Assessment of Soil Fertility Status under Soil Degradation Rate Using Geomatics in West Nile Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
3. Results
3.1. Variation of Soils Physical Properties
3.2. Variation of Chemical Properties in Soil Groups
3.3. Criteria for Assessing the Fertility of Soils
3.4. Spatial Distribution of Fertility of El-Beheira Soils
3.5. Quantitative Assessment of Land Degradation
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alfiky, A.; Kaule, G.; Salheen, M. Agricultural Fragmentation of the Nile Delta; A Modeling Approach to Measuring Agricultural Land Deterioration in Egyptian Nile Delta. Proced. Environ. Sci. 2012, 14, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, Y.; Thomas, I.; Salem, A.; Wang, Y.; Alassal, S.E.; Jiang, F.; Sun, Q.; Chen, J.; Finlayson, B.; et al. Herding then farming in the Nile Delta. Commun. Earth Environ. 2022, 3, 88. [Google Scholar] [CrossRef]
- Fishar, M.R. Nile Delta (Egypt). In The Wetland Book: II: Distribution, Description, and Conservation; Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 1251–1260. [Google Scholar]
- AbdelRahman, M.A.E.; Natarajan, A.; Srinivasamurty, C.A.; Hegde, R. Estimating soil fertility status in physically degraded land using GIS and remote sensing techniques in Chamarajanagar district, Karnataka, India. Egypt. J. Remote Sens. Space Sci. 2016, 19, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Schoonover, J.E.; Crim, J.F. An Introduction to Soil Concepts and the Role of Soils in Watershed Management. J. Contemp. Water Res. Educ. 2015, 154, 21–47. [Google Scholar] [CrossRef]
- Ogura, T.; Date, Y.; Masukujane, M.; Coetzee, T.; Akashi, A.; Kikuchi, J. Improvement of physical, chemical and biological properties of aridisol from Botswana by the incorporation of torrefied biomass. Sci. Rep. 2016, 6, 28011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onwuka, B.; Mang, B. Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res. 2018, 8, 34–37. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The Ability of Conservation Agriculture to Conserve Soil Organic Carbon and the Subsequent Impact on Soil Physical, Chemical, and Biological Properties and Yield. Front. Sustain. Food Syst. 2020, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Abuzaid, A.S.; El-Husseiny, A.M. Modeling crop suitability under micro irrigation using a hybrid AHP-GIS approach. Arab J. Geosci. 2022, 15, 1217. [Google Scholar] [CrossRef]
- Ghanem, H.G.; El-Gabry, Y.A.; Okasha, E.M.; Ganzour, S.K. Improving Some Irrigation Efficiencies, Soil Fertility, Yield and Quality of Wheat under Deficit Irrigation by Integrated N-Fertilization. Egypt. J. Chem. 2021, 64, 2201–2212. [Google Scholar]
- Aboelsoud, H.M.; AbdelRahman, M.A.E.; Kheir, A.M.S.; Eid, M.S.M.; Ammar, K.A.; Khalifa, T.H.; Scopa, A. Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management. Land 2022, 11, 1041. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Afifi, A.A.; D’Antonio, P.; Gabr, S.S.; Scopa, A. Detecting and Mapping Salt-Affected Soil with Arid Integrated Indices in Feature Space using Multi-Temporal Landsat Imagery. Remote Sens. 2022, 14, 2599. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Afifi, A.A.; Scopa, A. A Time Series Investigation to Assess Climate Change and Anthropogenic Impacts on Quantitative Land Degradation in the North Delta, Egypt. ISPRS Int. J. Geo-Inf. 2022, 11, 30. [Google Scholar] [CrossRef]
- Gaafar, A.A.; Morsy, I.M.; Yehia, H.M. Geospatial Analysis of Soil Characteristics and Sensitivity to Desertification of Some Alluvial Deposits, El Behira Governorate, Egypt. Alex. Sci. Exch. J. 2017, 38, 137–148. [Google Scholar] [CrossRef]
- Memarbashi, E.; Azadi, H.; Barati, A.A.; Mohajeri, F.; Passel, S.V.; Witlox, F. Land-use suitability in Northeast Iran: Application of AHP-GIS hybrid model. ISPRS Int. J. Geo-Inf. 2017, 6, 396. [Google Scholar] [CrossRef] [Green Version]
- Naz, A.; Rasheed, H. Modeling the rice land suitability using GIS and multi-criteria decision analysis approach in Sindh, Pakistan. J. Basic Appl. Sci. 2017, 13, 26–33. [Google Scholar] [CrossRef]
- Erener, A.; Mutlu, A.; Düzgün, H.S. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng. Geol. 2016, 203, 45–55. [Google Scholar] [CrossRef]
- Ayoade, M.A. Suitability assessment and mapping of Oyo State, Nigeria, for rice cultivation using GIS. Theor. Appl. Climatol. 2017, 129, 1341–1354. [Google Scholar] [CrossRef]
- Mokarram, M.; Hojati, M. Using ordered weight averaging (OWA) aggregation for multi-criteria soil fertility evaluation by GIS (case study: Southeast Iran). Comput. Electron. Agric. 2017, 132, 1–13. [Google Scholar] [CrossRef]
- Maleknia, R.; Khezri, E.; Zeinivand, H.; Badehian, Z. Mapping Natural Resources Vulnerability to Droughts Using Multi-Criteria Decision Making and GIS (Case Study: Kashkan Basin Lorestan Province, Iran). J. Range. Sci. 2017, 7, 376–386. [Google Scholar]
- Guarini, M.R.; Battisti, F.; Chiovitti, A. A Methodology for the Selection of Multi-Criteria Decision Analysis Methods in Real Estate and Land Management Processes. Sustainability 2018, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- FAO-ISRIC. Guiding Principles for the Quantitative Assessment of Soil Degradation with a Focus on Salinization, Nutrient Decline and Soil Pollution; FAO: Rome, Italy, 2004. [Google Scholar]
- Khalil, A.A.; Essa, Y.H.; Hassanein, M.K. Monitoring Agricultural Land Degradation in Egypt Using MODIS NDVI Satellite Images. Nat. Sci. 2014, 12, 15–21. [Google Scholar]
- Egyptian Geological Survey and Mining Authority. Geologic Map of Egypt: Egyptian General Authority for Petroleum (UNESCO Joint Map Project), 20 Sheets, Scale 1:50,000; Egyptian Geological Survey and Mining Authority: Cairo, Egypt, 1987. [Google Scholar]
- Ministry of Development of Egypt. New communities and Land Reclamation. In Land Master Plan of Egypt; Ministry of Development of Egypt: Giza, Egypt, 1986. [Google Scholar]
- ASRT. A Provisional Methodology for Digital Land Resource Data Base for Agricultural Use. (2000–2005); Final Report; Academy of Scientific Research and Technology (ASRT): Cairo, Egypt, 2005. [Google Scholar]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Fresenius, Zeitschrift f. anal. Chemie 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic and available forms of phosphorus in soil. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Shuman, L.M.; Duncan, R.R. Soil exchangeable cations and aluminum measured by ammonium chloride, potassium chloride, and ammonium acetate. Commun. Soil Sci. Plant Anal. 2008, 21, 1217–1228. [Google Scholar] [CrossRef]
- Ross, D.; Ketterings, Q. Recommended methods for determining soil cation exchange capacity. In Recommended Soil Testing Procedures for the Northeastern United States, 3rd ed.; Sims, T., Wolf, A., Eds.; The Northeast Coordinating Committee for Soil Testing (NECC-1312) Agricultural Experiment Stations of Connecticut: New Haven, CT, USA, 2011; pp. 75–86. [Google Scholar]
- Blake, G.R. Bulk Density, Soils Analysis; America Society of Agronomy and Crop Science Society of America: Madison, WI, USA, 1982. [Google Scholar] [CrossRef]
- Day, P.R. Particle fractionation and particle size analysis. In Methods of Soil Analysis Part I. Agronomy n 9; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Boverwijk, A. Particle size analysis of soils by means of the hydrometer method. Sedim. Geol. 1967, 1, 403–406. [Google Scholar] [CrossRef]
- Forestier, J. Fertilité des sols des caféières en RCA. Agron. Trop. 1960, 15, 543–567. [Google Scholar]
- Dabin, B. Les facteurs de fertilité des sols des régions tropicales en culture irriguée. Bul. Assoc. Française D’etude Sol. 1961, 108–130. [Google Scholar]
- Martin, D. Fertilité chimique des sols d’une ferme du Congo. Cah. ORSTOM. Sér. Pédol. 1979, 17, 47–64. [Google Scholar]
- Pieri, C.J.M.G. Fertility of Soils: A Future for Farming in the West African Savannah; Springer: Berlin/Heidelberg, Germany, 1992; pp. 1–348. [Google Scholar]
- Remy, J.C.; Marin-Laflèche, A. L’analyse de terre: Réalisation d’un programme d’interprétation automatique. Ann. Agron. 1974, 25, 607–632. [Google Scholar]
- Saaty, T.L. Decision making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.S.; Goss, M.J. Physical aspects of soil fertility-The response of roots to mechanical impedance. Neth. J. Agric. Sci. 1974, 22, 305–318. [Google Scholar] [CrossRef]
- Walsh, E.; McDonnell, K.P. The influence of added organic matter on soil physical, chemical, and biological properties: A small-scale and short-time experiment using straw. Arch. Agron. Soil Sci. 2012, 58, 201–205. [Google Scholar] [CrossRef]
- Piaszczyk, W.; Lasota, J.; Błońska, E. Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil. Forests 2020, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Borah, K.K.; Bhuyan, B.; Sarma, H.P. Lead, arsenic, fluoride, and iron contamination of drinking water in the tea garden belt of Darrang district, Assam, India. Environ. Monit. Assess. 2010, 169, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Nguemezi, C.; Tematio, P.; Yemefack, M.; Tsozue, D.; Silatsa, T.B.F. Soil quality and soil fertility status in major soil groups at the Tombel area, South-West Cameroon. Heliyon 2020, 6, e03432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedolla-Rivera, H.I.; Xochilt Negrete-Rodríguez, M.d.l.L.; Medina-Herrera, M.d.R.; Gámez-Vázquez, F.P.; Álvarez-Bernal, D.; Samaniego-Hernández, M.; Gámez-Vázquez, A.J.; Conde-Barajas, E. Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators. Sustainability 2020, 12, 9754. [Google Scholar] [CrossRef]
- Chapman, H.D. Cation-Exchange Capacity. In Agronomy Monographs; Norman, A.G., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 2016; pp. 891–901. [Google Scholar] [CrossRef]
- Kong, X.; Li, D.; Song, X.; Zhang, G. Quantitative Estimation of the Changes in Soil CEC after the Removal of Organic Matter and Iron Oxides. Agric. Sci. 2021, 12, 1244–1254. [Google Scholar] [CrossRef]
- Minhal, F.; Ma’as, A.; Hanudin, E.; Sudira, P. Improvement of the chemical properties and buffering capacity of coastal sandy soil as affected by clays and organic by-product application. Soil Water Res. 2020, 15, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Loveland, P.; Webb, J. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Tillage Res. 2003, 70, 1–18. [Google Scholar] [CrossRef]
- Rawat, J.; Saxena, J.; Sanwai, P. Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties. In Biochar: An Imperative Amendment for Soil and the Environment; Abrol, V., Sharma, P., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Kome, G.K.; Enang, R.K.; Tabi, F.O.; Yerima, B.P.K. Influence of Clay Minerals on Some Soil Fertility Attributes: A Review. Open J. Soil Sci. 2019, 9, 155–188. [Google Scholar] [CrossRef] [Green Version]
- Smolander, A.; Henttonen, H.M.; Nöjd, P.; Soronen, P.; Mäkinen, H. Long-term response of soil and stem wood properties to repeated nitrogen fertilization in a N-limited Scots pine stand. Eur. J. For. Res. 2022, 141, 421–431. [Google Scholar] [CrossRef]
- Ballot, C.S.A.; Mawussi, G.; Atakpama, W.; Moita-Nassy, M.; Yangakola, T.M.; Zinga, I.; Silla, S.; Kperkouma, W.; Dercon, G.; Komlan, B.; et al. Caractérisation physico- chimique des sols en vue de l’amélioration de la productivité du manioc (Manihot esculenta Crantz) dans la région de Damara au centre-sud de Centrafrique. Agron. Afr. 2016, 28, 9–23. [Google Scholar]
- Troeh, F.R.; Thompson, L.M. Soils and Soil Fertility, 6th ed.; Blackwell: Ames, IA, USA, 2005; p. 489. [Google Scholar]
- Dreschel, P.; Reck, B. Composted shrubprunings and other organic manures for smallholder farming systems in southern Rwanda. Agrofor. Syst. 1997, 39, 1–12. [Google Scholar] [CrossRef]
- Pypers, P.; Sanginga, J.-M.; Kasereka, B.; Walangululu, M.; Vanlauwe, B. Increased productivity through integrated soil fertility management in cassava–legume intercropping systems in the highlands of Sud-Kivu, DR Congo. Field Crops Res. 2011, 120, 76–85. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Taalab, A.S.; Ageeb, G.W.; Siam, H.S.; Mahmoud, S.A. Some Characteristics of Calcareous soils. A review. Middle East J. Agric. Res. 2019, 8, 96–105. [Google Scholar]
- Chatterjee, D.; Datta, S.C.; Manjaiah, K.M. Fractions, uptake and fixation capacity of phosphorus and potassium in three contrasting soil orders. J. Soil Sci. Plant Nutr. 2014, 14, 640–656. [Google Scholar] [CrossRef]
- Quemada, M.; Cabrera, M.L. CERES-N model predictions of nitrogen mineralised from cover crop residues. Soil Sci. Soc. Am. Div. S-3—Soil Biol. Biochem. 1995, 59, 1059–1065. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Chuang, T.-J.; Yang, P.-T.; Guo, L.-Y.; Wang, S.-L. Adsorption and desorption of Thallium(I) in soils: The predominant contribution by clay minerals. Appl. Clay Sci. 2021, 205, 106063. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Scherer, H.W. Fixation and defixation of ammonium in soils: A review. Biol. Fertil. Soils 2011, 47, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Radočaj, D.; Jurišić, M.; Zebec, V.; Plaščak, I. Delineation of Soil Texture Suitability Zones for Soybean Cultivation: A Case Study in Continental Croatia. Agronomy 2020, 10, 823. [Google Scholar] [CrossRef]
- Epule, T.E.; Chehbouni, A.; Dhiba, D.; Etongo, D.; Driouech, F.; Brouziyne, Y.; Peng, C. Vulnerability of maize, millet, and rice yields to growing season precipitation and socio-economic proxies in Cameroon. PLoS ONE 2021, 16, e0252335. [Google Scholar] [CrossRef] [PubMed]
- Almendro-Candel, M.B.; Lucas, I.G.; Navarro-Pedreño, J.; Zorpas, A.A. Physical Properties of Soils Affected by the Use of Agricultural Waste. In Agricultural Waste and Residues; Aladjadjiyan, A., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Dou, F.; Soriano, J.; Tabien, R.E.; Chen, K. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes. PLoS ONE 2016, 11, e0150549. [Google Scholar] [CrossRef]
- Sonneveld, M.P.W.; Hack-ten Broeke, M.J.D.; van Diepen, C.A.; Boogaard, H.L. Thirty years of systematic land evaluation in the Netherlands. Geoderma 2010, 156, 84–92. [Google Scholar] [CrossRef]
- Hussain, S.; Shaukat, M.; Ashraf, M.; Zhu, C.; Jin, Q.; Zhang, J. Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops, in Climate Change and Agriculture; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/68075 (accessed on 1 June 2022).
- El-Hadidi, E.M.; El-Dissoky, R.A.; AbdElhafez, A.A.H. Foliar Calcium and Magnesium Application Effect on Potato Crop Grown in Clay Loam Soils. J. Soil Sci. Agric. Eng. Mansoura Univ. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Cole, J.C.; Smith, M.W.; Penn, C.J.; Cheary, B.S.; Conaghan, K.J. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci. Hortic. 2016, 211, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Koulibaly, B.; Traoré, O.; Dakuo, D.; Lalsaga, R.; Lompo, F.; Zombre, N.P. Acidification des sols ferrugineux et ferrallitique dans les systèmes de production cotonnière au Burkina Faso. Int. J. Biol. Chem. Sci. 2014, 8, 2879–2890. [Google Scholar] [CrossRef]
- Jakobsen, S.T. Nutritional Disorders between Potassium, Magnesium, Calcium, and Phosphorus in Soil. In Plant and Soil; JSTOR: New York, NY, USA, 1993; Volume 154, pp. 21–28. Available online: http://www.jstor.org/stable/42938994 (accessed on 20 July 2022).
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Gentili, R.; Ambrosini, R.; Montagnani, C.; Caronni, S.; Citterio, S. Effect of Soil pH on the Growth, Reproductive Investment and Pollen Allergenicity of Ambrosia artemisiifolia L. Front. Plant. Sci. 2018, 9, 1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AbdelRahman, M.A.E.; Engel, B.; Eid, M.S.M.; Aboelsoud, H.M. A new index to assess soil sustainability based on Temporal Changes of Soil Measurements Using Geomatics–An example from El-Sharkia, Egypt. All Earth 2022, 34, 147–166. [Google Scholar] [CrossRef]
- El-Dars, F.M.S.E.; Salem, W.A.; Fahim, M.M. Soil spatial variability in arable land south of Lake Idku, North- West Nile Delta, Egypt. Environ. Sci. Indian J. 2014, 9, 325–344. [Google Scholar]
- Kotb, T.H.S.; Watanabe, T.; Ogino, Y.; Tanji, K.K. Soil salinization in the Nile Delta and related policy issues in Egypt. Agric. Water Manag. 2000, 43, 239–261. [Google Scholar] [CrossRef]
- Bashour, I.I.; Sayegh, A.H. Methods of Analysis for Soils of Arid and Semi-Arid Regions; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2007; Volume 128. [Google Scholar]
- Elewa, H.H.; El Nahry, A.H. Hydro-environmental status and soil management of the River Nile Delta, Egypt. Environ. Geol. 2009, 57, 759–774. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Kandiah, A.; Mashali, A.M. The Use of Saline Waters for Crop Production, FAO Irrigation and Drainage Paper 48; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1992. [Google Scholar]
- Abdel-Hamid, M.A.; Shrestha, D.P. Soil Salinity Mapping in the Nile Delta, Egypt Using Remote Sensing Techniques. Int. Soc. Photogramm. Remote Sens. 1992, 29, 783–787. [Google Scholar]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Shehata, A.A.; Hamdy, M.A.; El Badry, D.D. Gypsum application and leaching of saline alkali soils in El-Beheira Governorate. Egypt. J. Soil Sci. 1983, 23, 63–73. [Google Scholar]
- Abdelaty, E.F.; Aboukila, E.F. Detection of Soil Salinity for Bare and Cultivated Lands Using Landsat ETM+ Imagery Data: A Case Study from El-Beheira Governorate, Egypt. Alex. Sci. Exch. J. 2017, 38, 642–653. [Google Scholar]
- Ali, R.R.; Moghanm, F.S. Variation of soil properties over the landforms around Idku lake, Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Hamed, Y. Soil structure and salinity effects of fish farming as compared to traditional farming in north- eastern Egypt. Land Use Policy 2008, 25, 301–308. [Google Scholar] [CrossRef]
- Sayed, A.S.A. Evaluation of the Land Resources for Agricultural Development—Case Study: El- Hammam Canal and Its Extension, NW Coast of Egypt. Ph.D. Thesis, Department of Geosciences, University of Hamburg, Hamburg, Germany, 2013. [Google Scholar]
- Shakweer, L. Impacts of Drainage Water Discharge on the Water Chemistry of Lake Edku. Egypt. J. Aquat. Res. 2006, 32, 264–282. [Google Scholar]
- Ismail, M.; Yacoub, R.K. Digital soil map using the capability of new technology in Sugar Beet area, Nubariya, Egypt. Egypt. J. Remote Sens. Space Sci. 2012, 15, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.R.; El Baroudy, A.A. Use of GIS in Mapping the Environmental Sensitivity to Desertification in Wadi El Natrun Depression, Egypt. Aust. J. Basic Appl. Sci. 2008, 2, 157–164. [Google Scholar]
- Abdel-Hamid, M.A.; Ismail, M.; Nasr, Y.A.; Kotb, Y. Assessment of Soils of Wadi El-Natrun Area, Egypt Using Remote Sensing and GIS Techniques. J. Am. Sci. 2010, 10, 195–206. [Google Scholar]
- Ali, R.R. Digital Soil Mapping for Optimum Land Uses in some Newly Reclaimed Areas West of the Nile Delta, Egypt. Aust. J. Basic Appl. Sci. 2008, 2, 165–173. [Google Scholar]
- Afifi, A.A.; Darwish, K.M. Detection and impact of land encroachment in El-Beheira governorate, Egypt. Model. Earth Syst. Environ. 2018, 4, 517–526. [Google Scholar] [CrossRef]
- Aziz, A.M.; Shahin, S.A.; Essa, E.F.; Abd El-Hady, M. Sustainability of the Soils for Orchards Land Use of Al-Nagah Area, Beheira, Egypt. Plant Arch. 2019, 19, 738–744. [Google Scholar]
- Stefanidis, S.; Alexandridis, V.; Ghosal, K. Assessment of Water-Induced Soil Erosion as a Threat to Natura 2000 Protected Areas in Crete Island, Greece. Sustainability 2022, 14, 2738. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Panagos, P. Soil biodiversity and soil erosion: It is time to get married: Adding an earthworm factor to soil erosion modelling. Glob. Ecol. Biogeogr. 2018, 27, 1155–1167. [Google Scholar] [CrossRef]
- Stefanidis, S.; Chatzichristaki, C.; Stefanidis, P. An ArcGIS toolbox for estimation and mapping soil erosion. J. Environ. Prot. Ecol. 2021, 22, 689–696. Available online: https://scibulcom.net/en/article/RudumPyvp1Dc9aCFph69 (accessed on 1 June 2022).
- Naghibi, S.A.; Hashemi, H.; Pradhan, B. APG: A novel python-based ArcGIS toolbox to generate absence-datasets for geospatial studies. Geosci. Front. 2021, 12, 101232. [Google Scholar] [CrossRef]
- Roux, C.; Alber, A.; Bertrand, M.; Vaudor, L.; Piégay, H. FluvialCorridor: A new ArcGIS toolbox package for multiscale riverscape exploration. Geomorphology 2015, 242, 29–37. [Google Scholar] [CrossRef]
Clay | EC | ESP | OM | CaCO3 | Weightage | |
---|---|---|---|---|---|---|
Clay | 1 | 3 | 3 | 5 | 5 | 0.43 |
EC | 0.33 | 1 | 3 | 4 | 4 | 0.26 |
ESP | 0.33 | 0.33 | 1 | 3 | 3 | 0.15 |
OM | 0.2 | 0.25 | 0.33 | 1 | 4 | 0.10 |
CaCO3 | 0.20 | 0.25 | 0.33 | 0.25 | 1 | 0.05 |
Year 1985 | Depth | Clay | CaCO3 | OM | EC | ESP | CEC | AN | AP | AK | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
Count | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Min | 90 | 40 | 0.8 | 0.3 | 1.8 | 11.2 | 7.2 | 38.9 | 1.4 | 65.8 | 7.6 |
Max | 130 | 52.3 | 12.81 | 1.9 | 42 | 20.5 | 46.2 | 87.35 | 5.9 | 92.3 | 8.37 |
Mean | 105.6 | 45.1 | 4.3 | 1.2 | 18.9 | 14.4 | 28.2 | 58.7 | 3.1 | 79.4 | 8.1 |
Median | 100 | 45.2 | 3.7 | 1.5 | 7.5 | 14.6 | 32.8 | 59.7 | 2.4 | 76.2 | 8.1 |
Stdev | 13.4 | 3.5 | 3.1 | 0.6 | 17.2 | 2.3 | 13.2 | 17.2 | 1.3 | 9.0 | 0.2 |
Variance | 179.1 | 12.4 | 9.6 | 0.4 | 297.3 | 5.5 | 174.0 | 296.1 | 1.8 | 80.9 | 0.1 |
Skewness | 0.6 | 0.5 | 1.3 | −0.6 | 0.3 | 0.9 | −0.5 | 0.3 | 0.8 | 0.1 | −0.7 |
Kurtosis | −0.8 | −0.2 | 2.0 | −1.3 | −2.0 | 1.3 | −1.3 | −1.5 | −0.5 | −1.6 | −0.3 |
Coefficient of variation | 0.13 | 0.08 | 0.72 | 0.48 | 0.91 | 0.16 | 0.47 | 0.29 | 0.43 | 0.11 | 0.03 |
Year (2002) | Depth | Clay | CaCO3 | OM | EC | ESP | CEC | AN | AP | AK | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
count | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 |
Min | 90 | 39.3 | 0.8 | 0.3 | 1.2 | 8.5 | 30.1 | 38.9 | 1.2 | 54.5 | 7.7 |
Max | 150 | 62.4 | 5.9 | 2.3 | 4.6 | 15.4 | 53.6 | 91.0 | 8.6 | 112.3 | 8.4 |
Mean | 119.4 | 48.1 | 3.0 | 1.7 | 2.5 | 12.6 | 40.3 | 68.8 | 3.8 | 89.2 | 8.0 |
Median | 120 | 47.3 | 3.2 | 1.7 | 2.3 | 12.5 | 39.5 | 73.6 | 3.3 | 89.4 | 8.0 |
Stdev | 17.5 | 4.7 | 1.2 | 0.4 | 0.9 | 1.8 | 6.0 | 15.5 | 2.2 | 15.5 | 0.2 |
Variance | 305.5 | 22.4 | 1.5 | 0.2 | 0.9 | 3.2 | 35.4 | 239.8 | 4.6 | 240.6 | 0.0 |
Skewness | 0.1 | 0.7 | 0.2 | −1.2 | 0.6 | −0.3 | 0.3 | −0.6 | 0.9 | −0.5 | 0.9 |
Kurtosis | −1.0 | 1.1 | −0.4 | 2.4 | −0.7 | −0.7 | −0.9 | −1.0 | −0.1 | −0.4 | 0.3 |
Coefficient of variation | 0.15 | 0.10 | 0.41 | 0.25 | 0.38 | 0.14 | 0.15 | 0.22 | 0.57 | 0.17 | 0.02 |
Year (2021) | Depth | Clay | CaCO3 | OM | EC | ESP | CEC | AP | AK | pH |
---|---|---|---|---|---|---|---|---|---|---|
count | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 |
Min | 90 | 3.5 | 1.2 | 0.3 | 0.8 | 8.5 | 30.1 | 1.2 | 54.5 | 6.8 |
Max | 150 | 77.0 | 15.0 | 3.1 | 10.7 | 15.4 | 53.6 | 8.6 | 112.3 | 8.4 |
Mean | 129.3 | 39.3 | 6.4 | 1.0 | 2.9 | 12.6 | 40.3 | 3.8 | 89.2 | 7.7 |
Median | 130 | 43.4 | 5.8 | 0.9 | 2.5 | 12.5 | 39.5 | 3.3 | 89.4 | 7.7 |
Stdev | 17.7 | 20.4 | 3.4 | 0.7 | 1.9 | 1.8 | 6.0 | 2.2 | 15.5 | 0.4 |
Variance | 312.0 | 416.8 | 11.6 | 0.4 | 3.7 | 3.2 | 35.4 | 4.6 | 240.6 | 0.1 |
Skewness | −0.4 | −0.5 | 0.7 | 1.8 | 2.4 | −0.3 | 0.3 | 0.9 | −0.5 | −0.1 |
Kurtosis | −0.7 | −0.8 | −0.3 | 4.1 | 7.5 | −0.7 | −0.9 | −0.1 | −0.4 | 0.0 |
Coefficient of variation | 0.14 | 0.52 | 0.54 | 0.63 | 0.67 | 0.14 | 0.15 | 0.57 | 0.17 | 0.05 |
Characteristic | Level I (No Limitation) | Level II (Moderate Limitation) | Level III (Severe Limitation) | Level IV (Very Severe Limitation) |
---|---|---|---|---|
OM (%) | >2 | 1–2 | 0.5–1 | <0.5 |
N (%) | >0.08 | 0.045–0.080 | 0.030–0.045 | <0.03 |
P (ppm) | >20 | 10–20 | 5–10 | <5 |
K (meq/100 g) | >0.4 | 0.2–0.4 | 0.1–0.2 | <0.1 |
EC(dS m−1) | >4 | 4–8 | 8–15 | <16 |
CEC (%) | >60 | 40–60 | 15–40 | <15 |
CEC(meq/100 g) | >25 | 10–25 | 5–10 | <5 |
pH | >5.5 | 5.1–5.5 | 4.75–5.1 | <4.75 |
BI | ≤1.4 | 1.6–1.4 | 1.8–1.6 | ≥1.8 |
FI | >1.5 | - | - | <1.5 |
SSI | >9 | 7–9 | 5–7 | <5 |
CaCO3 (%) | <10 | 10–20 | 20–40 | >40 |
ESP | <13 | - | - | >13 |
Weighted Value | Area (Hectares) | Area % | |
---|---|---|---|
Year 1985 | 7 | 8427.24 | 1.04 |
8 | 613,254.24 | 75.44 | |
9 | 191,219.31 | 23.52 | |
Year 2002 | 7 | 1157.67 | 0.14 |
8 | 15,566.94 | 1.91 | |
9 | 788,877.72 | 97.04 | |
10 | 7298.46 | 0.90 | |
Year 2021 | 4 | 3144.51 | 0.39 |
5 | 27,734.31 | 3.41 | |
6 | 121,162.14 | 14.90 | |
7 | 143,513.01 | 17.65 | |
8 | 257,577.75 | 31.69 | |
9 | 259,769.07 | 31.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AbdelRahman, M.A.E.; Metwaly, M.M.; Afifi, A.A.; D’Antonio, P.; Scopa, A. Assessment of Soil Fertility Status under Soil Degradation Rate Using Geomatics in West Nile Delta. Land 2022, 11, 1256. https://doi.org/10.3390/land11081256
AbdelRahman MAE, Metwaly MM, Afifi AA, D’Antonio P, Scopa A. Assessment of Soil Fertility Status under Soil Degradation Rate Using Geomatics in West Nile Delta. Land. 2022; 11(8):1256. https://doi.org/10.3390/land11081256
Chicago/Turabian StyleAbdelRahman, Mohamed A. E., Mohamed M. Metwaly, Ahmed A. Afifi, Paola D’Antonio, and Antonio Scopa. 2022. "Assessment of Soil Fertility Status under Soil Degradation Rate Using Geomatics in West Nile Delta" Land 11, no. 8: 1256. https://doi.org/10.3390/land11081256
APA StyleAbdelRahman, M. A. E., Metwaly, M. M., Afifi, A. A., D’Antonio, P., & Scopa, A. (2022). Assessment of Soil Fertility Status under Soil Degradation Rate Using Geomatics in West Nile Delta. Land, 11(8), 1256. https://doi.org/10.3390/land11081256