decreased from 0.037 (2010) to −0.096 (2015) and,
finally, increased to 0.079 (2020). However, overall, the degree of the PD’s positive drive on
ESV increased and had the weakest effect.
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Therefore, combined with the changes in the landscape pattern index in Nanjing in
2010, 2015, and 2020, we know that while cultivating landscape agglomeration, the patch
density within the cluster should be increased to form the dominant species landscape,
maintaining a certain degree of separation between the clusters. Simultaneously, a land-
scape corridor should be established to ensure the connectivity of the inner and outer
clusters. Constructing the complexity of the regional landscape spatial structure enhances
resistance to the spread of disturbance. Thus, the land resources could exert a higher level
of ecological value.

4. Discussion
4.1. ESV Response Induced by Land Spatial Structure Change

Rapid socioeconomic development and urbanization brings about huge land use
transition, leading to regional socioeconomic and spatial reconfiguration [43]. Land use
transition can be measured using the main forms of land use such as quantity, structure,
and spatial patterns [44]. In conjunction with the results of previous studies, the negative
impacts of spatial land change on regional ecosystem services can be constrained by
controlling certain structural features of land use patterns during the transition process.
Attention should be directed toward the cascade effect of land spatial ecological structure,
and the degree of coordination between spatial structure and ecosystem services should
be improved. In response to changes in the landscape pattern index in the study area, the
overall SHEI for municipal sites showed a year-on-year increase in homogeneity, and the
formation of dominant species in landscape areas was limited, which is not conducive to
the promotion of ESV. Therefore, in the important ecological spatial structure, attention
should be paid to cultivating natural ecological internal species in the region, restoring
the degree of landscape dominance, reducing type uniformity in aggregated landscape
clusters, and forming a scale concentration of ecological functions. In addition, among
the five types of landscape pattern indices, CONTAG had the most significant negative
effect on ESV, indicating that a dispersed land space structure is not conducive to ESV.
This is consistent with the theory of agglomeration economies in urban economics, which
states that the agglomeration effect of clustering space is a major driving force of urban
growth [45]. At the urban scale, increased aggregation of land use patterns can facilitate the
improved performance of regional ecosystem services. The search for the optimal layout of
urban land use and long-term ESV benefits within the constraints of resources environment
and economy society ensures the green and sustainable development of cities.
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4.2. Urban Spatial Regulation in the Context of Ecosystem Services Trade-Offs

The spatial structure of urban and rural ecosystems based on land use influences the
overall and local ecosystem services of the region, and there are constraints and interactions
between the two. China’s rapid urbanization has led to a dramatic shift from natural or
seminatural to construction land [46]. Large losses and high levels of ecological space
fragmentation reduce ecosystem function and service delivery capacity, posing a range of
ecological risks [47]. Over the study period, the landscape area in the study area shrunk,
the distance between patches increased, and land use was diversified and homogeneous.
Cropland area increased over the past decade to encircle other land types. The conversion
of cropland to forests, grasslands, and lakes should be continued to enhance the total
forests, grasslands, and water ecosystems. Additionally, efforts should be made to restore
the ecology of the Yangtze River. Construction land is expanding in many ways, with the
efficiency of urban construction land expansion gradually decreasing from the urban areas
to the suburbs [48]. The population density of urban areas is higher than that of suburban
areas. To prevent the contradiction between the population, resources, and the environment
from escalating, construction land should be used with careful consideration. Through
urban renewal and secondary development in the main urban areas, land use efficiency
can be enhanced, and the encroachment of construction land on ecological land can be
reduced. The future structure and pattern of land use should be determined in relation to
its own functional positioning and comparative advantages and rules for the conversion of
construction land under ecological constraints should be developed [49].

5. Conclusions

This research introduced the spatial autoregression model to analyze the spatial
relationship between the landscape pattern index and ESV from 2010 to 2020 in Nanjing.
The results showed: (1) There was a significant spatial aggregation of both the landscape
pattern index and ESV in the study area with ESV being more significant, indicating that
both had strong geospatial attributes. From 2010 to 2020, at the land use pattern level,
the density of land patches in Nanjing decreased. Regional landscape showed a trend
towards clustering, weakening of the dominant patch type, decreasing level of interpatch
connectivity, homogenization of distribution, and increasing landscape heterogeneity. At
the ESV level, the scale and extension of the high–medium ESV areas in Nanjing shrank.
(2) There existed spatial correlations between land use patterns and ESV in geographical
space. LPI and CONTAG played a dominant role in ESV, wherein LPI had a positive
effect, and CONTAG had a negative effect. In 2015, the regression coefficients of landscape
pattern indexes on ESV were all extreme values, perhaps because of the fact that the
area of ecological land was the largest among all three years, making the effect of land
use patterns on ESV obvious. (3) Ecological risk was aggravated by habitat destruction,
and ecosystem services levels declined; therefore, it was necessary to realize the spatial
regulation and value trade-off between urban structural elements or structural indices and
ecosystem services.

The research results can serve as a reference for landscape form optimization aiming to
realize a higher ecological value. Due to the limitation of available data, we only analyzed
the relevant indicators for three years, and the time dimension can be added in future
research. In order to determine how land use patterns affect ESV through spatial form,
we should explore the impact mechanism and approach behind the statistical correlation
between land use patterns and ESV, forming a complete reciprocal feedback mechanism
between urban space and ecological environment.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/land11081168/s1, Figure S1: Spatial distribution of land-
scape pattern indexes in Nanjing for 2010, 2015, 2020.
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