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Abstract: Southwestern China (SW) is simultaneously affected by the East Asian monsoon, South
Asian monsoon and westerly winds, forming a complex and diverse distribution pattern of climate
types, resulting in a low interpretation rate of vegetation changes by climate factors in the region.
This study explored the response characteristics of vegetation to climatic factors in the whole SW
and the core area of typical climate type and the phased changes in response, adopting the form of
“top-down”, using linear trend method, moving average method and correlation coefficient, and
based on the climate data of CRU TS v. 4.02 for the period 1982–2017 and the annual maximum,
3/4 quantile, median, 1/4 quantile, minimum and average (abbreviated as P100, P75, P50, P25, P5

and Mean) of GIMMS NDVI, which were to characterize vegetation growth conditions. Coupling
with the trend and variability of climate change, we identified four major types of climate change in
the SW, including the significant increase in both temperature and precipitation (T+*-P+*), the only
significant increase in temperature and decrease (T+*-P−) or increase (T+*-P+) of precipitation and no
significant change (NSC). We then screened out nine typical areas of climate change types (i.e., core
areas (CAs)), followed by one T+*-P+* area, which was located in the center of the lake basin of the
Qiangtang Plateau. The response of vegetation to climatic factors in T+*-P+* area/T+*-P+ areas and
T+*-P− areas/NSC areas were mainly manifested in an increase and a significant decrease, which
makes the response characteristics of vegetation to climatic factors in the whole SW have different
directionality at different growth stages. Our results may provide new ideas for clearly showing the
complexity and heterogeneity of the vegetation response to climate change in the region under the
background of global warming.

Keywords: Southwestern China; typical climate types; regional and phased responses; multiple
correlations

1. Introduction

Since the 1980s, with the development of satellite remote sensing technology, many
continuously changing remote sensing data have been captured worldwide [1]. A large
number of studies on eco-environmental changes at watershed and landscape scales have
been successfully applied to analyze the correlation between vegetation change and global
climate and environmental factors and achieved fruitful results (e.g., [2–10]). Many studies
have shown that vegetation growth is closely related to climate conditions, and climate can
determine vegetation growth and development through spatial and temporal redistribu-
tion [11–13]. In particular, the temporal variability of precipitation and potential evapotran-
spiration have profound effects of vegetation growth and phenology [14]. Moreover, it is
well-acknowledged that future climate projection will highly affect forest growth and even
forest line shift [15]. Climate warming has caused significant changes in vegetation cover
both regionally and globally, especially in cold ecosystems, where the temperature is an
important limiting factor, which plays a leading role in vegetation growth in northern high
latitudes (e.g., [2,4,16]), and warming significantly enhanced vegetation activity [17,18].
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Precipitation has a great influence on NDVI at the regional scale, and there is usually a
positive correlation between NDVI and precipitation [19–21]. Especially in arid and semi-
arid areas, water availability is the key to vegetation growth, and more precipitation will
promote vegetation restoration, such as the Eurasian (>23.5◦ N) and the arid and semi-arid
areas in the upper reaches of the Yarlung Zangbo River Basin, where precipitation has a
positive impact on vegetation greening [13,19]. Excessive water may inhibit the growth
of vegetation, which the increase of precipitation in the humid arid transition zone of
northern China promotes the growth of vegetation in drier areas with sparse vegetation,
and inhibits the growth of vegetation in humid areas with high vegetation coverage [22].
Forest vegetation in Southeast Asia is positively correlated with precipitation in the dry
season, but is not sensitive to precipitation in the rainy season [23].

Moreover, vegetation growth is usually affected by climatic factors in the spatiotempo-
ral scale, of which temperature and precipitation are the main factors controlling global
vegetation growth, and the temporal trend of spatial heterogeneity of climate factors may
lead to more complex responses of vegetation activities [8,24–26]. This is especially true
since 1850, and every decade of the last 40 years has been consecutively warmer than any
previous decade, and further forecasts predict that climate change in the coming decades
will intensify the water cycle and water imbalances, bringing more rainfall and flooding,
and more severe droughts [27]. Some studies have pointed out that the global vegetation
greenness was significantly reduced due to increased temperature and the decrease in
precipitation. In the past decade, greening in the Northern Hemisphere seems to have
stopped, and browning has gradually become the main trend [8,24,26]. In the Qinghai-
Xizang Plateau, the cold and dry environment is extremely sensitive to climate change,
and vegetation growth is controlled by both water supply and temperature increase [21].
The response of vegetation activity to temperature in the growing season is positively
regulated by precipitation, and the positive response to precipitation may be enhanced
by temperature rise, especially for alpine grasslands in relatively arid areas [28]. At the
same time, some studies have shown that the response of vegetation activities to climate
change changes with time, and the correlation calculated based on one period cannot be
simply applied to another period [4,8,29]. During the 1980s and 1990s, global warming
led to a significant increase in vegetation activities [30], and then, since the mid-1990s, the
global vegetation browning trend has been accelerating, and in the area north of 30◦ N, the
stimulation effect of temperature increase is weakening [4,8,29,31].

With the in-depth research development, quantifying the relationship between vege-
tation growth and climate change has gradually become a central topic and challenge in
the current global change research. Some related studies have reported the response of
vegetation growth to climate driving factors at different scales [3,5,6,8,10,18,26,28]. These
studies usually use the interannual variation of the maximum value in the year or in the
growing season to characterize the growth and change of vegetation. Compared with
different periods of vegetation growth, the performance between the maximum value and
climate factors is also different [32]; interannual changes are used to characterize changes in
vegetation growth, which are easily disturbed by some abnormal values. According to the
sliding average method, local averaging can be performed to obtain a relatively smooth new
NDVI time series, which is conducive to more intuitively presenting the changing trend of
vegetation [33]; and affected by different climatic factors, the corresponding response is
also different, which changes with time.

The SW is the most complex region in China, across the three steps of China’s terrain,
affected by the East Asian monsoon, South Asian monsoon and westerly wind, resulting in
the formation of a more complex and diverse distribution pattern of climate types [34–37].
Global climate warming [38,39] makes the growth and distribution pattern of vegetation
more sensitive to climate change [18,40,41]; thus, we put forward the scientific questions of
this study: (1) How to reveal the major types of climate change in SW and further identify
the typical areas of climate change types? (2) How to characterize and quantify the regional
and periodic responses of vegetation to climate factors.
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2. Materials and Methods

Thus, to improve the understanding of vegetation response to climate change, the
climate change types existing in SW were revealed from the aspects of climate change
trend (rate, direction, significance and probability) and variability, and the typical areas
of climate change types (i.e., core areas (CAs)) were selected. The value was selected P100,
P75, P50, P25, P5 and Mean of GIMMS NDVI, which was generated by choosing the 15-year
sliding step size, to characterize vegetation growth conditions [42]. The dynamic law of
vegetation growth in SW and the CA was explored in the form of “top-down”, and the
response characteristics of vegetation to climate factors and their periodic changes were
deeply discussed, to understand the response process of vegetation to climate factors in
SW in recent decades.

2.1. Study Region

Under the natural zoning concept [34], the “Southwestern China Region” is referred
to in this research with a broader geographical implication and consideration of vegetation
and landscape settings, covering Sichuan, Chongqing, Guizhou, and Yunnan in the entirety,
and parts of Xizang and Qinghai (Figure 1a). The whole study area spanned coordinates
between 21.14◦ and 36.48◦ N, and 83.87◦ and 110.19◦ E, and mean annual temperature of
5.76 ◦C and mean annual precipitation of 768.4 mm for the period 1901–2017 [37], covering
the Himalaya Mountains, the eastern Qinghai-Xizang Plateau, the Hengduan Mountains,
Zoige Plateau, Sichuan Basin, Yunnan-Guizhou Plateau and other terrain units, and the
unique climate of Qinghai-Xizang Plateau, which have a significant impact on the regional
and global climate of East Asia [35,36], has become the focus area of scholars at home and
abroad [35,43].Land 2022, 11, x FOR PEER REVIEW 4 of 24 
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Figure 1. Overview of (a) topography, (b) vegetation divisions and (c) vegetation types in part of
southwestern China. The clear space in panel (a) are areas within the respective provincial territory
not included in this study. Vegetation divisions: I, alpine vegetation region; II–V, respectively,
represent the northwest region, west central region and northwest region of subtropical evergreen
broad-leaved forest; and VI, tropical monsoon forest.
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2.2. Data Sources and Processing

The digital elevation model with a resolution of 1 km (Table 1, https://www.resdc.
cn/data.aspx?DATAID=123, accessed on 28 September 2019) was used to obtain the al-
titude of the SW, and was resampled to 0.25◦ × 0.25◦ resolution raster data based on
bilinear interpolation extrapolation in ArcGIS10.6, so that the new output grid value was
a weighted average of the four closest values from the input cell center, thus obtaining a
smoother surface.

Table 1. The main data sources.

Data Data Sources Resolution Data Accessibility Links Access Date Access Format

GIMMS NDVI3g GIMMS 8 × 8 km https://ecocast.arc.nasa.gov/
data/pub/GIMMS/ 18 November 2018 .nc4

CRU_TS4.02 Climate Research Unit 0.5◦ × 0.5◦ https://crudata.uea.ac.uk/cru/
data/hrg/ 28 June 2019 .nc

Global Artificial
Impervious Area Tsinghua university data 30 × 30 m http://data.ess.tsinghua.edu.cn 31 December 2019 .tif

Digital elevation model Resource and Environment
Science and Data Center 1 × 1 km https://www.resdc.cn/data.

aspx?DATAID=123 28 September 2019 GRID

China’s vegetation
zoning data

Resource and Environment
Science and Data Center — http://www.resdc.cn/data.aspx?

DATAID=133 1 December 2017 .shp

1:1 million vegetation
map of China

Resource and Environment
Science and Data Center — https://www.resdc.cn/data.

aspx?DATAID=122 1 December 2017 .shp

The high-resolution gridded temperature and precipitation gridded datasets (CRU_TS4.02)
were downloaded from the Climate Research Unit, University of Anglia, UK (Table 1,
https://crudata.uea.ac.uk/cru/data/hrg/, accessed on 28 June 2019) with the time range
covers from 1901 to 2017, and the spatial resolution of 0.5◦ × 0.5◦ was used [44], which was
frequently used as reliable climate data sources for studying global or regional patterns
of climate change and impacts on ecosystems (e.g., [37,45]). Since the study area spans
three steps and the terrain is fragmented in the transition zone, the 0.5◦ × 0.5◦ resolution
may obscure the relationship between climate change and the environment, and was down-
scaled to 0.25◦ × 0.25◦ using the cubic spline interpolation method [46], incorporating the
DEM information at 0.25◦ × 0.25◦ spatial resolution.

By piecewise linear regression, we obtained that there were significant turning years
(F > F0.05) for the annual mean temperature and annual precipitation from 1901 to 2017,
which were 1954 and 1928, respectively [37]. According to the current results, the northern
hemisphere began to rise in the mid-1970s [47,48], especially after 1980 [39,40,48], combined
with the longest NDVI time series (GIMMS NDVI3g) [49], and we chose 1982–2017 as the
main research period.

Based on China’s vegetation zoning data obtained on the Resource and Environment
Science and Data Center (Table 1, http://www.resdc.cn/data.aspx?DATAID=133, accessed
on 1 December 2017), it can indicate the regularity of the geographic distribution of vegeta-
tion and mainly includes three regions: the alpine vegetation region of Qinghai–Xizang
Plateau, subtropical evergreen broad-leaved forest region, tropical monsoon forest and
rainforest region, including 13 vegetation zones. The scattered and minor vegetation zones
were aggregated into predominant vegetation types prevailing in the local areas, the re-
gional vegetation zoning data were aggregated into six major sub-regions consisting of
the alpine vegetation region, the east region, northwest region, west-central region and
northwest region of subtropical evergreen broad-leaved forest and tropical monsoon forest
(Figure 1b).

The NDVI data were from the GIMMS (global inventory monitoring and modeling
studies), which were derived from AVHRR remote sensing imagery and covered the pe-
riod January 1982–December 2015, with the temporal step of 15 d and spatial resolution
of 8 × 8 km (Table 1, https://ecocast.arc.nasa.gov/data/pub/GIMMS/, accessed on 18
November 2018). Although the dataset was widely used in global and regional scale
vegetation dynamics research after geometric correction, radiometric correction and atmo-
spheric correction [49], due to the high frequency of days with cloud and precipitation in

https://www.resdc.cn/data.aspx?DATAID=123
https://www.resdc.cn/data.aspx?DATAID=123
https://ecocast.arc.nasa.gov/data/pub/GIMMS/
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https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
http://data.ess.tsinghua.edu.cn
https://www.resdc.cn/data.aspx?DATAID=123
https://www.resdc.cn/data.aspx?DATAID=123
http://www.resdc.cn/data.aspx?DATAID=133
http://www.resdc.cn/data.aspx?DATAID=133
https://www.resdc.cn/data.aspx?DATAID=122
https://www.resdc.cn/data.aspx?DATAID=122
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the study region, further filtering processing is needed to reconstruct the sequence and
eliminate cloud interference. Based on the MATLAB R2019a platform, we further combined
with Savitzky–Golay filtering and quality control files on 24 periods NDVI every year, to
form a new NDVI sequence [50], hence eliminating the interference of clouds and rainfall
weather conditions.

The Maximum Value Composite (MVC) was used to eliminate some of the interference
of clouds, atmosphere, and sun altitude. The computations followed the steps of:

NDVImi = Max
(

NDVImij
)

(1)

NDVI =

m
∑
1

12
∑
1

NDVImi

12 ∗m
(2)

where NDVImi represents the NDVI of the i-th month in the m-th year (i = 1, 2,..., 12, m = 1,
2,..., 34), NDVImij refers to the NDVI of the j-th 15th day of the i-th month in the m-th year
data (j = 1, 2) and NDVI refers to the multi-year average NDVI. The threshold value of
NDVI is 0.1, that is, areas with less than this value have very low productivity and are
considered to be uncovered by vegetation [51].

The cultivated vegetation in the vegetation type data (Figure 1c) was greatly affected
by anthropogenic activities. At the same time, the rapid development of urbanization in
recent years has caused the artificial impervious area to increase rapidly, and all need to be
eliminated in this study, based on Global Artificial Impervious Area by Tsinghua university
data open platform (Table 1, http://data.ess.tsinghua.edu.cn, accessed on 31 December
2019) [52].

To more comprehensively reflect the changing law of vegetation growth conditions,
the value was selected the maximum, 3/4 quantile, median, 1/4 quantile, minimum and
average values of GIMMS NDVI for 12 months in a year, which were used to represent the
annual value synthesizes of vegetation at different stages of growth, denoted as P100, P75,
P50, P25, P5 and Mean in turn. The computations followed the steps of:

Mean =

12
∑
1

NDVImi

12
(3)

P100 = Max(NDVImi) (4)

P5 = Min(NDVImi) (5)

NDVImi is sorted first and then calculated using Matlab main programming language
(b = sort(NDVImi));

P75 = prctile(b, 75) (6)

P50 = prctile(b, 50) (7)

P25 = prctile(b, 25) (8)

2.3. Data Analysis

The least square method was performed on the changing trend of climatic factors
(annual temperature and annual precipitation) on the pixel scale, and with the slope of the
fitting equation indicating the rate of changes, which was calculated as [53].

slope =
n

n
∑

i=1
ixi −

n
∑

i=1
i

n
∑

i=1
xi

n
n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (9)

http://data.ess.tsinghua.edu.cn


Land 2022, 11, 1179 6 of 21

where, n is the length of the study period, and xi is the annual average temperature or
annual precipitation of the i-th year. When slope > 0, it means that the climate during the
study period shows a trend of warming or humidification. Otherwise, it shows a trend of
cooling or drying. The significance of the climate factor was determined by t-test.

Error probability and variability analysis were combined to characterize the extent of
climate influence. The error probability (Pd) of the rate of change of the index was [54]:

Pd = erf
(

k
σ
√

2

)
(10)

where k is the rate of change of a certain index and σ is its standard deviation. Pd ≥ 0.95 is
recorded as high probability, Pd < 0.95 is recorded as a low probability [55].

Mainly standard deviation (S) and coefficient of variation (CV) are used to express
climate variability. Areas that exceed the 95% upper confidence limit of the T-test are
recorded as high variability, and otherwise, areas are recorded as low variability. Among
them, the standard deviation was used to characterize the variability of temperature, and
the coefficient of variation was used to characterize the variability of precipitation because
the precipitation varies by 2 orders of magnitude from east to west. The formula as follows:

s =

√√√√√ n
∑
1
(xi − x)2

n− 1
(11)

CV =
s
x

(12)

where xi represents the value of the i-th year of an indicator, x is the average value of the
study period and n is the number of statistical years.

The moving average method was used to remove the impact of some climate data
noise, averaging in the local area, reduce the impact of random effects and get a relatively
smooth new climate time series, which was conducive to a more intuitive presentation of
climate change trend [33]. The moving average formula was:

pj =
i+L−1

∑
i=j

xi
L

(13)

where L is the sliding step length (referring to Fu [42], we chose the sliding step length as
15 years); i is the serial number, j = (L − 1)/2 + i.

Based on partial correlation and multiple correlation analysis methods, temperature
and precipitation’s influence and comprehensive influence on vegetation NDVI were
revealed. The computations followed the steps of:

Rxy =

n
∑
1
(xi − x)(yi − y)√

n
∑
1
(xi − x)2

√
n
∑
1
(yi − y)2

(14)

Rxy,z =
Rxy − RxzRyz√

(1− R2
xz)

√(
1− R2

yz

) (15)

Rx,yz =

√
1−

(
1− R2

xy

)(
1− R2

xz,y

)
(16)

where Rxy is the correlation coefficient of the x and y variables, xi and yi are the values
of NDVI and climate factors (temperature and precipitation) in the i-th year; x and y are
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the multi-year average of the two variables; n is the number of years. Rxy,z is the partial
correlation coefficient between the dependent variable x and the independent variable y
after the independent variable z is fixe, and the t-test method was used for the significance
test. Rx,yz is the multiple correlation coefficient between the dependent variable x and the
independent variables y and z, and the F test method was used for the significance test.

The driving zoning principles adopted by related scholars [56,57] were used to an-
alyze the driving force of vegetation growth and change. The classification criteria after
appropriate corrections were shown in Table 2.

Table 2. Zoning criteria for the impact factors of NDVI changes. R1, the t significance test of partial
correlation between NDVI and temperature; R2, the t significance test of partial correlation between
NDVI and precipitation; R3, the F significance test of multiple correlations between NDVI and
temperature and precipitation.

NDVI Changes Driving Factors Zoning Criterias

R1 R2 R3

Climate factors

Changed by temperature
and precipitation strongly [T+P]+ |t| > t0.01 |t| > t0.01 F > F0.05

Changed by temperature
and precipitation weakly [T+P]− F > F0.05

Changed by temperature T |t| > t0.01 F > F0.05
Changed by precipitation P |t| > t0.01 F > F0.05

Changed by temperature weakly T− t0.05 < |t| ≤ t0.01 F > F0.05
Changed by precipitation weakly P− t0.05 < |t| ≤t0.01 F > F0.05

Non-climate
factors Changed by non-climate NC F ≤ F0.05

The correlation coefficient Ri and complex correlation coefficient FRi between the
NDVI series of 1982–1996, 1983–1997, . . . , 2001–2015 and the climatic factors (temperature
and precipitation) in the corresponding period, with 15 years as the step [42], referencing
Formulas (15) and (16), were used to reconstitute the new sequence, and calculate the
changing trend according to the Formula (9), which referred to the change trend of response
intensity of vegetation to climatic factors. The significance test was determined by t-test of
the new sequence.

All data analysis, unless otherwise specified, was performed using MATLAB R2019a.

3. Results
3.1. Identification of Typical Climate Types in the Past 30 Years

Four types of climate change on the grid scale can be obtained by referring to Table A1,
which were the areas with a significant increase in temperature and precipitation (abbre-
viated as T+*-P+*), the areas with a significant increase of temperature was related to the
decrease of precipitation (abbreviated as T+*-P−), the areas with a significant increase of
temperature was related to the increase of precipitation (abbreviated as T+*-P+) and no
significant change (abbreviated as NSC) (Figure 2a). In terms of the spatial coverage, about
half of the region were of the type T+*-P+, 34.22% the type T+*-P−, 15.13% the type T+*-P+*

and 1.9% of the region were not detected with a clear trend of climate change (NSC).Values
were assigned according to Table A2, and divided into four categories according to the
scores, which were respectively marked as slight, mild, and moderate and intensive to
get the spatial distribution of climate influence degree on the grid scale in the SW region
(Figure 2b).
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P+, the type with a significant increase of temperature was related to the increase of precipitation; 
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Figure 2. (a) Spatial distributions of climate change types, (b) the degree of climate impact and (c) the
core region of the climate change model in the study region of southwestern China. Climate change
types: T+*-P+*, the type with a significant increase in temperature and precipitation; T+*-P−, the type
with a significant increase of temperature was related to the decrease of precipitation; T+*-P+, the
type with a significant increase of temperature was related to the increase of precipitation; NSC, the
type with no significant change.”+/−” means an increase/decrease in temperature or precipitation;
“*” significant at p < 0.05.
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Based on the principles of homogeneity (Table A3, Figure A1a and see Appendix A(1)
for details), typicality (Figure A1b and see Appendix A(2) for details) and concentration
(see Appendix A(3) and Appendix A(4) for details), the typical regions of climate change
types (i.e., core regions (CAs)) were selected (Figure 2c). For the specific steps, please refer
to Appendix B. In the CAs, the trend and volatility of climate change were consistent, which
can explain the inconsistent rules of climate change in the study area. Finally, nine CAs
were selected, which were: one T+*-P+* area, located in the center of Qiangtang plateau
lake basin three T+*-P− areas, which were located in the center of the high mountains and
deep valleys in eastern Xizang, the easternmost part of the southern limb of the eastern
Himalayas and some centers of Yunnan in Yunnan–Guizhou Plateau; four T+*-P+ areas
in the north of the lake basin center of Qiangtang plateau, the west of the mountains and
valleys in Southeast Xizang, the southwest of Sichuan Basin and the south of Yunnan-
Guizhou Plateau; and one NSC area was located in the southeast part of Guizhou Province
in Yunnan–Guizhou Plateau.

3.2. Characteristics of Vegetation Changes in Core Areas

In this analysis, the interannual variation of vegetation growth was analyzed with a
15-year sliding step by referring to Fu [42]. The average value of NDVI in the southwest
and different core areas was in the following order: NSC > T+*-P− > T+*-P+ > SW > T+*-
P+* (Figure 3), the smallest in the T+*-P+* area, and the six growth stages were less than
2500.00 × 10−4, the largest in the NSC area, all over 5500.00 × 10−4. NDVI in the SW,
T+*-P−, T+*-P+ and NSC area general increased significantly (p < 0.01), whereas a significant
decreasing trend was showed in the T+*-P+* area (p < 0.01). The results showed that the
overall scope and growth stage of the SW region displayed a significant increasing trend,
which covered the significant decreasing trend of vegetation in the T+*-P+* areas and the
significant decreasing trend in P75 in the T+*-P+ area and P5 in the NSC area, which further
showed that the vegetation in the SW region was improving as a whole, and there was a
risk of deterioration in some parts; at the same time, there was the possibility that local
areas will deteriorate in a specific period.

Furthermore, we found that the difference in k between the SW and the CAs was
noticeable. The order of the multi-year average k value of the six annual values was
basically: NSC > T+*-P+ > T+*-P+* > SW > T+*-P− (Figure 3). The trend of k (similar to
the acceleration in physics, abbreviated as ka) in the SW region, T+*-P+* and T+*-P− areas
mostly showed a significant decrease (p < 0.01), T+*-P+ areas showed a decreasing trend,
and the 6 growth stages in the T+*-P− areas showed the fastest rate of decrease, which
was approximately 2.72–11.54 times the decrease rate in the SW region. There was a slight
increase trend in T+*-P+* and T+*-P+ areas, but they had not reached a significant level; in
the NSC area, there was a significant increasing trend. It showed that the overall range and
growth stage of the change trend k in the SW region revealed a significant decrease trend,
covering up the significant increasing trend of vegetation in the NSC area and the T+*-P+*

area at P5 and P25 and the T+*-P+ area at P50 and P75.
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3.3. Correlation between Vegetation Changes and Climate in Core Areas

The six annual eigenvalues (Figure 4) in SW and T+*-P− areas were changed by temper-
ature and precipitation strongly, which belong to [T+P]+ type (Table 2) and had a significant
positive correlation between temperature and precipitation above 0.70 (p < 0.01). When
Mean, P100 and P75 were respectively in T+*-P+* area, they were [T+P]+, and had a signifi-
cant negative/positive correlation between the temperature/precipitation (p < 0.01); and
the remaining annual value synthesis was changed by temperature (T) or temperature
weakly (T−), and had significant negative correlation between the temperature (p < 0.05).
In the T+*-P+ area, at P100 and P5, it belongs to the changed by precipitation (P) or precipita-
tion weakly (P−), respectively, with a significant positive correlation between precipitation
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(p < 0.05); and at P75, it belongs to the changed by temperature and precipitation weakly
([T+P]−), with a negative correlation between both temperature and precipitation. When
P50–P25 and Mean were changed by temperature (T) or temperature weakly (T−), respec-
tively, they were significantly positively correlated with the temperature (p < 0.05). In
the NSC area, at P5, it was changed by temperature weakly (T−), and had a significant
negative correlation between temperature (p < 0.05). At P25, it was changed by tempera-
ture and precipitation strongly ([T+P]+), with a significant positive correlation between
both temperature and precipitation (p < 0.01). The remaining annual value synthesis was
changed by temperature (T), and there was a significant positive correlation between the
temperature (p < 0.01). The results showed that the precipitation was relatively large in
the overall scope the SW region and the temperature increases, which could enhance the
ability of photosynthesis of vegetation and promote the growth of plants. However, this
phenomenon masked the fact that rising temperatures in T+*-P+* areas inhibit plant growth,
because in T+*-P+* areas, the higher the temperature, the stronger the evaporation, even
though there was an increase in rainfall at this time, the precipitation was less, ultimately
limiting plant growth.
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Figure 4. Correlation coefficients between NDVI and temperature and precipitation over 15 years
of sliding. PR1 represent partial correlation between NDVI and temperature; PR2 represent partial
correlation between NDVI and precipitation; FR represent multiple correlations between NDVI and
temperature and precipitation. “*”, “**”, and “***” indicate the significance of p < 0.1, p < 0.05, and
p < 0.01, respectively.

3.4. Change Trend of Correlation Coefficients between Vegetation and Climate Factors in
Core Areas

The correlation between temperature (except P100 and P75) increased, while the correla-
tion between precipitation (except P50) decreased; the results showed that in the whole SW
region had different responses to climate factors in different periods, at P100, P75 and P25
showed a decreasing trend, while Mean, P50 and P5 showed an increasing trend (Figure 5).
In the T+*-P+* area, the influence of temperature gradually decreased, while precipitation
significantly increased, and the combined effect of the two shows a significant increasing
trend. In T+*-P− area, the correlation between NDVI (except P75) and climate factors de-
creased significantly at a rate of more than 0.06/(10a) (p < 0.05); and the correlation between
temperature (except P100) and precipitation (except P75) decreased at a rate of more than
0.03/(10a), indicating that the correlation between the single factor and multiple correlation
factor in T+*-P− area decreased. In T+*-P− area, the growth of vegetation was significantly
increased by temperature, decreased by precipitation, and increased by both. In the NSC
area, the correlation between NDVI and climate factors decreased significantly at a rate of
more than 0.10/(10a); the correlation between temperature decreased significantly (except
P100), while the correlation between precipitation increased significantly, indicating that the
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influence of temperature significantly reduced the vegetation, but significantly increased by
the influence of precipitation, showing a significant downward trend under the combined
influence of both.
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4. Discussion
4.1. Necessity of Analysis of Typical Climate Type Areas (Core Areas)

On the whole, the average annual temperature of the study area in the past 36 years
showed an increasing trend (Figure 2a), and the area with a significant increase was
about 98.10%, indicating that the temperature had been increasing continuously for more
than 30 years, but not in the similar situation of global warming interruption (slowing or
stagnating) [58,59], which was consistent with the research results of Shen [60], Zhu [61]
and Duan [62] on the Qinghai–Xizang Plateau and its surrounding areas, was consistent
with the rapid warming of global temperature reported by IPCC [27,43] in the past 30
years. The precipitation (Figure 2a) of the study area in the past 36 years had no significant
change overall, showing a trend of “increased–decreased–increased” from east to west in
space. The areas with increased precipitation (65.78%) were concentrated in the western
and eastern of SW, while the areas with decreased precipitation were concentrated in the
middle of the study area, including the western Yunnan-Guizhou Plateau, Hengduan
Mountains and the southeast part of Qinghai–Xizang Plateau. Yang [63] pointed out that
precipitation decreased in the southern and eastern parts of the Qinghai-Xizang Plateau,
and increased in the central and western regions. According to the global precipitation
climatology project (www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html, accessed on
27 February 2021) and rainfall distribution in India (www.tropmet.res.in, accessed on 27
February 2021), the precipitation in the Himalayas decreased from 1979 to 2010, while that
in the eastern Pamir increased; this further verified the changing trend of precipitation
in the study area, whereas many studies have shown that vegetation growth was closely
related to water and heat conditions, and climate change can jointly determine the long-
term evolution of vegetation and ecosystem by redistributing climate factors in space and
time [5,8,25]. Therefore, in order to improve the understanding of vegetation response to
climate change, from the direction and significance of climate change trend, we identified
four major types of climate change (T+*-P+*, T+*-P+, T+*-P− and NSC) in the SW. In this case,
we may well explain the large regional differences in the response of vegetation growth to
climate change [4,5,8,12]; for example, the response of vegetation activities to temperature
in the growing season was positively regulated by precipitation, but with the continuous
climate warming, if precipitation did not increase or even decrease, the decoupling or even
inverse correlation between NDVI and temperature will occur [4].

4.2. Vegetation Characteristics of Different Stages in CAs

In the context of rapid global environmental change, vegetation change can be used to
describe the interaction between environmental change and the terrestrial ecosystem [13],
which was helpful in understanding the cycling mechanism of various elements within
the ecosystem [10,64]. In this study, six annual eigenvalues (P100, P75, P50, P25, P5 and
Mean) of GIMMS NDVI were used to characterize vegetation growth conditions, which
made up for the deficiency in current studies that annual maximum or average value of
NDVI was used to represent vegetation growth status [5,8,25,40]. The order of annual
average NDVI of the six annual values (Mean, P100–P5) in SW and CAs was basically: NSC
> T+*-P− > T+*-P+ > SW > T+*-P+*, and the maximum values reach 3.65–6.05 times of the
minimum values, respectively, indicating that there was a considerable spatial heterogeneity
of NDVI in different CAs in the study area, which may be due to the close relationship
between vegetation growth and hydrothermal conditions, and climate change determines
the long-term evolution of vegetation and ecosystem [5,8], climatic factors (hydrothermal
conditions) have considerable spatial heterogeneity [65], which directly drive water cycle
and energy cycle, making the response of vegetation growth to climate change had large
regional differences. Generally speaking, the vegetation in the whole SW region increased
significantly in the NSC, the T+*-P− area and the T+*-P+ area, and there was a phenomenon
of accelerated decrease (Browning) in the local area (T+*-P+* area), which was similar to that
of most researchers [10,29,66,67] and Pan [29] pointed out the trend of global vegetation
greening, but covered up the increase of vegetation browning in local areas; Zhang [10]

www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html
www.tropmet.res.in


Land 2022, 11, 1179 14 of 21

and Cui [66] found that NDVI in the Yellow River and Yangtze River Basins increased as
a whole and decreased locally; Yao [67] research showed that the greening speed in arid
areas may be slower than that in humid areas, which can also explain the result that NSC
area in this study belongs to humid area, and its greening speed was the highest, while the
relatively small results in the T+*-P− and T+*-P+ areas.

Furthermore, we found that vegetation activity in the whole SW region and each
CAs changed with time (Figure 3), and the turning point of the SW region, T+*-P− and
T+*-P+ areas was around 2005 (represented the period from 1991 to 2005), in which the
growth rate of vegetation activity was larger before 2005, and slowed down after 2005. In
the NSC area, the growth rate was about 2005, but the growth rate was accelerated after
2005. In the T+*-P+* area, the dividing time year was 2001 (representing the period from
1987 to 2001) and was increasing before 2001 and decreasing after 2001. Similarly, some
studies had pointed out that the global terrestrial ecosystem was a net carbon sink in the
1980s and 1990s [68]), and the vegetation activity was greatly enhanced. Since the early
1990s, the global browning trend had gradually expanded and strengthened [29], and the
browning trend of all latitudes in the Northern Hemisphere was increasing. During the
2000s, the vegetation productivity in most parts of the Southern Hemisphere began to
decline, resulting in a significant decrease in global net primary productivity and NDVI in
2000s [19,69]. In the Northern Hemisphere and East Asia, the year 1997 was regarded as a
turning year [70,71], and the trend of vegetation from greening to browning was found.

4.3. Main Climate Driving Types in CAs

Climate change determines the long-term evolution of vegetation and ecosystem [5,8],
which controls 70% of the global vegetation growth and change, and is a key factor restrict-
ing global vegetation productivity [40,41,71]. In this study, we concluded that the growth
of vegetation in the whole SW region and the CAs could be controlled by temperature and
precipitation factors alone or jointly. In the SW and T+*-P− areas, the vegetation growth
was strongly driven by temperature and precipitation ([T+P]+), and both temperature and
precipitation play a promoting role in vegetation growth, possibly because the continuous
global warming can increase the duration of the vegetation growth period and enhance
photosynthesis [3,72]; meanwhile, the increase of precipitation increases soil moisture
to meet the needs of vegetation [19,21]. In the T+*-P+* area, it was mainly affected by
the negative effect of temperature, with less precipitation, lower soil moisture content,
higher temperature and faster evaporation, which exceeded the availability of water and
inhibited the growth of vegetation [1,40]. In the T+*-P+ area, the vegetation growth and
climate factors were different in different periods, and the precipitation had a positive
effect at P100 and P5, the temperature had a positive effect at Mean, P50 and P25, and the
temperature and precipitation had a negative correlation at P75. The positive effect of
temperature was mainly driven the NSC area, and its positive effect was greater than
the negative effect of precipitation. Due to the NSC area in the humid subtropical area
(http://www.resdc.cn/data.aspx?DATAID=125, accessed on 1 December 2019), the rain-
fall is higher, and the soil water content is higher than the threshold value of vegetation
response to rainfall, the positive effect of rainfall on vegetation is offset, and vegetation
growth is inhibited [20]. The temperature increase can effectively improve the temperature
of the environment around the vegetation, increase solar radiation, enhance photosynthesis,
and promote the growth of vegetation [3].

4.4. Staged Response of Vegetation to Climate Change in CAs

The response of vegetation activity to climate change changes with time [4,8,28,29]. For
example, some studies had pointed out that with the continuous warming of the climate,
if the precipitation does not increase or even decrease, NDVI and temperature show de-
coupling or even reverse correlation [4], which made the response of vegetation growth to
climate change more complex [18,40,41]. In this study, the response of six annual synthetic
NDVI to climate factors in the T+*-P+* area and T+*-P+ area (Figure 5) mainly showed an

http://www.resdc.cn/data.aspx?DATAID=125
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increasing trend (p < 0.05), indicating that the influence of climate on NDVI showed an
increasing trend. The single influence of being influenced by temperature or precipitation
was completely opposite in the T+*-P+* area and T+*-P+ area, which in the T+*-P+* area was
gradually reduced by temperature and gradually increased by precipitation, while in the
T+*-P+ area was gradually increased by temperature and significantly decreased by precipi-
tation, which was consistent with the research results of Cong [28] on grassland vegetation
in the Qinghai–Xizang Plateau. It may be due to the T+*-P+* area in the semi-arid area of
the plateau sub frigid zone (http://www.resdc.cn/data.aspx?DATAID=125, accessed on 1
December 2019); the precipitation is less, and the positive response to precipitation is en-
hanced due to the increase of temperature, which made the response of vegetation activity
to precipitation stronger. The T+*-P+ region is located in the sub frigid sub-humid region of
the plateau, the temperate humid sub-humid region of the plateau and the humid region of
the middle subtropics, and its precipitation is relatively large. With the increase of precipita-
tion, the response of vegetation activity to temperature was more sensitive (the response of
vegetation activity to temperature was greater). When the temperature rises, the influence
of temperature gradually increased. The response of NDVI to climate factors in the T+*-P−

area and the NSC area (Figure 5) showed a significant decreasing trend (p < 0.05), which
indicated that NDVI was significantly affected by climate. In the T+*-P− area, the single
influence of being influenced by temperature or precipitation was gradually reduced, while
in the NSC area, it was gradually decreased by temperature and significantly increased by
precipitation. It is possible that the correlation between temperature and NDVI was mainly
positive in the T+*-P− area and NSC area (Figure 5), and gradually decreased with the
extension of time, indicating that the promotion effect of temperature on vegetation growth
gradually decreases, which was basically consistent with the performance of Piao [4] on
the promoting effect of temperature on vegetation growth in the Northern Hemisphere
(>30◦ N). The positive effect of precipitation on vegetation in T+*-P− areas decreased gradu-
ally, while the correlation between precipitation and NDVI in NSC area gradually changed
from negative to positive, and the value gradually increased, indicating that with the
continuous increase of temperature, the water demand for vegetation growth gradually
increased, while the water fall in T+*-P− areas gradually decreased, and gradually ap-
proached the positive threshold of vegetation response to precipitation, the positive impact
of precipitation on vegetation gradually decreased [20]. In contrast, the NSC area is located
in the middle subtropical humid area (http://www.resdc.cn/data.aspx?DATAID=125,
accessed on 1 December 2019) with the extension of time, the required water gradually
increased, and the correlation gradually changed, and the vegetation needs more water to
promote growth [20,28,31]. Finally, in the whole SW study area, with the extension of time,
the influence of climate factors in the SW region decreased significantly at P75, increased
significantly at P50, increased gradually at Mean and P5, and decreased gradually at P100
and P25. Our results showed that the partial correlation coefficient and complex correlation
coefficient between NDVI and temperature or precipitation had considerable time variation,
which indicated that the response of vegetation activity to climate change in SW and CAs
changed with time, and the response to climate change in different growth stages (annual
value synthesis) had different directionality. There are also relevant studies that showed
that vegetation activities had different responses to climate change in different research
periods [8,28,29,31,71].

5. Conclusions

Overall, we identified four major climate change types and nine corresponding differ-
ent climate core areas across SW China in the past 30 years. We further showed that the
vegetation in the SW region had become greener as a whole, but the rate of greening had
gradually decreased, especially in T+*-P+* area, and the rate of decrease had continued to
be significant, and the vegetation growth was found to be accelerating in the NSC area.
Climate factors mainly control the vegetation growth in the SW region and the core areas,
and different vegetation growth periods (P100–P5 and Mean) in the whole region and the

http://www.resdc.cn/data.aspx?DATAID=125
http://www.resdc.cn/data.aspx?DATAID=125
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core areas had different regional and phased responses to climate change. Therefore, when
we compare the response of different vegetation activity stages to climate change, more
attention should be paid to clarifying the research period and the vegetation’s growth stage.
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Appendix A

Core Area Screening Principles of Climate Change in Southwest China

(1) Homogeneity: according to the vegetation division (Figure 1b) obtained from
the Resource and Environment Science and Data Center, as the classification judgment of
homogeneity affected by climate change, the vegetation division and climate change types
were superimposed to obtain 14 spatially explicit major sub-regions of climate change types
by referring to Table A3 (Figure A1a).

(2) Typicality: according to the impact degree of climate change, the order of typicality
was Intensity > Moderate > Mild > Slight degree. Furthermore, the climate impact degree of
different climate change sub-regions can be obtained by superimposing the climate impact
degree map of different climate change sub-regions (Figure A1b).

(3) Concentration: Based on the absolute value of the change rate (|K|) of temperature
and precipitation, the area whose |K| exceeds the 95% confidence upper limit of t-test was
recorded as a typical area, and then the typical area of temperature and precipitation was
superimposed, and the superimposed overlapping area was recorded as the core area. In
the NSC area (the region with the least impact of climate change), the overlapping region
of |K| of temperature and precipitation, which was lower than the 95% confidence limit
of t-test, was selected, indicating that it was less affected by climate (temperature and
precipitation) change and relatively stable.

(4) Adjusted rules: based on the previous steps, some core areas were relatively
scattered and had different sizes, which need to be further adjusted. The details were
as follows:
1© Considering the spatial distribution and size of different climate change sub-regions,

the core area in this study was uniformly defined as 20 grids, and each grid was
0.25◦ × 0.25◦ (about 25 km × 25 km).

2© In the T+*-P− and T+*-P+ areas, the changing trend of temperature was mainly |K|,
and the range of |K| of precipitation was appropriately scaled.

3© When the overlapped significant regions and the regions with a high degree of climate
impact were small, the distribution regions with a high degree of climate impact were
the priority, and the core areas were selected by combining the two rules.

4© The core area initially screened out in IV and V areas were closely connected with
the middle part of their contact boundary, so a specific area was re-screened out after
merging IV and V areas as the core area of the two areas.

https://ecocast.arc.nasa.gov/data/pub/GIMMS/
https://crudata.uea.ac.uk/cru/data/hrg/
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Appendix B

Table A1. Classification of climate change patterns.

Climate Change Types Temperature Precipitation

T+*-P+* Significantly increased Significantly increased

T+*-P− Significantly increased Decreased but not to a
significant level

T+*-P+ Significantly increased Increased but not to a
significant level

NSC Increased but not to a
significant

Increased but not to a
significant

Table A2. Criteria for grading the degree of climate impact in Southwest China.

Indicators Classification Criteria Grade Evaluation

Variability Low S (CV) < 0.95 1
High S (CV) > 0.95 2

Probability Small Pd < 0.95 1
Large Pd > 0.95 2

Slight — 4

Effect degree Mild — 5
Moderate — 6
Intensive — 7

Table A3. Sub-regions of climate change types in Southwest China. Classification of vegetation zones:
I, alpine vegetation region; II–V, respectively, represent the northwest region, west central region and
northwest region of subtropical evergreen broad-leaved forest; and VI, tropical monsoon forest.

Climate
Change Types

Vegetation
Zones

Sub-Regions of
Climate Change Types

T+*-P+* I T+*-P+*-I

T+*-P−

I T+*-P−-I
II T+*-P−-II
III T+*-P−-III
IV T+*-P−-IV
V T+*-P−-V
VI T+*-P−-VI

T+*-P+

I T+*-P+-I
II T+*-P+-II
III T+*-P+-III
IV T+*-P+-IV
V T+*-P+-V
VI T+*-P+-VI

NSC VI NSC-VI
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