Design Model and Management Plan of a Rice–Fish Mixed Farming Paddy for Urban Agriculture and Ecological Education
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluating the Ecosystem Service Function of the RFMF Paddy
2.2. Biodiversity of the RFMF Paddy
2.3. Soil and Water Quality Analyses of the RFMF Paddy
2.4. Composition Design and Educational Use Plan of the RFMF Paddy
3. Results
3.1. Public Interest Regarding RFMF Paddies
3.2. Structural Composition Plan for the RFMF Paddy
3.3. Biodiversity of the RFMF Paddy and the Selection of Target Species
3.4. Soil and Water Quality Management Plan for the RFMF Paddy
3.5. Rice and Freshwater Fish Management Methods and Related Educational Contents
3.6. Development of an RFMF Paddy in an Urban Education Space
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Functions | Major field | Mean (n = 56) | F-Test 1 | |||
---|---|---|---|---|---|---|
Environmental (n = 20) | Biological (n = 16) | Engineering (n = 14) | Agricultural (n = 6) | |||
Amphibian and reptile habitat | 2.50 ± 0.59 a,b,D | 2.50 ± 0.71 a,b,F | 2.00 ± 0.76 a,E,F | 2.67 ± 0.47 b,C | 2.39 ± 0.69 F | NS |
Aquatic insect habitat | 2.40 ± 0.58 a,b,D | 2.56 ± 0.61 b,F | 1.93 ± 0.70 a,D,E,F | 2.67 ± 0.47 b,C | 2.36 ± 0.66 F | 3.184 * |
Fishery habitat | 2.35 ± 0.73 a,C,D | 2.31 ± 0.85 a,D,E,F | 2.21 ± 0.86 a,F | 2.67 ± 0.47 a,C | 2.34 ± 0.78 F | NS |
Experience and education | 2.20 ± 0.60 a,C,D | 2.38 ± 0.70 a,E,F | 2.21 ± 0.67 a,F | 2.50 ± 0.50 a,B,C | 2.29 ± 0.64 F | NS |
Vegetation diversity | 2.15 ± 0.73 a,b,C,D | 2.31 ± 0.68 a,b,D,E,F | 1.71 ± 0.80 a,B,C,D,E,F | 2.50 ± 0.76 b,B,C | 2.13 ± 0.78 F | NS |
Avian habitat | 2.10 ± 0.54 a,C,D | 2.25 ± 0.90 a,C,D,E,F | 1.79 ± 1.15 a,C,D,E,F | 2.00 ± 1.41 a,A,B,C | 2.05 ± 0.94 E,F | NS |
Groundwater recharge | 1.70 ± 1.10 a,B,C | 1.50 ± 1.00 a,A,B,C,D | 1.64 ± 1.34 a,B,C,D,E,F | 2.50 ± 0.50 a,B,C | 1.71 ± 1.12 D,E | NS |
Water storage | 1.70 ± 1.05 a,B,C | 1.44 ± 1.12 a,A,B,C | 1.50 ± 1.24 a,B,C,D,E,F | 2.67 ± 0.47 b,C | 1.68 ± 1.13 D,E | NS |
Maintenance of genetic diversity | 1.35 ± 1.28 b,A,B | 1.81 ± 1.07 a,b,B,C,D,E,F | 1.57 ± 1.35 a,b,B,C,D,E,F | 2.50 ± 0.50 a,B,C | 1.66 ± 1.22 D,E | NS |
Biological control | 1.45 ± 1.02 a,A,B | 1.75 ± 1.03 a,B,C,D,E,F | 1.50 ± 1.18 a,B,C,D,E,F | 1.83 ± 1.07 a,A,B,C | 1.59 ± 1.07 D | NS |
Water purification | 1.30 ± 1.27 a,A,B | 1.38 ± 1.62 a,A,B | 1.64 ± 1.04 a,B,C,D,E,F | 1.83 ± 0.69 a,A,B,C | 1.46 ± 1.28 C,D | NS |
Mammalian habitat | 1.25 ± 0.89 a,A,B | 1.63 ± 1.11 a,B,C,D,E | 1.21 ± 1.01 a,A,B,C,D,E,F | 1.67 ± 0.94 a,A,B,C | 1.39 ± 1.00 B,C,D | NS |
Creating landscape | 1.45 ± 0.80 a,A,B | 1.25 ± 1.09 a,A,B | 1.14 ± 1.12 a,A,B,C,D,E | 1.50 ± 0.76 a,A,B | 1.32 ± 0.98 B,C,D | NS |
Climate regulation | 1.10 ± 0.83 a,A,B | 1.25 ± 1.03 a,A,B | 0.86 ± 1.30 a,A,B,C | 1.17 ± 0.69 a,A | 1.09 ± 1.01 A,B,C | NS |
Rest area | 1.00 ± 1.00 a,A | 1.00 ± 1.27 a,A,B | 0.93 ± 1.22 a,A,B,C,D | 1.33 ± 0.94 a,A | 1.02 ± 1.13 A,B | NS |
Air quality regulation | 1.25 ± 0.94 a,A,B | 0.75 ± 0.75 a,A | 0.71 ± 1.28 a,A,B | 1.33 ± 0.47 a,A | 0.98 ± 0.98 A,B | NS |
Flood control | 1.20 ± 0.93 a,b,A,B | 0.69 ± 1.04 a,A | 0.29 ± 1.44 a,A | 1.83 ± 0.90 b,A,B,C | 0.90 ± 1.20 A | 3.305 * |
F-test 2 | 5.916 *** | 5.519 *** | 3.053 *** | 2.590 ** | 14.503 *** | - |
References
- Na, Y.E. Driving projects of urban agriculture for the energy independence. Korean J. Environ. Agric. 2010, 29, 304–308. [Google Scholar] [CrossRef]
- Lee, I.H.; Lee, H.J.; Lee, S.B.; Jeon, I.C.; Kim, Y.G. The effect on participating in the urban farming in the farm village experience tourism of urbanite. J. Korean Inst. Lands Archit. 2012, 40, 79–88. [Google Scholar] [CrossRef]
- Kim, E.J.; Lee, Y.K.; Kim, S.B.; Lim, C.S.; Park, M.J. A study on the Development Course of Guideline for Fostering the Rural Village Roads. J. Korean Soc. Rural Plan. 2013, 19, 189–207. Available online: https://kiss15.kstudy.com/kiss5/viewer.asp (accessed on 15 September 2021). [CrossRef]
- Jang, D.H.; Soh, S.Y. A Study on Management of Urban Agriculture—The case of agriculture in Seoul. In Bulletin of the Agricultural College; Chonbuk National University: Jeonju, Korea, 2005; Volume 36, pp. 86–102. Available online: https://kiss18.kstudy.com/kiss10/download_viewer.asp (accessed on 15 September 2021).
- Seo, H.S.; Hwang, J.H. A study on attribution of purchasing environment-friendly agricultural products in villages for rural tourism. Korean J. Org. Agric. 2014, 22, 47–65. [Google Scholar] [CrossRef]
- Getz, D.A.; Karow, J.J. Inner City Preferences for Trees and Urban Forestry Programs. Technol. Arboricult. 1982, 8, 258–263. Available online: https://agris.fao.org/agris-search/search.do?recordID=US19830950742 (accessed on 15 September 2021).
- Lee, Y.H.; Lee, S.D.; Oh, C.H.; Kong, J.Y. Activation Of Agricultural Awareness Education through “Short-Term Agricultural Experiential Learning Program”—A Case Study in Bahl-Ahn Agricultural High School, Jpoaugrensa. J. Agric. Educ. Hum. Resour Dev. 1998, 30, 25–38. Available online: https://kiss.kstudy.com/thesis/thesis-view.asp?key=1589018 (accessed on 15 September 2021).
- Choi, E.Y.; Jeong, Y.N.; Kim, S.Y. Analysis of the Relationship between the Importance of Urban Farming Ordinance Factors and Participation Satisfaction as well as Sustainability for Vitalizing of the Urban Farming—Focused on Seoul City Urban Farming Participants. J. Urban Des. 2014, 15, 173–188. Available online: https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001945897 (accessed on 15 September 2021).
- Jang, G.S.; Kim, Y.H.; Choi, Y.S.; Kim, S.H.; Kim, J.M.; Bae, S.J.; Cho, Y.G.; Koo, T.H. A research of soil environmental health in urban garden, Gwangju. Korean J. Environ. Agric. 2016, 35, 87–96. [Google Scholar] [CrossRef]
- Jang, B.G.; Choi, Y.J.; Hwang, J.I. Needs assessment for urban agricultural program. J. Agric. Extension Commun. Dev. 2011, 18, 511–529. [Google Scholar] [CrossRef]
- Choi, J.S. Amendments of urban planning related regulations and policies for securing the space available for urban agriculture. Jepa 2014, 22, 131–166. [Google Scholar] [CrossRef]
- Jang, J.; Oh, C.H. Needs analysis of experiential learning Program for Eco-Friendly School Farm Activation -Target of teachers in elementary school, Korean. Org. Agric. 2012, 20, 283–296. Available online: https://kiss16.kstudy.com/kiss6/download_viewer.asp (accessed on 15 September 2021).
- Kong, M.J.; Park, K.L.; Son, J.K.; Shin, J.H. Evaluation on Actual Condition and Image Analysis of Roof Garden in Seoul, Korea. J. Korea Soc. Environ. Restor. Technol. 2012, 15, 69–83. Available online: https://www.koreascience.or.kr/article/JAKO201216536729393.pdf (accessed on 15 September 2021). [CrossRef] [Green Version]
- Won, S.Y. Farming Types and Plant Resources Proper to Vegetable Gardening of Rooftop for Urban Agriculture Activists, The Korean Society of Floral. Art Des. 2013, 28, 181–221. Available online: https://kiss.kstudy.com/thesis/thesis-view.asp?key=3150847 (accessed on 15 September 2021).
- An, P.G.; Kong, M.J.; Lee, S.M.; Kim, S.B.; Jo, J.L.; Kim, N.C.; Shin, J.H. A study on the morphological management of major landscape elements in organic farming. Korean J. Rural Plan. 2020, 26, 107–116. [Google Scholar] [CrossRef]
- Kim, S.E. The Effect of Rice Co-Brand Assets, Trust, and Attachment on Loyalty. J. Digital Convergence. 2022, 20, 401–410. [Google Scholar]
- Kim, T.K. Proper Space and Its Conditions for Ecology-Culture(connected)-Environmental Education. Environ. Educ. 2010, 23, 62–81. Available online: https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE01532582&mark=0&useDate=&ipRange=N&accessgl=Y&language=ko_KR&hasTopBanner=false (accessed on 15 September 2021).
- Han, J.S. Regional Activities to attract Affiliated Population through Agricultural Education and Experimental Activities: Focused on Exchange Programs between Seoul and Other Cities/Counties. J. Korean Geogr. Soc. 2019, 54, 435–448. Available online: https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE08768123&mark=0&useDate=&ipRange=N&accessgl=Y&language=ko_KR&hasTopBanner=false (accessed on 15 September 2021).
- Kim, M.J. Reinventing Vacant Lands for Urban Agriculture: Evaluating Milwaukee’s Vacant Land Programs and Initiatives. J. Land Hous. Urban Affairs. 2020, 11, 59–68. [Google Scholar]
- Moon, J.W.; Na, J.Y. Elementary school teachers’ perception and the status of education program on science museum field trips. J. Elem. Sci. Educ. 2019, 38, 87–101. [Google Scholar] [CrossRef]
- Park, S.M. Analysis of Scientific Exhibits in the Gwacheon National Science Museum and Their Utilization for Science Education. Master’s Thesis, The Graduate School of Education Hanyang University, Seoul, Korea, 2011. Available online: http://www.riss.kr/link?id=T12507214&outLink=K (accessed on 15 September 2021).
- Hwang, Y.M.; Shin, D.H.; Bae, G.K. Farmhouse Management Strategy and Yield of Farmhouses. Korean Rural. Sociol. Soc. 2016, 26, 87–121. Available online: https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE07180420&mark=0&useDate=&ipRange=N&accessgl=Y&language=ko_KR&hasTopBanner=false (accessed on 15 September 2021).
- Kim, H.; Kim, K.J.; Sun, Y.; Jo, Y.J.; Kim, T.Y.; Moon, M.J. Change in Biodiversity and Community Structures in Agricultural Fields depending on Different Farming Methods. Korean J. Org. Agric. 2018, 26, 687–706. [Google Scholar] [CrossRef]
- Myeong, S.J. The Influence of Preadulthood Experiences in Rural Areas on Korean Adults’ Perceptions on the Ecosystem Services of Rice-Paddies. Korean Soc. Environ. Eucation. 2019, 32, 488–497. [Google Scholar]
- Kong, M.J.; Kim, C.H.; Lee, S.M.; Park, K.L.; An, N.H.; Cho, J.L.; Lim, J.A.; Kim, H.S.; Nam, H.S.; Son, J.K. The Effect Analysis of Vegetation Diversity on Ricefish Mixed Farming System in Paddy Wetland. J. Wet Res. 2018, 20, 398–409. Available online: https://www.earticle.net/Article/A343965 (accessed on 15 September 2021).
- Nam, H.S.; Park, K.L.; An, N.H.; Lee, S.M.; Cho, J.L.; Kim, B.R.; Lim, J.A.; Lee, C.W.; Kong, M.J.; Son, J.K. Wetland function evaluation and expert assessment of organic rice-freshwater fish mixed farming. J. Wet Res. 2018, 20, 161–172. [Google Scholar]
- Halwart, M.; Gupta, M.V. Culture of Fish in Rice Fields; Food and Agriculture Organization and the World Fish Center: Rome, Italy, 2004; Available online: https://ideas.repec.org/b/wfi/wfbook/16334.html (accessed on 15 September 2021).
- Kim, J.O.; Shin, H.S.; Yoo, J.H.; Lee, S.H.; Jang, K.S.; Kim, B.C. Functional evaluation of small-scale pond at paddy field as a shelter for mudfish during midsummer drainage period, Korean. J. Environ. Agric. 2011, 30, 37–42. [Google Scholar]
- Choe, L.J.; Han, M.S.; Kim, M.R.; Cho, K.J.; Kang, K.K.; Na, Y.E.; Kim, M.H. Characteristics communities structure of benthic macroinvertebrates at irrigation ponds, within paddy field, Korean. J. Environ. Agric. 2013, 32, 304–314. [Google Scholar]
- Son, J.K.; Kong, M.J.; Kang, D.H.; Nam, H.S.; Kim, N.C. The comparative studies on the urban and rural landscape for the plant diversity improvement in pond wetland. J. Wet Res. 2015, 17, 62–74. [Google Scholar] [CrossRef]
- Son, J.K.; Kong, M.J.; Kang, B.H.; Kim, M.H.; Kang, D.H.; Lee, S.Y.; Han, S.H. An analysis on use patterns of oriental medicine of pond wetland plants for the ecological experience in rural tourism village. J. Wet Res. 2017, 19, 230–239. [Google Scholar]
- Bradley, G.A. Urban Forest Landscape; University of Washington Press: Washington, DC, USA, 1995; Available online: https://www.hfsbooks.com/books/urban-forest-landscapes-bradley (accessed on 15 September 2021).
- Lee, G.B.; Kim, C.H.; Kim, J.G.; Lee, D.B.; Lee, S.B.; Na, S.Y. How Soil Characteristics and Vegetation Influence the Inflow of Sewage in a Tributary of the Mankyeong River. Inst. Environ. Sci. 2003, 12, 9–21. Available online: https://kiss.kstudy.com/thesis/thesis-view.asp?key=2221039 (accessed on 15 September 2021).
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter., S.R.; Chopra, K.; Zurek, M.B. Ecosystems and Human Well-being-Synthesis: A Report of the Millennium Ecosystem Assessment. Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Díaz, S.; Fargione, J.; Chapin, F.S., III; Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 2006, 4, e277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, I.; Park, J.S.; Kim, S.H.; Maeng, W.Y.; Lee, I.E. Comparative analysis of technical system by six organic rice cultivation type in the Southern Provinces. Org. Agric. 2012, 20, 535–542. [Google Scholar] [CrossRef]
- Avasthe, R.; Babu, S.; Singh, R.; Das, S. Impact of Organic Food Production on Soil Quality. Conserv. Agric. Adv. Food Secur. Chaning Clim. 2017, 1, 387–396. Available online: https://www.researchgate.net/publication/326827479_Impact_of_Organic_Food_Production_on_Soil_Quality (accessed on 15 September 2021).
- Ok, J.H.; Cho, J.L.; Lee, B.M.; An, N.H.; Shin, J.H. Monitoring for Change of Soil Characteristics by repeated Organic Supply of Comport and Green Manures in Newly reclaimed Organic Upland Field. Korea J. Org. Agric. 2015, 23, 813–827. [Google Scholar] [CrossRef]
- Venkat, K. Comparison of Twelve Organic and Conventional Farming Systems: A Life Cycle Greenhouse Gas Emissions Perspective. J. Sustain. Agric. 2012, 36, 620–649. [Google Scholar] [CrossRef]
- Kim, C.G.; Kyun, J.H.; Kim, Y.G. Effects of Organic Farming on Greenhouse Gas Emission Reduction. J. Clim. Chang. Reser. 2016, 7, 335–339. [Google Scholar] [CrossRef]
- Han, M.S.; Nam, H.K.; Kang, K.K.; Kim, M.R.; Na, Y.E.; Kim, H.R.; Kim, M.H. Characteristics of Benthic Invertebrates in Organic and Conventional Paddy Field. Korean J. Environ. Agric. 2013, 32, 17–23. [Google Scholar] [CrossRef]
- Kremen, C.; Miles, A. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S. Assessing Ecosystem Services of Rice–Fish Co-Culture and Rice Monoculture in Thailand. Agronomy 2022, 12, 1241. [Google Scholar] [CrossRef]
- Liu, D.; Tang, R.; Xie, J.; Tian, J.; Shi, R.; Zhang, K. Valuation of ecosystem services of rice-Fish coculture systems in Ruyuan County. China Ecosyst. Serv. 2020, 41, 101054. [Google Scholar] [CrossRef]
- Kim, S.Y.; Choi, J.Y.; Park, C.; Song, W.K.; Kim, S.Y.L. Changes of Ecosystem Services in Agricultural Area According to Urban Development Scenario? For the Namyangju Wangsuk District 1, the 3rd Phase New Town? J. Environ. Impact Assess. 2021, 30, 117–131. [Google Scholar] [CrossRef]
- Son, J.K.; Kong, M.J.; Kang, D.H.; Lee, S.Y.; Han, S.H.; Kang, B.H.; Kim, N.C. A study on selection of butterfly and plant species for butterfly gardening. J. Korean Soc. Rural. Plan. 2015, 21, 1–12. [Google Scholar] [CrossRef]
- Han, Y.S.; Nam, H.S.; Park, K.L.; Lee, Y.M.; Lee, B.M.; Park, K.C. Evaluation of Soil Carbon Storages in the Organic Farming Paddy Fields. J. Korea Org. Res. Recy. Asso. 2020, 28, 73–82. [Google Scholar]
- Kim, H. Issues on Overcoming Present Crises of Organic Agriculture through its Philosophy and Principle. Korean J. Org. Agric. 2017, 25, 53–69. [Google Scholar]
- Lee, Y.S.; Han, H.G.; Lim, S.G.; Kim, K.S.; Cheong, C.J. Physico-Chemical Characteristics in the Sedimnets in Loach Farms. J. Korean Soc. Envir. Technol. 2013, 14, 315–323. Available online: https://kiss16.kstudy.com/kiss61/download_viewer.asp (accessed on 15 September 2021).
- Lee, T.B. Coloured Flora of Korea; Hyangmunsa: Seoul, Korea, 2006. [Google Scholar]
- Baek, M.K.; Hwang, J.M.; Jeong, G.S.; Kim, T.W.; Kim, M.C.; Lee, Y.J.; Jo, Y.B.; Park, S.W.; Lee, H.S.; Goo, D.S.; et al. Checklist of Korean Insects; Nature Publishing & Ecology Academic: Seoul, Korea, 2010. [Google Scholar]
- Margalef, R. Information theory in Ecology. Gen. Syst. 1958, 3, 36–71. Available online: https://scholar.google.com/scholar_lookup?title=Information%20theory%20in%20ecology&author=R.%20Margalef&journal=YearB%20Soc%20Gen%20Syst%20Res&volume=3&pages=36-71&publication_year=1958 (accessed on 15 September 2021).
- Mcnaughton, S.J. Relationships among Functional Properties of Californian Grassland. Nature 1967, 216, 144–168. Available online: https://www.nature.com/articles/216168b0 (accessed on 15 September 2021). [CrossRef]
- Pielou, E.C. Shannon’s Formula as a Measure of Specific Diversity: Its Use and Misuse. Amer. Nat. 1969, 100, 463–465. Available online: https://www.journals.uchicago.edu/doi/abs/10.1086/282439 (accessed on 15 September 2021). [CrossRef]
- Pielou, E.C. Ecological Diversity; John Wiley & Son: New York, NY, USA, 1975; Available online: https://www.abebooks.com/first-edition/ECOLOGICAL-DIVERSITY-Pielou-E-C-John/12152548852/bd (accessed on 15 September 2021).
- Zar, J.H. Biostatistical Analysis, 3rd ed.; Prentice-Hall International Editions: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
- Korea Forest Research Institute. Analysis Methods of Soil and Plant. 2014. Available online: https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjyjMGd65PzAhUZyosBHfUtA_UQFnoECAoQAQ&url=http%3A%2F%2Fknow.nifos.go.kr%2Fbook%2FMo.file%3Fcid%3D162927%26rid%3D5&usg=AOvVaw0AG9TQk_uJbyKhdTLL1qpZ (accessed on 15 September 2021).
- Han, S.H.; Son, J.K.; Choi, Y.J.; Yoon, Y.S. A study on the types classification and analysis of experience activities in rural tourism village. J. Agric. Ext. Commun. Dev. 2015, 22, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, Y.; Nakamura, K.; Masumoto, T.; Matsui, H.; Kato, T.; Sato, Y. Prospectsfor multifunctionality of paddy rice cultivation in Japan and other countries inmonsoon Asia. Paddy Water Environ. 2006, 4, 197. [Google Scholar] [CrossRef]
- Yoon, C.G. Wise use of paddy fields to partially compensate for the loss of natural wetlands. Paddy Water Environ. 2009, 7, 366. [Google Scholar] [CrossRef]
- Organization for Economic Co-Operation and Development. Multifuctionality towards an Analytical Framework. 2001. Available online: https://www.oecd-ilibrary.org/docserver/9789264192171-sum-en.pdf?expires=1627970124&id=id&accname=guest&checksum=A1AD894AC6784ACE5C38A7DD05A776E1 (accessed on 15 September 2021).
- Natuhara, Y. Ecosystem Services by Paddy Fields as Substitutes of Natural Wetlands in Japan. Ecol. Eng. 2013, 56, 97–106. Available online: https://www.sciencedirect.com/science/article/pii/S092585741200153X (accessed on 15 September 2021). [CrossRef]
- Hazell, D.; Hero, J.; Lindenmayer, D.; Cunningham, R. A comparison of constructed and natural habitat for frog conservation in an Australian agricultural landscape. Biol. Conserv. 2004, 119, 61–71. [Google Scholar] [CrossRef]
- Williams, P.; Whitfield, M.; Biggs, J.; Bray, S.; Fox, G.; Nicolet, P.; Sear, D. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 2004, 115, 329–341. [Google Scholar] [CrossRef]
- Davies, B.R.; Biggs, J.; Williams, P.; Whitfield, M.; Nicolet, P.; Sear, D.; Bray, S.; Maund, S. Comparative biodiversity of aquatichabitats in the European agricultural landscape. Agric. Ecosyst. Environ. 2008, 125, 1–8. [Google Scholar] [CrossRef]
- Sebastián-González, E.; Sánchez-Zapata, J.A.; Botella, F. Agricultural ponds as alternative habitat for waterbirds: Spatial and temporal patterns of abundance and management strategies. Eur. J. Wildl. Res. 2010, 56, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Antle, J.M.; Stoorvogel, J.J. Predicting the Supply of Ecosystem Services from Agriculture. Am. J. Agric. Econ. 2006, 88, 1174–1180. Available online: https://www.jstor.org/stable/4123588 (accessed on 15 September 2021). [CrossRef]
- Food and Agriculture Organization. Scoping Agriculture–Etland Interactions. Towards a Sustainable Multiple-Response Strategy; FAO Water Reports; FAO, Food and Agriculture Organization of the United Nations: Washington, DC, USA, 2008; Volume 33, Available online: http://www.fao.org/3/i0314e/i0314e.pdf (accessed on 15 September 2021).
- Porter, J.; Costanza, R.; Sandhu, H.; Sigsgaard, L.; Wratten, S. The value of producing food, energy, and ecosystem services within an agro-ecosystem. AMBIO J. Hum. Environ. 2009, 38, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Ribaudo, M.; Greene, C.; Hansen, L.; Hellerstein, D. Ecosystem services from agriculture: Steps for expanding markets. Ecol. Econ. 2010, 69, 2085–2092. [Google Scholar] [CrossRef]
- Raymond, L.R.; Hardy, L.M. Effects of a clearcut on a population of the mole salamander, Ambystoma talpoideum, in an adjacent unaltered forest. J. Herpetol. 1991, 25, 509–512. [Google Scholar] [CrossRef]
- Marc, M.J. Amphibian Activity, Movement Patterns, and Body Size in Fragmented Peat Bogs. J. Herpetol. 2001, 35, 13–20. Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 15 September 2021).
- Pitta, P.; Karakassis, I.; Tsapakis, M.; Zivanovic, S. Natural versus Mariculture Induced Variability in Nutrients and Plankton in the Eastern Mediterranean. Hydrobiologia 1999, 391, 194. Available online: https://www.researchgate.net/publication/285829414_Natural_vs_mariculture_induced_variability_in_nutrients_and_plankton_in_the_eastern_Mediterranean (accessed on 15 September 2021).
- Karakassis, I.; Tsapakis, M.; Hatziyanni, E.; Pitta, P. Diel variation of Nutrients and Chlorophyll in Sea Bream and Sea Bass Cages in the Mediterranean. Fresenius Environ. Bull. 2001, 10, 283. Available online: https://www.researchgate.net/publication/222092760_Diel_variation_of_nutrients_and_chlorophyll_in_sea_bream_and_sea_bass_cages_in_the_Mediterranean (accessed on 15 September 2021).
- Vilà, M.; Pino, J.; Font, X. Regional assessment of plant invasions across different habitat types. J. Veg. Sci. 2007, 18, 35–42. [Google Scholar] [CrossRef]
- Valladares, F.; Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 237–257. [Google Scholar] [CrossRef] [Green Version]
- Milbau, A.; Stout, J.C.; Graae, B.J.; Nijs, I. A hierarchical framework for integrating invasibility experiments incorporating different factors and spatial scales. Biol. Invas. 2009, 11, 941–950. [Google Scholar] [CrossRef]
- Hayashi, K.; Nishimiya, H. Restoring Rice Paddy Field Habitats to Reintroduce the Oriental White Stork in Toyooka City. TEEB: Worldwide. 2012. Available online: http://www.cbd.int/financial/pes/japan-pesstork.pdf (accessed on 15 September 2021).
- Sawauchi, D.; Yamamoto, Y. Assessment of carbon dioxide emissions from biodiversity-conscious farming: A case of stork-friendly farming in Japan. Low Carbon Econ. 2015, 6, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, W.; Itsukushima, R. Attempt to Develop High-Value rice In the Shimojin District, Mashiki Town, Kumamoto Prefecture: Transition Into Sustainable Local Community Using Disaster Recovery from the 2016 Kumamoto Earthquakes as a Branding Strategy. In Decision Science for Future Earth; Springer: Singapore, 2021; pp. 233–251. Available online: https://link.springer.com/chapter/10.1007/978-981-15-8632-3_12 (accessed on 15 September 2021).
- Hyski, M.; Chudy-Hyski, D. Regional Tourism Brand—Need or Necessity in the Aspect of Socio-Economic Development of Polish Mountain Rural Areas. SIE 2018, 6, 200–211. Available online: http://journals.ru.lv/index.php/SIE/article/viewFile/3235/3248 (accessed on 15 September 2021). [CrossRef]
- Ciodyk, T. Agroturystyka w Polsce—Znaczenie, Szanse i Bariery Rozwoju. Bez Granic 2000, 6, 6–8. Available online: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-7bcf0397-6f36-4482-a380-f208f6e73aa2 (accessed on 15 September 2021).
- Chudy-Hyski, D. Uwarunkowania Turystycznego Kierunku Rozwoju Gorskich Obszarow Wiejskich Polski. Infrastrukt. I Ekol. Teren. Wiejskich. Ser. Monogr. 2009, 1, 9–311. Available online: http://www.infraeco.pl/pl/art/a_15399.htm?plik=525 (accessed on 15 September 2021).
- Kim, B.-J.; Kripalani, R.H.; Oh, J.-H.; Moon, S.-E. Summer monsoon rainfall patterns over South Korea and associated circulation features. Theor. Appl. Climatol. 2002, 72, 65–74. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kwon, M.; Yun, K.S.; Min, S.K.; Park, I.H.; Ham, Y.G.; Jin, E.K.; Kim, J.; Seo, K.; Kim, W.; et al. The long-term variability of Changma in the east Asian summer monsoon system: A review and revisit. Asia Pac. J. Atmos. Sci. 2017, 53, 257–272. [Google Scholar] [CrossRef]
- Matsushima, S.; Tanaka, T.; Hoshino, T. Analysis of yield-determining process and its application to yield-prediction and culture improvement of lowland rice: LXX. Combined effects of air-temperatures and water-temperatures at different stages of growth on the grain yield and its components of lowland rice. Jpn. J. Crop. Sci. 1964, 33, 53–58, (In Japanese with English Summary). [Google Scholar]
- Shimono, H.; Hasegawa, T.; Iwama, K. Response of growth and grain yield in paddy rice to cool water at different growth stages. Field Crops Res. 2002, 73, 67–79. [Google Scholar] [CrossRef]
- Shimono, H.; Hasegawa, T.; Fujimura, S.; Iwama, K. Responses of leaf photosynthesis and plant water status in rice to low water temperature at different growth stages. Field Crops Res. 2004, 89, 71–83. [Google Scholar] [CrossRef]
- Jung, W.K.; Lim, S.K.; Kim, M.S. Changes of Agricultural Land Use after Flooding Analyzed by Landsat-TM Data. Korean J. Int. Agric. 1999, 11, 155–160. Available online: http://db.koreascholar.com/article.aspx?code=286120 (accessed on 15 September 2021).
- Lee, D.Y.; Kim, U.; Yoo, C.S. Climate change impacts on meteorological drought and flood. J. Korea Water Resour. Assoc. 2004, 37, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.H.; Yoon, C.G.; Ham, J.H.; Jung, K.W. Model Development for Nutrient Loading Estimates from Paddy Rice Fields in Korea. J. Environ. Sci. Health B 2004, 39, 845–860. Available online: https://pubmed.ncbi.nlm.nih.gov/15620091/ (accessed on 15 September 2021). [CrossRef]
- Ministry of the Interior and Safety. Children’s Play Facility Safety Management Manual; Ministry of the Interior and Safety: Sejong, Korea, 2018; Available online: https://www.mois.go.kr/synap/skin/doc.html?fn=BBS_201812170248321760&rs=/synapFile/202109/&synapUrl=%2Fsynap%2Fskin%2Fdoc.html%3Ffn%3DBBS_201812170248321760%26rs%3D%2FsynapFile%2F202109%2F&synapMessage=%EC%A0%95%EC%83%81 (accessed on 15 September 2021).
- Manceau, A.; Tommaseo, C.; Rihs, S.; Geoffroy, N.; Chateigner, D.; Schlegel, M.; Tisserand, D.; Marcus, M.A.; Tamura, N.; Chen, Z.S. Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption, and diffraction. Geochim. Cosmochim. Acta 2005, 69, 4007–4034. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, M.; Kang, B.; Son, J. The development of evaluation indicator for eco-experience in rural village. J. Agric. Extension Commun. Dev. 2014, 21, 1125–1147. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.J.; Sohn, S.I.; Kim, C.S.; Kim, B.Y.; Kang, B.H. Phytosociological Classification of vegetation in paddy levee, Korean. J. Environ. Agric. 2008, 27, 413–420. [Google Scholar]
- Kang, B.H.; Son, J.K. The study on the evaluation of environment function at small stream. In the case of Hongdong Stream in Hongsung gun. J. Korean Soc. Environ. Eng. 2011, 14, 81–101. [Google Scholar] [CrossRef]
- Caton, B.P.; Foin, T.C.; Hill, J.E. A plant growth model for integrated weed management in direct-seeded rice: II. Field Crops Res. 1999, 62, 145–155. [Google Scholar] [CrossRef]
- Cheong, S.W.; Sung, H.C.; Park, D.S.; Park, S.R. Population Viability Analysis of a Gold-Spotted Pond Frog (Rana chosenica) Population: Implications for Effective Conservation and Re-Introduction. Korean J. Environ. Biol. 2009, 27, 73–81. Available online: http://www.koreascience.kr/article/JAKO200920258463369.page (accessed on 15 September 2021).
- Park, S.H.; Cho, K.H. Comparison of health status of Japanese tree frog (Hyla japonica) in a rural and an urban area, ecology and resilient infrastructure. Ecol. Resil. Infrastruct. 2017, 4, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Park, S.G.; Ra, N.Y.; Jang, Y.S.; Woo, S.H.; Koo, K.S.; Jang, M.H. Comparison of movement distance and home range size of gold-spotted pond frog (Pelophylax chosenicus) between rice paddy and ecological park—focus on the planning alternative habitat, ecology and resilient. Infrastructure 2019, 6, 200–207. [Google Scholar]
- Sakurai, T.O. River Restoration and Habitat Conservation; Shinzansya Publishing Co, Ltd.: Tokyo, Japan, 2003; pp. 23–55. [Google Scholar]
- Lambdon, P.W.; Pyšek, P.; Basnou, C.; Arianoutsou, M.; Essl, F.; Hejda, M.; Jarošík, V.; Pergl, J.; Winter, M.; Anastasiu, P.; et al. Alien Flora of Europe: Species Diversity, Temporal Trends, Geographical Patterns and Research Needs. Preslia 2008, 80, 149. Available online: http://www.preslia.cz/P082Lam.pdf (accessed on 15 September 2021).
- Yoon, S.M. Taxonomic Study of the Genus Cercyon (Coleoptera, Hydrophilidae) in Korea. Master’s Thesis, Hannam National University, Daejeon, Korea, 2008. Available online: http://dl.nanet.go.kr/law/SearchDetailView.do?cn=KDMT1200853467 (accessed on 26 September 2021).
- Botham, M.S.; Rothery, P.; Hulme, P.E.; Hill, M.O.; Preston, C.D.; Roy, D.B. Do urban areas act as foci for the spread of alien plant species? An assessment of temporal trends in the UK. Divers. Distrib. 2009, 15, 338–345. [Google Scholar] [CrossRef]
- Han, M.S.; Bang, H.S.; Kim, M.H.; Kang, K.K.; Jung, M.P.; Lee, D.B. Distribution characteristics of water scavenger beetles (Hydrophilidae) in Korean paddy field. Korean J. Environ. Agric. 2010, 29, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Han, M.S.; Kim, M.H.; Bang, H.S.; Na, Y.E.; Lee, D.B.; Kang, K.K. Geographical distribution of diving beetles (Dytiscidae) in Korean paddy ecosystem, Korean. J. Environ. Agric. 2011, 30, 209–215. [Google Scholar]
- Cho, K.T.; Kim, H.W.; Kim, H.R.; Jeong, H.M.; Lee, K.M.; Kang, T.G.; You, Y.H. Landscape ecological characteristics of habitat of Nannophya pygmaea Rambur (Libellulidae, Odonata), an endangered species for conservation. J. Wet Res. 2012, 14, 667–674. [Google Scholar]
- Jung, J.W.; Bae, Y.H.; Lee, H.N.; Kim, S.J.; Kim, H.S. A study on the benefit estimation by artificial wetland construction. J. Wet Res. 2020, 22, 39–48. [Google Scholar]
- Pu, D.Q.; Shi, M.; Wu, Q.; Gao, M.Q.; Liu, J.F.; Ren, S.P.; Yang, F.; Tang, P.; Ye, G.Y.; Shen, Z.C.; et al. Flower-visiting insects and their potential impact on transgene flow in rice. J. Appl. Ecol. 2014, 51, 1357–1365. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.G.; Hong, S.S.; Kim, J.Y.; Park, K.Y.; Lim, J.W.; Lee, J.H. Occurrence of stink bugs and pecky rice damage by stink bugs in paddy fields in Gyeonggi-do, Korea. Korean J. Appl. Entomol. 2009, 48, 37–44. [Google Scholar] [CrossRef]
- Son, J.K.; Kong, M.J.; Kang, D.H.; Kang, B.H.; Yun, S.W.; Lee, S.Y. The comparative studies on the terrestrial insect diversity in protected horticulture complex and paddy wetland. J. Wet Res. 2016, 18, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Boscutti, F.; Sigura, M.; De Simone, S.; Marini, L. Exotic plant invasion in agricultural landscapes: A matter of dispersal mode and disturbance intensity. Appl. Veg. Sci. 2018, 21, 250–257. [Google Scholar] [CrossRef]
- Kim, N.H.; Choi, S.W.; Lee, J.S.; Lee, J.H.; Ahn, K.J. Spatiotemporal changes of beetles and moths by habitat types in agricultural landscapes, Korean. Korean J. Environ. Biol. 2018, 36, 180–189. [Google Scholar] [CrossRef]
- Hur, B.K.; Rim, S.K.; Kim, Y.H.; Lee, K.Y. Physico-Chemical Properties on the Management Groups of Paddy Soils in Korea. Korean J. Soil Sci. Fert. 1997, 30, 62–66. Available online: https://www.koreascience.or.kr/article/JAKO199719262658018.page (accessed on 15 September 2021).
- Kang, S.S.; Roh, A.S.; Choi, S.C.; Kim, Y.S.; Kim, H.J.; Choi, M.-T.; Ahn, B.K.; Kim, H.W.; Kim, H.K.; Park, J.H.; et al. Status and changes in chemical properties of paddy soil in Korea. Korean J. Soil Sci. Fert. 2012, 45, 968–972. [Google Scholar] [CrossRef] [Green Version]
- Korean Soil Information System. Available online: http://soil.rda.go.kr/soil/sibi/sibiPrescript.jsp (accessed on 24 July 2022).
- Shiratori, Y.; Watanabe, H.; Furukawa, Y.; Tsuruta, H.; Inubushi, K. Effectiveness of a subsurface drainage system in poorly drained paddy fields on reduction of methane emissions. Soil Sci. Plant. Nutr. 2007, 53, 387–400. [Google Scholar] [CrossRef]
- Xie, J.; Wu, X.; Tang, J.J.; Zhang, J.E.; Chen, X. Chemical Fertilizer Reduction and Soil Fertility Maintenance in Ricefish-Coculture System. Front. Agric. China 2010, 4, 422–429. [Google Scholar] [CrossRef]
- Xie, J.; Hu, L.; Tang, J.; Wu, X.; Li, N.; Yuan, Y.; Yang, H.; Zhang, J.; Luo, S.; Chen, X. Ecological mechanisms underlying the sustainability of the agricultural heritage rice? fish coculture system. Proc. Natl Acad. Sci. USA 2011, 108, E1381–E1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanaba, H.; Miyahara, M. Seed Dormancy of Some Lowland Weeds of Scirpus Buried in Paddy Soil. In Proceedings of the 12th Asian-Pacific Weed Science Society Conference, Taipei, Tawan, 29 November–5 December 1989; pp. 309–315. Available online: https://www.cabdirect.org/cabdirect/abstract/19922316782 (accessed on 15 September 2021).
- Wei, H.; Bai, W.; Zhang, J.; Chen, R.; Xiang, H.; Quan, G. Integrated rice-duck farming decreases soil seed bank and weed density in a paddy field. Agronomy 2019, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Keddy, P.A.; Reznicek, A.A. Great Lakes vegetation dynamics: The role of fluctuating water levels and buried seeds. J. Gr Lakes Res. 1986, 12, 25–36. [Google Scholar] [CrossRef]
- Van Der Valk, A.G.; Pedersen, R.L. Seed Banks and the Management and Restoration of Natural Vegetation. In Ecology of Soil Seed Banks; Leck, M.A., Parker, V.T., Simpson, R.L., Eds.; Academic Press: San Diego, CA, USA, 1989; pp. 329–346. Available online: https://eurekamag.com/research/033/322/033322489.php (accessed on 15 September 2021).
- Tsuyuzaki, S. Survival characteristics of buried seeds 10 years after the eruption of the usu volcano in northern Japan. Can. J. Bot. 1991, 69, 2256. [Google Scholar] [CrossRef]
- Doherty, K.D.; Butterfield, B.J.; Wood, T.E. Matching seed to site by climate similarity: Techniques to prioritize plant materials development and use in restoration. Ecol. Appl. 2017, 27, 1010–1023. [Google Scholar] [CrossRef]
- Kim, N.C.; Kim, H.Y.; Choi, M.Y. The Study on the Utilization of Soil Seed Bank for the Restoration of Original Vegetation. J. Korean Env. Res. Technol. 2015, 18, 201–2014. [Google Scholar]
- Whittle, C.A.; Duchesne, L.C.; Needham, T. The importance of buried seeds and vegetative propagation in the development of postfire plant communities. Environ. Rev. 1997, 5, 79–87. [Google Scholar] [CrossRef]
- Shimono, H.; Hasegawa, T.; Moriyama, M.; Fujimura, S.; Nagata, T. Modeling spikelet sterility induced by low temperature in rice. Agron. J. 2005, 97, 1524–1536. [Google Scholar] [CrossRef]
- Usui, Y.; Sakai, H.; Tokida, T.; Nakamura, H.; Nakagawa, H.; Hasegawa, T. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming. Glob. Change Biol. 2016, 22, 1256–1270. [Google Scholar] [CrossRef]
- Li, D.; Nanseki, T.; Chomei, Y.; Yokota, S. Production efficiency and effect of water management on rice yield in Japan: Two-stage DEA model on 110 paddy fields of a large-scale farm. Paddy Water Environ. 2018, 16, 643–654. [Google Scholar] [CrossRef]
- Sharifi, H.; Hijmans, R.J.; Hill, J.E.; Linquist, B.A. Water and Air Temperature Impacts on Rice (Oryza Sativa) Phenology. Paddy Water Environ. 2018, 16, 467–476. Available online: https://link.springer.com/article/10.1007%2Fs10333-018-0640-4 (accessed on 15 September 2021). [CrossRef]
- Nishida, K.; Yoshida, S.; Shiozawa, S. Theoretical analysis of the effects of irrigation rate and paddy water depth on water and leaf temperatures in a paddy field continuously irrigated with running water. Agric. Water Manag. 2018, 198, 10–18. [Google Scholar] [CrossRef]
- Nishida, K.; Uo, T.; Yoshida, S.; Tsukaguchi, T. Effect of water depth, amount of irrigation water, and irrigation timing on water temperature in paddy field during continuous irrigation with cool running-water. Trans. Jpn. Soc. Irrig. Drain. Rural. Eng. 2015, 300, 185–194, (In Japanese with English Abstract). [Google Scholar]
- Nishida, K.; Ninomiya, Y.; Uo, T.; Yoshida, S.; Shiozawa, S. Relationship between irrigation conditions and distribution of paddy water temperature under continuous irrigation with running water. Trans. Jpn. Soc. Irrig. Drain. Rural. Eng. 2016, 303, 391–401, (In Japanese with English Abstract). [Google Scholar]
- Nishida, K.; Uo, T.; Yoshida, S.; Tsukaguchi, T. Reduction of water temperature in paddy field and leaf temperature by continuous irrigation with running water during nighttime, water Land. Environ. Eng. 2013, 81, 297–300. (In Japanese) [Google Scholar]
- Ahmed, N.; Bunting, S.W.; Rahman, S.; Garforth, C.J. Community-based climate change adaptation strategies for integrated prawn-fish-rice farming in Bangladesh to promote social-ecological resilience. Rev. Aquacult. 2014, 6, 20–35. [Google Scholar] [CrossRef]
- Shamshuddin, J.; Panhwar, Q.; Shazana, M.; Elisa, A.; Fauziah, C.; Naher, U. Improving the Productivity of Acid Sulfate Soils for Rice Cultivation Using Limestone, Basalt, Organic Fertilizer and/or Their Combinations. Sains Malays. 2016, 45, 392. Available online: http://www.ukm.my/jsm/pdf_files/SM-PDF-45-3-2016/08%20J.%20Shamshudin.pdf (accessed on 15 September 2021).
- Mishra, A.; Mohanty, R.K. Productivity enhancement through rice-fish farming using a two-stage rainwater conservation technique. Agric. Water Manag. 2004, 67, 119–131. [Google Scholar] [CrossRef]
- Hill, J.E.; Roberts, S.R.; Brandon, D.M.; Scardaci, S.C.; William, J.F.; Wick, C.M.; Canevari, W.M.; Weir, B.L. Rice Production in California. In Cooperative Extension; University of California, Division of Agricultural and Natural Resources: Los Angeles, CA, USA, 1992; p. 12. Available online: http://hdl.handle.net/2027/coo.31924063112290 (accessed on 15 September 2021).
- Rothuis, A.J.; Vromant, N.; Xuan, V.T.; Richter, C.J.J.; Ollevier, F. The effect of rice seeding rate on rice and fish production, and weed abundance in direct-seeded rice-fish culture. Aquaculture 1999, 172, 255–274. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics? The Link between Genotypes and Phenotypes. Plant Mol. Biol. 2002, 48, 155–171. Available online: https://link.springer.com/article/10.1023/A:1013713905833 (accessed on 15 September 2021). [CrossRef]
- Cho, H.J.; Heo, K.; Umemoto, T.; Wang, M.H. Physiological Properties of two Japonica Rice (Oryza sativa L.) cultivars: Odae and Ilpum. J. Appl. Biol. Chem. 2007, 50, 127–131. Available online: https://www.koreascience.or.kr/article/JAKO200706717340149.page1ff8 (accessed on 15 September 2021).
- Kang, Y.; Lee, B.M.; Lee, E.M.; Kim, C.H.; Seo, J.A.; Choi, H.K.; Kim, Y.S.; Lee, D.Y. Unique metabolic profiles of Korean rice according to polishing degree, variety, and geo-environmental factors. Foods 2021, 10, 711. [Google Scholar] [CrossRef]
- Ku, B.I.; Kang, S.K.; Sang, W.G.; Lee, M.H.; Park, H.K.; Kim, Y.D.; Lee, J.H. Study of Rice Double Cropping Feasibility in Korea to Cope with Climate Change. Theses J. Agric. Life Sci. 2014, 45, 39–46. Available online: https://kiss.kstudy.com/thesis/thesis-view.asp?key=3281103 (accessed on 15 September 2021).
- Nam, J.K.; Ko, J.K.; Kim, K.Y.; Kim, B.K.; Kim, W.J.; Ha, K.Y.; Shin, M.S.; Ko, J.C.; Kang, H.J.; Park, H.S.; et al. A new early-maturing rice with Blast, bacterial blight, rice stripe virus resistant and high grain quality, ‘Jopyeong’. Korean J. Breed Sci. 2013, 45, 177–182. [Google Scholar] [CrossRef]
- Kim, S.Y.; Seo, J.H.; Bae, H.K.; Hwang, C.D.; Ko, J.M. Rice cultivars adaptable for rice based cropping systems in a paddy field in the Yeongnam plain area of Korea. Korean J. Agric. Sci. 2018b, 45, 355–363. [Google Scholar]
- Fernando, C.H.; Paggi, J.C. Cosmopolitanism and latitudinal distribution of freshwater zooplanktonic Rotifera and Crustacea, SIL. Int. Ver. Für Theor. Und Angew. Limnol. Verh. 1998, 26, 1916–1917. [Google Scholar]
- Jin, G.Y.; Yan, S.D.; Udatsu, T.; Lan, Y.F.; Wang, C.Y.; Tong, P.H. Neolithic Rice Paddy from the Zhaojiazhuang Site, Shandong, China. Chin. Sci. Bull. 2007, 52, 3376–3384. Available online: https://link.springer.com/article/10.1007%2Fs11434-007-0449-9 (accessed on 15 September 2021). [CrossRef]
- Crawford, G.W. East Asian plant domestication. In Archaeology of Asia; Stark, M.T., Ed.; Blackwell Publishing: Oxford, UK, 2006; pp. 77–95. [Google Scholar] [CrossRef]
- Fuller, D.Q.; Castillo, C. Diversification and Cultural Construction of a Crop: The case of Glutinous Rice and Waxy Cereals in the Food Cultures of Eastern Asia. In The Oxford Handbook of the Archaeology of Food and Diet; Lee-Thorp, J., Ed.; Oxford University Press: Oxford, UK, 2016; Available online: https://discovery.ucl.ac.uk/id/eprint/1489806/1/FullerCastillo_Glutinous%20rice.pdf (accessed on 15 September 2021).
- Fukami, H.; Higa, Y.; Hisano, T.; Asano, K.; Hirata, T.; Nishibe, S. A review of red yeast rice, a traditional fermented food in Japan and East Asia: Its characteristic ingredients and application in the maintenance and improvement of health in lipid metabolism and the circulatory system. Molecules 2021, 26, 1619. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.S.; Byeon, Y.W.; Park, K.C.; Park, K.L.; Lee, Y.M.; Han, E.J.; Kim, C.H.; Kong, M.J.; Son, J.K. Economic value evaluation of ecosystem services in organic ricefish mixed farming system in paddy Wetland. J. Wet. Res. 2020, 22, 286–294. [Google Scholar]
- Ahmed, N.; Garnett, S.T. Integrated rice-fish farming in Bangladesh: Meeting the challenges of food security. Food Sec. 2011, 3, 81–92. [Google Scholar] [CrossRef]
- Kim, Y.J.; Han, H.S.; Park, Y.G.; The Plan for Activation of Insect Industry. Korea Rural Economic Institute. 2015. Available online: https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=TRKO201600001475&dbt=TRKO&rn (accessed on 15 September 2021).
- Frei, M.; Becker, K. Integrated rice-fish culture: Coupled production saves resources. Nat. Resour. Forum 2005, 29, 135–143. [Google Scholar] [CrossRef]
- Chen, J.S. Travel Motivation of Heritage Tourists. Tour. Anal. 1998, 2, 213–215. Available online: https://www.ingentaconnect.com/content/cog/ta/1998/00000002/F0020003/art00006#Refs (accessed on 15 September 2021).
- Alderson, W.T.; Low, S.P. Interpretation of Historic Sites; American Association for State and Local History: Nashville, TN, USA, 1976; Available online: https://www.abebooks.com/servlet/BookDetailsPL?bi=30255552310&searchurl=an%3Dwilliam%2Balderson%2Bshirley%2Bpayne%2Blow%26sortby%3D17%26tn%3Dinterpretation%2Bhistoric%2Bsites&cm_sp=snippet-_-srp1-_-title1 (accessed on 15 September 2021).
- Beckmann, E.A. Evaluating visitors’ reactions to interpretation in Australian national parks. J. Interpret. Res. 1999, 4, 5–19. [Google Scholar] [CrossRef]
- Poria, Y.; Biran, A.; Reichel, A. Visitors’ preferences for interpretation at heritage sites. J. Travel Res. 2009, 48, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Tilden, F. Interpreting Our Heritage; University of North Carolina Press: Chapel Hill, NC, USA, 2009; Available online: https://uncpress.org/book/9780807858677/interpreting-our-heritage/ (accessed on 15 September 2021).
- Stone, D.; Hanna, J. Health and Nature: The Sustainable Option for Healthy Cities, August 2003. Available online: https://www.researchgate.net/publication/253758814_Health_and_Nature_the_sustainable_option_for_healthy_cities (accessed on 15 September 2021).
- Bahriny, F.; Bell, S. Patterns of urban Park use and their relationship to factors of quality: A case study of Tehran, Iran. Sustainability 2020, 12, 1560. [Google Scholar] [CrossRef] [Green Version]
- Corbould, C. Feeding the Cities: Is Urban Agriculture the Future of Food Security. Future Directions International; Pty Ltd.: WA, Austria, 2013; pp. 1–7. Available online: https://www.futuredirections.org.au/wp-content/uploads/2013/11/Urban_Agriculture-_Feeding_the_Cities_1Nov.pdf (accessed on 15 September 2021).
- Palmer, L. Urban agriculture growth in US cities. Nat. Sustain. 2018, 1, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Multilateral Environmental Agreement. Ecosystems and Human Wellbeing: Multiscale Assessment. In Millennium Ecosystem Assessment; Google Books; Island Press: Washington, DC, USA, 2005; p. 4. Available online: https://islandpress.org/books/ecosystems-and-human-well-being-multiscale-assessments (accessed on 15 September 2021).
- National Research Institute of Agricultural Economics. The Result of Evaluation of Public Benefit Accompanying Agriculture and Rural Area by a Replacement Cost Method. J. Agric. Econ. 1998, 52, 113–138. Available online: https://www.maff.go.jp/primaff/kanko/nosoken/attach/pdf/199810_nsk52_4_04.pdf (accessed on 15 September 2021). (In Japanese).
Category Classification (n = 56) | Respondence | ||
---|---|---|---|
Number | % | ||
Work Fields | University Professor | 19 | 33.9 |
Institute Researcher | 18 | 32.1 | |
Business Officer | 13 | 23.2 | |
Public Official | 4 | 7.1 | |
Graduate Student | 2 | 3.6 | |
Education Degree | Doctor | 43 | 76.8 |
Doctoral Course | 3 | 5.4 | |
Master’s Degree | 6 | 10.7 | |
University Student | 4 | 7.1 | |
Major Fields | Environmental | 20 | 35.7 |
Biological | 16 | 28.6 | |
Engineering | 14 | 25.0 | |
Agricultural | 6 | 10.7 |
Function | Mean 1 |
---|---|
Amphibian and reptile habitat | 2.39 ± 0.69 F |
Aquatic insect habitat | 2.36 ± 0.66 F |
Fishery habitat | 2.34 ± 0.78 F |
Experience and education | 2.29 ± 0.64 F |
Vegetation diversity | 2.13 ± 0.78 F |
Avian habitat | 2.05 ± 0.94 E,F |
Groundwater recharge | 1.71 ± 1.12 D,E |
Water storage | 1.68 ± 1.13 D,E |
Maintenance of genetic diversity | 1.66 ± 1.22 D,E |
Biological control | 1.59 ± 1.07 D |
Water purification | 1.46 ± 1.28 C,D |
Mammalian habitat | 1.39 ± 1.00 B,C,D |
Creating landscape | 1.32 ± 0.98 B,C,D |
Climate regulation | 1.09 ± 1.01 A,B,C |
Rest area | 1.02 ± 1.13 A,B |
Air quality regulation | 0.98 ± 0.98 A,B |
Flood control | 0.89 ± 1.20 A |
Classification | RFMFA | RFMFB | RFMFC | CP | Significance | |
---|---|---|---|---|---|---|
F-Value | Post Hoc | |||||
Vegetation | ||||||
Total taxa | 75 | 85 | 91 | 59 | - | - |
Average | 35.6 ± 8.9 | 34.8 ± 6.3 | 34.6 ± 9.8 | 23.8 ± 5.3 | 2.602 | N.S |
Insect | ||||||
Species | 27.6 ± 11.3 | 34.4 ± 14.2 | 19.8 ± 5.4 | 19.4 ± 11.7 | 2.054 | N.S |
Individual | 57.0 ± 17.8 | 83.8 ± 26.8 | 68.4 ± 45.1 | 61.4 ± 43.7 | 0.554 | N.S |
H’ | 4.41 ± 0.66 | 4.61 ± 0.80 | 3.70 ± 0.50 | 3.40 ± 0.86 | 3.189 | N.S |
J’ | 0.94 ± 0.01 | 0.92 ± 0.05 | 0.87 ± 0.10 | 0.85 ± 0.05 | 2.410 | N.S |
RI | 6.54 ± 2.48 | 7.51 ± 2.85 | 4.64 ± 0.84 | 4.41 ± 2.28 | 2.230 | N.S |
DI | 0.21 ± 0.06 | 0.22 ± 0.12 | 0.34 ± 0.14 | 0.44 ± 0.15 | 4.185 * | CP > C > A, B |
Aquatic invertebrates | ||||||
Species | 19.4 ± 3.1 | 19.4 ± 3.9 | 20.6 ± 4.7 | 4.2 ± 5.8 | 14.882 *** | C, B, A > CP |
Individual | 61.8 ± 16.7 | 87.8 ± 13.1 | 95.6 ± 39.7 | 16.2 ± 22.4 | 10.146 ** | C, B, A > CP |
H’ | 3.85 ± 0.22 | 3.61 ± 0.81 | 3.83 ± 0.36 | 1.11 ± 1.52 | 11.253 *** | A, C, B > CP |
J’ | 0.90 ± 0.01 | 0.84 ± 0.14 | 0.88 ± 0.03 | 0.33 ± 0.45 | 6.683 ** | A, C, B > CP |
RI | 4.47 ± 0.54 | 4.22 ± 0.95 | 4.32 ± 0.70 | 1.02 ± 1.42 | 14.814 *** | A, C, B > CP |
DI | 0.31 ± 0.04 | 0.39 ± 0.18 | 0.34 ± 0.06 | 0.21 ± 0.29 | 0.883 | N.S |
pH (1:5) | EC (ds/m) | OM (g/kg) | Av.P2O5 (mg/kg) | Ex.(cmolc/kg) | Av.SiO2 (mg/kg) | ||
---|---|---|---|---|---|---|---|
K | Ca | Mg | |||||
6.6 | 0.4 | 19.0 | 178.0 | 0.1 | 6.3 | 1.7 | 307.0 |
Type | Plant (cm) | Culm Length (cm) | Panicle | Yield (kg/10a) | |
---|---|---|---|---|---|
(cm) | (No./m2) | ||||
Site 1 | 99.1 | 78.5 | 20.6 | 321 | 826 |
Site 2 | 95.2 | 73.9 | 21.3 | 287 | 698 |
Average | 97.2 | 76.2 | 21.0 | 304.0 | 762.0 |
Type | Experiential Contents (Han et al., 2015 [58]) |
---|---|
Rice farming | Making a seedbed and growing a rice nursery; rice planting; weeding; observation of paddy (bank and inside); organic farming education; rice harvesting and threshing; and rope-making, straw-thatching, and sandal-making using rice straw |
Fish farming | Freshwater fish introduction, feeding, size measurement, fishing and harvesting, and cooking |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.; Kong, M.; Nam, H. Design Model and Management Plan of a Rice–Fish Mixed Farming Paddy for Urban Agriculture and Ecological Education. Land 2022, 11, 1218. https://doi.org/10.3390/land11081218
Son J, Kong M, Nam H. Design Model and Management Plan of a Rice–Fish Mixed Farming Paddy for Urban Agriculture and Ecological Education. Land. 2022; 11(8):1218. https://doi.org/10.3390/land11081218
Chicago/Turabian StyleSon, Jinkwan, Minjae Kong, and Hongshik Nam. 2022. "Design Model and Management Plan of a Rice–Fish Mixed Farming Paddy for Urban Agriculture and Ecological Education" Land 11, no. 8: 1218. https://doi.org/10.3390/land11081218
APA StyleSon, J., Kong, M., & Nam, H. (2022). Design Model and Management Plan of a Rice–Fish Mixed Farming Paddy for Urban Agriculture and Ecological Education. Land, 11(8), 1218. https://doi.org/10.3390/land11081218