Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China
Abstract
:1. Introduction
2. Theoretical Analysis and Hypotheses
3. Methods and Data
3.1. Calculation Method of Agricultural Carbon Emissions
3.2. Calculation Method of AGTFP
3.3. Empirical Models
3.4. Data
4. Results and Analysis
4.1. Results and Analysis of Carbon Emissions
4.2. Results and Analysis of AGTFP
4.3. The Effect of Agricultural Services on AGTFP and Its Decomposition
4.3.1. Basic Regression Analysis
4.3.2. Robustness Test
4.3.3. Heterogeneity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, E.-Z.; Lee, C.-C. The Impact of Clean Energy Consumption on Economic Growth in China: Is Environmental Regulation a Curse or a Blessing? Int. Rev. Econ. Financ. 2022, 77, 38–58. [Google Scholar] [CrossRef]
- Lee, C.-C.; Lee, C.-C. How Does Green Finance Affect Green Total Factor Productivity? Evidence from China. Energy Econ. 2022, 107, 105863. [Google Scholar] [CrossRef]
- Wen, H.; Lee, C.-C.; Zhou, F. How Does Fiscal Policy Uncertainty Affect Corporate Innovation Investment? Evidence from China’s New Energy Industry. Energy Econ. 2022, 105, 105767. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s Agricultural Green Total Factor Productivity Based on Carbon Emission: An Analysis of Evolution Trend and Influencing Factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Ren, Y.; Peng, Y.; Castro Campos, B.; Li, H. The Effect of Contract Farming on the Environmentally Sustainable Production of Rice in China. Sustain. Prod. Consum. 2021, 28, 1381–1395. [Google Scholar] [CrossRef]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Sci. Total. Environ. 2022, 829, 154477. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Wang, C.; Li, S.; Zhang, F. Environmentally sensitive productivity growth of industrial sectors in the Pearl River Delta. Resour. Conserv. Recycl. 2018, 139, 50–63. [Google Scholar] [CrossRef]
- Lin, B.; Chen, Z. Does factor market distortion inhibit the green total factor productivity in China? J. Clean. Prod. 2018, 197, 25–33. [Google Scholar] [CrossRef]
- Dokić, D.; Gavran, M.; Gregić, M.; Gantner, V. The impact of trade balance of agri-food products on the state’s ability to withstand the crisis. HighTech Innov. J. 2020, 1, 107–111. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Qu, F. Land fragment and its driving forces in China. Land Use Pol. 2006, 23, 272–285. [Google Scholar] [CrossRef]
- Chen, T.; Rizwan, M.; Abbas, A. Exploring the Role of Agricultural Services in Production Efficiency in Chinese Agriculture: A Case of the Socialized Agricultural Service System. Land 2022, 11, 347. [Google Scholar] [CrossRef]
- United Nations Industrial Development Organization. Agricultural Mechanization in Africa: Time for Action. Planning Investment for Enhanced Agricultural Productivity; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; pp. 1–30. Available online: https://www.unido.org/sites/default/files/2009-05/agricultural_mechanization_in_Africa_0.pdf (accessed on 21 May 2022).
- Fonteh, F.M. Agricultural Mechanization in Mali and Ghana: Strategies, Experiences and Lessons for Sustained Impacts; FAO: Rome, Italy, 2010; Available online: http://www.fao.org/fileadmin/user_upload/ags/publications/K7325e.pdf (accessed on 21 May 2022).
- Haruna, I.; Júnior, J.B. Mechanization Practice: A Tool for Agricultural Development in Nigeria: A Case Study of Ifelodun Local Government Area of Kwara State. Int. J. Basic Appl. Sci. 2013, 2, 98–106. Available online: https://www.academia.edu/32373692/Mechanization_Practice_A_Tool_for_Agricultural_Development_in_Nigeria_A_Case_Study_of_Ifelodun_Local_Government_Area_of_Kwara_State (accessed on 22 May 2022).
- Yamauchi, F. Rising real wages, mechanization and growing advantage of large farms: Evidence from Indonesia. Food Pol. 2016, 58, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Yu, N.; Mao, Z.; Zhang, S. Government-driven urbanisation and its impact on regional economic growth in China. Cities 2021, 117, 103299. [Google Scholar] [CrossRef]
- Diao, X.; Cossar, F.; Houssou, N.; Kolavalli, S. Mechanization in Ghana: Emerging demand, and the search for alternative supply models. Food Pol. 2014, 48, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Akinbamowo, R.O. A review of government policy on agricultural mechanization in Nigeria. J. Agric. Ext. Rural. Dev. 2013, 5, 146–153. [Google Scholar]
- Mrema, G.; Soni, P.; Rolle, R.S. A Regional Strategy for Sustainable Agricultural Mechanization: Sustainable Mechanization across Agri-Food Chains in Asia and the Pacific Region; RAP Publication: Bangkok, Thailand, 2014.
- Zhong, S.; Li, Y.; Li, J.; Yang, H. Measurement of total factor productivity of green agriculture in China: Analysis of the regional differences based on China. PLoS ONE 2021, 16, e0257239. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; Ali, M. A solution for the sunset industry: Adoption of green fertiliser technology amongst Malaysian paddy farmers. Land Use Pol. 2018, 79, 575–584. [Google Scholar] [CrossRef]
- Ge, P.F.; Wang, S.J.; Huang, X.L. Measurement for China’s agricultural green TFP. China Popul. Resour. Environ. 2018, 28, 66–74. [Google Scholar] [CrossRef]
- Ianchovichina, E.; Darwin, R.; Shoemaker, R. Resource use and technological progress in agriculture: A dynamic general equilibrium analysis. Ecol. Econ. 2001, 38, 275–291. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, C. What drives the fluctuations of “green” productivity in China’s agricultural sector? A weighted Russell directional distance approach. Resour. Conserv. Recycl. 2019, 147, 201–213. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean. Prod. 2021, 288, 125624. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How crop insurance influences agricultural green total factor productivity: Evidence from Chinese farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, X.; Gong, M. How land transfer marketization influence on green total factor productivity from the approach of industrial structure? Evidence from China. Land Use Pol. 2020, 95, 104610. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Piao, H. Does agricultural mechanization improve the green total factor productivity of China’s planting industry? Energies 2022, 15, 940. [Google Scholar] [CrossRef]
- Smith, A. On the Wealth of Nations; Simon and Schuste: New York, NY, USA, 2013. [Google Scholar]
- Perelman, M. Mechanization and the Division of Labor in Agriculture. Am. J. Agric. Econ. 1973, 55, 523–526. [Google Scholar] [CrossRef]
- Pugliese, E. Agriculture and the New Division of Labor, Owards a New Political Economy of Agriculture; Routledge: London, UK, 2021; pp. 137–150. [Google Scholar]
- Paudel, B.; Wu, X.; Zhang, Y.; Rai, R.; Liu, L.; Zhang, B.; Khanal, N.R.; Koirala, H.L.; Nepal, P. Farmland abandonment and its determinants in the different ecological villages of the Koshi river basin, central Himalayas: Synergy of high-resolution remote sensing and social surveys. Environ. Res. 2020, 188, 109711. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, L.; Zhang, H.; Liang, J. Exploring the factors driving seasonal farmland abandonment: A case study at the regional level in Hunan Province, central China. Sustainability 2017, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- Feng, S. Land rental, off-farm employment and technical efficiency of farm households in Jiangxi Province, China. NJAS Wagening. J. Life Sci. 2008, 55, 363–378. [Google Scholar] [CrossRef] [Green Version]
- Zang, L.; Wang, Y.; Ke, J.; Su, Y. What Drives Smallholders to Utilize Socialized Agricultural Services for Farmland Scale Management? Insights from the Perspective of Collective Action. Land 2022, 11, 930. [Google Scholar] [CrossRef]
- Zhang, R.; Hao, F.; Sun, X. The Design of Agricultural Machinery Service Management System Based on Internet of Things. Procedia Comput. Sci. 2017, 107, 53–57. [Google Scholar] [CrossRef]
- Asplund, M. What fraction of a capital investment is sunk costs? J. Ind. Econ. 2003, 48, 287–304. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Z.; Zhang, X.; Reardon, T. The rapid rise of cross-regional agricultural mechanization services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Amjath-Babu, T.S.; Krupnik, T.J.; Aravindakshan, S.; Arshad, M.; Kaechele, H. Climate change and indicators of probable shifts in the consumption portfolios of dryland farmers in Sub-Saharan Africa: Implications for policy. Ecol. Indic. 2016, 67, 830–838. [Google Scholar] [CrossRef]
- Graveline, N. Economic calibrated models for water allocation in agricultural production: A review. Environ. Model. Softw. 2016, 81, 12–25. [Google Scholar] [CrossRef]
- Grundy, M.J.; Bryan, B.A.; Nolan, M.; Battaglia, M.; Hatfield-Dodds, S.; Connor, J.D.; Keating, B.A. Scenarios for Australian agricultural production and land use to 2050. Agric. Syst. 2016, 142, 70–83. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Z.; Wu, F.; Deng, X. Understanding rural restructuring in China: The impact of changes in labor and capital productivity on domestic agricultural production and trade. J. Rural. Stud. 2016, 47, 552–562. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X. Chen D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariyono, J.; Kuntariningsih, A.; Suswati, E.; Kompas, T. Quantity and monetary value of agrochemical pollution from intensive farming in Indonesia. Manag. Environ. Qual. Int. J. 2018. [Google Scholar] [CrossRef]
- Danso-Abbeam, G.; Baiyegunhi, L.J.S. Adoption of agrochemical management practices among smallholder cocoa farmers in Ghana. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 717–728. [Google Scholar] [CrossRef]
- Majeed, A. Application of agrochemicals in agriculture: Benefits, risks and responsibility of stakeholders. J. Food Sci. Toxicol 2018, 2, 142–149. [Google Scholar] [CrossRef]
- Bhandari, G. An overview of agrochemicals and their effects on environment in Nepal. Appl. Ecol. Environ. Sci. 2014, 2, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Qing, Y.; Chen, M.; Sheng, Y.; Huang, J. Mechanization services, farm productivity and institutional innovation in China. China Agric. Econ. Rev. 2019, 11, 536–554. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, R. Is China’s economic growth decoupled from carbon emissions? J. Clean. Prod. 2019, 225, 1194–1208. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Zheng, J. Accounting and determinants analysis of China’s provincial total factor productivity considering carbon emissions. China Econ. Rev. 2021, 65, 101576. [Google Scholar] [CrossRef]
- Kim, M.; Sachish, A. The structure of production, technical change and productivity in a port. J. Ind. Econ. 1986, 209–223. [Google Scholar] [CrossRef]
- Dalgaard, T.; Olesen, J.E.; Petersen, S.O.; Petersen, B.M.; Jorgensen, U.; Kristensen, T. Developments in greenhouse gas emissions and net energy use in Danish agriculture—How to achieve substantial CO2 reductions? Environ. Pollut. 2011, 159, 3193–3203. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; He, Y. Research on spatial-temporal characteristics and driving Factor of agricultural carbon emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Decoupling of greenhouse gas emissions fromglobal agricultural production: 1970–2050. Glob. Chang. Biol. 2016, 22, 763–781. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Mitigation: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Summary for Policymakers and Technical Summary; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Dubey, A.; Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop. Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Lin, J.Y. The household responsibility system reform and the adoption of hybrid rice in China. J. Dev. Econ. 1991, 36, 353–372. [Google Scholar] [CrossRef]
- Xie, Y.; Jiang, Q. Land arrangements for rural-urban migrant workers in China: Findings from Jiangsu Province. Land Use Pol. 2016, 50, 262–267. [Google Scholar] [CrossRef]
- Sims, B.; Kienzle, J. Sustainable agricultural mechanization for smallholders: What is it and how can we implement it? Agriculture 2017, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Deng, X.; Liu, Y.; Yong, Z.; Xu, D. Does off-Farm Migration of Female Laborers Inhibit Land Transfer? Evidence from Sichuan Province, China. Land 2008, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Zeng, M.; Xu, D.; Qi, Y. Does Social Capital Help to Reduce Farmland Abandonment? Evidence from Big Survey Data in Rural China. Land 2020, 9, 360. [Google Scholar] [CrossRef]
- Xu, D.; Yong, Z.; Deng, X.; Zhuang, L.; Qing, C. Rural-Urban Migration and its Effect on Land Transfer in Rural China. Land 2020, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Jaquet, S.; Schwilch, G.; Hartung-Hofmann, F.; Adhikari, A.; Sudmeier-Rieux, K.; Shrestha, G.; Liniger, H.P.; Kohler, T. Does outmigration lead to land degradation? Labour shortage and land management in a western Nepal watershed. Appl. Geogr. 2015, 62, 157–170. [Google Scholar] [CrossRef]
- Gao, J.; Song, G.; Sun, X. Does labor migration affect rural land transfer? Evidence from China. Land Use Pol. 2020, 99, 105096. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does early-life famine experience impact rural land transfer? Evidence from China. Land Use Pol. 2019, 81, 58–67. [Google Scholar] [CrossRef]
- Hamidov, A.; Helming, K.; Balla, D. Impact of agricultural land use in Central Asia: A review. Agron. Sustain. Dev. 2016, 36, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Renwick, A.; Grafton, Q. Farm machinery use, off-farm employment and farm performance in China. J. Agric. Resour. Econ. 2018, 62, 279–298. [Google Scholar] [CrossRef]
- Yan, J.; Chen, C.; Hu, B. Farm size and production efficiency in Chinese agriculture: Output and profit. China Agric. Econ. Rev. 2018, 11, 20–38. [Google Scholar] [CrossRef]
- Deng, Y.; Cui, Y.; Khan, S.U.; Zhao, M.; Lu, Q. The spatiotemporal dynamic and spatial spillover effect of agricultural green technological progress in China. Environ. Sci. Pollut. R. 2022, 9, 27909–27923. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, D.; Yu, L.; Yang, H. Influence of a new agricultural technology extension mode on farmers’ technology adoption behavior in China. J. Rural. Stud. 2020, 76, 173–183. [Google Scholar] [CrossRef]
- Qiu, T.; Choy, S.T.B.; Luo, B. Is small beautiful? Links between agricultural mechanization services and the productivity of different-sized farms. Appl. Econ. 2022, 54, 430–442. [Google Scholar] [CrossRef]
- Kh, K.S. Development and Significance of Agricultural Services in the Economy of Uzbekistan. Int. J. Integr. Educ. 2022, 5, 283–285. Available online: https://media.neliti.com/media/publications/409997-development-and-significance-of-agricult-d067bfce.pdf (accessed on 19 July 2022).
- Qian, L.; Lu, H.; Gao, Q.; Lu, H. Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China. Land Use Pol. 2022, 115, 106008. [Google Scholar] [CrossRef]
Sources | Coefficient | Reference |
---|---|---|
Chemical fertilizer | 0.8956 kg kg−1 | Oak Ridge National Laboratory, ORNL |
Pesticides | 4.9341 kg kg−1 | ORNL |
Agricultural film | 5.18 kg kg−1 | Institute of Resources, Ecosystem and Environment of Agriculture, IREEA |
Diesel | 0.5927 kg kg−1 | Intergovernmental Panel on Climate Change, IPCC |
Plowing | 312.6 kg km−2 | Institute of Agriculture and Biotechnology of China Agricultural University, IABCAU |
Irrigation | 25 kg ha−1 | Dubey and Lal [57] |
Variables | Definition | Mean | S.D |
---|---|---|---|
Output variables | |||
Agricultural output (Expected output) | The gross agricultural output value (based on 2011) (100 million CNY) | 1493.201 | 1053.501 |
Carbon emissions (Unexpected output) | Carbon emissions in agricultural activities (10,000 tons) | 279.411 | 198.865 |
Input variables | |||
Land | Total planting area of crops (1000 ha) | 5336.927 | 3816.424 |
Labor | Agricultural employees (10,000 individuals) | 782.335 | 553.471 |
Machinery | The total power of agricultural machinery (10,000 kW) | 3318.604 | 2924.103 |
Water | Irrigation area (1000 ha) | 2127.971 | 1667.872 |
Energy | Diesel consumption in agriculture (10,000 tons) | 66.752 | 57.919 |
Chemical fertilizer | The use of chemical fertilizer (10,000 tons) | 185.888 | 147.006 |
Pesticides | The use of pesticides (10,000 tons) | 7.983 | 6.725 |
Agricultural films | The use of agricultural plastic films (10,000 tons) | 5.351 | 4.185 |
Empirical variables | |||
lnC | The logarithm of agricultural carbon emissions | 5.202 | 1.154 |
GML | AGTFP | 1.016 | 0.047 |
GTC | Agricultural green technology change | 1.020 | 0.041 |
GEC | Agricultural green efficiency change | 0.997 | 0.035 |
pol | The policy of ‘Action Plan for the zero increase of fertilizer use and pesticides by 2020’, 0 = No, 1 = Yes | 0.600 | 0.491 |
ser | The output value of agricultural services (100 million CNY, based on 2011)/planting area of crops (1000 ha) | 0.014 | 0.009 |
pgdp | GDP per capita (100 million CNY, based on 2011) | 4.112 | 1.831 |
agri | Added value of primary industry (100 million CNY)/GDP (100 million CNY) | 0.097 | 0.051 |
mac | The total power of agricultural machinery (10,000 kW)/planting area of crops (1000 ha) | 0.685 | 0.350 |
labor | Agricultural employees (10,000 individuals) /planting area of crops (1000 ha) | 0.168 | 0.069 |
Variables | Coef. | S.D |
---|---|---|
Government policy (Action Plan for the zero increase of fertilizer use and pesticides by 2020) | −0.062 *** | 0.013 |
pgdp | −0.013 | 0.016 |
agri | 0.417 | 0.531 |
mac | 0.144 ** | 0.064 |
labor | −0.580 *** | 0.199 |
Constant | 5.253 *** | 0.099 |
F | 7.24 *** | |
Obs | 310 |
Region | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
China | 1.000 | 1.040 | 1.027 | 1.000 | 0.999 | 1.001 | 0.947 | 1.014 | 1.017 | 1.024 |
Beijing | 1.000 | 1.036 | 1.050 | 1.036 | 1.013 | 1.021 | 1.052 | 1.134 | 1.005 | 1.000 |
Tianjin | 1.000 | 1.029 | 1.034 | 1.021 | 1.012 | 0.989 | 0.915 | 1.127 | 1.026 | 1.233 |
Hebei | 1.000 | 1.037 | 1.067 | 0.965 | 0.974 | 1.007 | 0.891 | 1.047 | 1.022 | 1.077 |
Shanxi | 1.000 | 1.009 | 1.022 | 1.010 | 0.992 | 0.992 | 0.981 | 1.009 | 1.005 | 1.032 |
Inner Mongolia | 1.000 | 1.005 | 1.001 | 0.998 | 0.977 | 0.992 | 0.999 | 1.019 | 1.022 | 1.063 |
Liaoning | 1.000 | 1.037 | 1.007 | 1.010 | 1.031 | 1.000 | 0.926 | 1.034 | 1.029 | 1.031 |
Jilin | 1.000 | 1.018 | 1.003 | 0.994 | 0.995 | 0.941 | 0.901 | 1.022 | 0.998 | 1.057 |
Heilongjiang | 1.000 | 1.079 | 1.076 | 0.983 | 0.958 | 0.973 | 1.088 | 1.016 | 1.051 | 1.040 |
Shanghai | 1.000 | 1.004 | 1.043 | 0.970 | 1.007 | 1.007 | 0.996 | 1.175 | 1.000 | 1.000 |
Jiangsu | 1.000 | 1.064 | 1.025 | 1.005 | 1.061 | 0.993 | 0.983 | 0.994 | 1.003 | 1.033 |
Zhejiang | 1.000 | 1.041 | 1.056 | 1.011 | 1.009 | 1.038 | 0.994 | 1.002 | 1.036 | 1.000 |
Anhui | 1.000 | 1.003 | 1.007 | 1.001 | 0.990 | 1.009 | 0.990 | 1.000 | 1.013 | 1.065 |
Fujian | 1.000 | 1.047 | 1.013 | 1.039 | 1.009 | 1.079 | 0.964 | 1.018 | 1.019 | 1.000 |
Jiangxi | 1.000 | 1.022 | 1.051 | 1.005 | 1.028 | 1.038 | 0.985 | 1.030 | 1.036 | 1.033 |
Shandong | 1.000 | 1.005 | 1.083 | 1.006 | 0.989 | 0.900 | 0.957 | 1.028 | 1.031 | 1.037 |
Henan | 1.000 | 1.040 | 1.008 | 1.024 | 0.972 | 0.942 | 0.987 | 1.061 | 1.044 | 1.100 |
Hubei | 1.000 | 1.033 | 1.002 | 0.980 | 0.965 | 1.016 | 0.982 | 1.009 | 1.071 | 1.072 |
Hunan | 1.000 | 1.036 | 0.981 | 1.003 | 0.998 | 1.019 | 0.835 | 0.996 | 1.088 | 1.105 |
Guangdong | 1.000 | 1.031 | 1.051 | 1.003 | 1.013 | 1.058 | 0.961 | 0.980 | 1.062 | 1.000 |
Guangxi | 1.000 | 0.987 | 1.001 | 0.993 | 1.006 | 1.019 | 1.045 | 1.035 | 1.057 | 0.987 |
Hainan | 1.000 | 1.042 | 0.961 | 1.080 | 1.000 | 1.000 | 0.971 | 1.006 | 1.023 | 1.000 |
Chongqing | 1.000 | 1.033 | 1.014 | 0.998 | 1.004 | 1.062 | 0.963 | 1.052 | 1.022 | 1.055 |
Sichuan | 1.000 | 1.008 | 0.977 | 0.994 | 1.030 | 0.996 | 1.005 | 0.990 | 0.997 | 1.013 |
Guizhou | 1.000 | 1.040 | 1.031 | 1.136 | 1.153 | 1.004 | 1.000 | 0.990 | 1.010 | 1.000 |
Yunnan | 1.000 | 1.040 | 1.029 | 1.006 | 0.972 | 0.990 | 0.981 | 1.179 | 1.089 | 0.958 |
Tibet | 1.000 | 1.000 | 1.000 | 0.889 | 0.934 | 1.204 | 0.933 | 1.072 | 1.000 | 1.000 |
Shaanxi | 1.000 | 1.019 | 1.059 | 1.022 | 0.951 | 1.020 | 0.956 | 1.027 | 1.023 | 1.062 |
Gansu | 1.000 | 1.019 | 1.015 | 0.994 | 1.000 | 1.028 | 0.916 | 1.027 | 1.027 | 1.016 |
Qinghai | 1.000 | 0.994 | 0.998 | 0.992 | 0.991 | 1.022 | 0.998 | 1.020 | 1.182 | 1.142 |
Ningxia | 1.000 | 0.997 | 1.051 | 1.036 | 1.081 | 1.003 | 0.985 | 1.174 | 0.950 | 1.197 |
Xinjiang | 1.000 | 1.016 | 0.930 | 0.937 | 0.955 | 0.993 | 1.022 | 1.051 | 1.040 | 1.099 |
Variables | GML | GTC | GEC | |||
---|---|---|---|---|---|---|
FE | IV-2SLS | FE | IV-2SLS | FE | IV-2SLS | |
ser | 1.498 ** (0.590) | 2.823 *** (0.863) | 0.969 * (0.513) | 1.948 *** (0.748) | 0.550 (0.441) | 0.872 (0.639) |
pgdp | −0.014 * (0.008) | −0.018 ** (0.008) | −0.016 ** (0.007) | −0.019 *** (0.007) | 0.001 (0.006) | −0.0004 (0.006) |
agri | 0.372 (0.249) | 0.503 * (0.258) | 0.087 (0.216) | 0.183 (0.224) | 0.260 (0.186) | 0.292 (0.191) |
mac | 0.016 (0.031) | 0.004 (0.033) | 0.021 (0.028) | 0.012 (0.028) | −0.005 (0.024) | −0.008 (0.024) |
labor | −0.281 *** (0.095) | −0.307 *** (0.096) | −0.108 (0.082) | −0.127 (0.084) | −0.165** (0.071) | −0.171 ** (0.071) |
Constant | 1.052 *** (0.045) | 1.051 *** (0.045) | 1.066 *** (0.039) | 1.065 *** (0.039) | 0.992 *** (0.034) | 0.992 *** (0.034) |
Within R-squared | 0.055 | 0.038 | 0.031 | 0.018 | 0.025 | 0.023 |
Obs | 310 | 310 | 310 | 310 | 310 | 310 |
Variables | East Region of Heihe–Tengchong Line | West Region of Heihe–Tengchong Line | ||||
---|---|---|---|---|---|---|
GML | GTC | GEC | GML | GTC | GEC | |
ser | 1.487 ** (0.577) | 1.060 ** (0.466) | 0.460 (0.471) | 2.015 (3.457) | 2.674 (3.554) | −0.621 (2.128) |
pgdp | −0.012 (0.008) | −0.017 ** (0.007) | 0.003 (0.007) | 0.002 (0.022) | 0.005 (0.022) | −0.003 (0.013) |
agri | 0.324 (0.258) | 0.157 (0.208) | 0.152 (0.211) | 1.320 * (0.704) | 0.417 (0.724) | 0.829 * (0.434) |
mac | −0.019 (0.035) | −0.005 (0.028) | −0.013 (0.029) | 0.035 (0.071) | 0.047 (0.073) | −0.010 (0.044) |
labor | −0.120 (0.097) | −0.008 (0.079) | −0.109 (0.080) | −1.270 *** (0.298) | −0.673 ** (0.306) | −0.556 *** (0.183) |
Constant | 1.050 *** (0.046) | 1.068 *** (0.037) | 0.989 *** (0.038) | 1.028 *** (0.142) | 1.008 (0.146) | 1.022 *** (0.088) |
F | 1.91 * | 2.18 * | 0.67 | 4.21 *** | 1.44 | 2.55 ** |
Obs | 230 | 230 | 230 | 80 | 80 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Zhu, P.; Tang, L. Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China. Land 2022, 11, 1170. https://doi.org/10.3390/land11081170
Xu Q, Zhu P, Tang L. Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China. Land. 2022; 11(8):1170. https://doi.org/10.3390/land11081170
Chicago/Turabian StyleXu, Qinhang, Peixin Zhu, and Liang Tang. 2022. "Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China" Land 11, no. 8: 1170. https://doi.org/10.3390/land11081170
APA StyleXu, Q., Zhu, P., & Tang, L. (2022). Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China. Land, 11(8), 1170. https://doi.org/10.3390/land11081170