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Abstract: Global urbanization has brought about a significant transition to rural areas. With the
development of remote sensing technologies, land use/land cover (LULC) datasets allow users to an-
alyze the changes in global rural settlements. However, few studies have examined the performances
of the LULC datasets in mapping rural settlements. Taking China as the study area, this research
selected eight of the latest LULC datasets (ESRI Land Cover, WSF, ESA WorldCover, GHS-BUILT-S2,
GISD30, GISA2.0, GLC30, and GAIA) to compare their accuracy for rural settlement detection. Spatial
stratified sampling was used for collecting and sampling rural settlements. We conducted omission
tests, area comparison, and pixel-based accuracy tests for comparison. The results show that: (1) the
performances of the 10 m resolution datasets are better than those of the 30 m resolution datasets
in almost all scenarios. (2) the mapping of villages in Western China is a challenge for all datasets.
(3) GHS-BUILT-S2 performs the best in almost every scenario, and can allow users to adjust the
threshold value for determining a proper range of rural settlement size; ESRI outperforms any other
dataset in detecting the existence of rural settlements, but it dramatically overestimates the area of
rural settlements. (4) GISD30 is the best among the 30 m resolution datasets, notably in the Pearl
River Delta. Finally, we provide useful suggestions on ideal map selection in various regions and
scenarios.

Keywords: rural settlement mapping; land-cover; accuracy assessment; remote sensing; GHSL

1. Introduction

Global urbanization is one of the most overwhelming trends of the 21st century;
however, 45 percent of the world’s people still live in rural areas and have been affected
by globalization, but have received less attention [1,2]. Facing a significant transition, the
United Nations has put forward goals for sustainable rural development, including an
increasing investment in rural infrastructure and supporting the facilitation of positive
economic, social, and environmental links between urban, peri-urban, and rural areas [3].

A better understanding of the changes in rural settlements can help ensure sustainable
rural development. In the literature, extensive studies have analyzed rural settlements. Most
of them were conducted on a small scale, such as a single town [4,5], county [6–8], or city [9],
which require detailed rural settlement data. Some of these studies visually interpreted
very high resolution (VHR, <10 m) remote sensing images to extract the rural settlement
patches [5,7,8], and some obtained detailed survey data from local authorities [4,6]. The other
studies that performed an analysis on a large scale usually aggregated the statistical data at
a municipal or provincial level [10]. However, visual interpretations and field surveys are
costly and restrict the study scale, and the statistical data from governments lack details
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and limit refined analyses. Hence, datasets with fine details on a large scale are essential
for the study of rural settlements.

With the development of Earth observation satellite technology, land cover information
interpreted from remote sensing images has an increasing capacity to reveal the detailed
characteristics of human settlements. During the first decade of the new century, a batch of
global land use/land cover (LULC) data, such as the Global Rural-Urban Mapping Project
(GRUMP) [11] and MODIS Urban Land Cover 500 m (MOD500) [12,13], were employed
to monitor urban morphology. The data were usually derived from Moderate Resolution
Imaging Spectroradiometer (MODIS) at a 1 km or 500 m resolution [14–16], which allowed
users to recognize large-scale urban areas, but did not allow for the identification of small
rural settlements [17,18]. Since 2013, the resolution of several global LULC datasets has
reached resolutions of 30 m or even 10 m, which enables users to map human settlements
with topological details on a large scale. Thus far, a series of high- or moderate-resolution
(10–100 m) global maps provide different categories of land information, such as human
settlements [19,20], impervious surfaces [21–26], artificial surfaces [27], and built-up ar-
eas [28,29]. Although the classification standards differ, most of these layers cover rural
settlements. However, how accurately do these datasets map the rural settlements? Does
the mapping accuracy vary by region? In what circumstance, and to what extent can we
use them to delineate rural settlements? In the literature, few studies have been dedicated
to answering these questions. Against this background, this study aimed to develop a
framework for evaluating the performance of the latest high-resolution LULC datasets in
mapping rural settlements using China as the study area.

The sections of this study are organized as follows. Section 2 presents existing research
on the widely used LULC datasets and the identification of rural settlements. Section 3
introduces the advantages of choosing China as the study area and provides details on the
eight selected LULC datasets. The evaluation framework is introduced in the Methodology
section. The main results are presented and discussed in Section 5, followed by conclusions
in Section 6.

2. Literature Review

The observation of human settlements, which plays a crucial role in human-related
studies, has become an important research scope in remote sensing studies. With the
development of remote sensing technologies and computational capacities, global hu-
man settlement datasets have been produced, ranging from coarse resolution (>500 m)
to high resolution (10–30 m) in recent years. Table 1 lists the recent human settlement
observation datasets, sorted by resolution and release time. No global datasets covering
human settlements were extracted by VHR remote sensing images, such as World View,
IKONOS, and Quick Birds, because of their high costs in mass data acquisition, storage, and
calculation complexity [19,30,31]. Moderate and coarse datasets, such as MCD12Q1 [16]
and MOD500 [12], were derived from a relatively low-resolution data source (MODIS,
250–1000 m); they have difficulties in detecting small human settlements because the scale
of the scattered built-up area can be 10–20 m, despite regional variation [32]. Although
the mixed pixels still appear in high-resolution images, 10–30 m resolution worldwide
LULC datasets have nowadays proven themselves to be better choices in mapping human
settlements [19,33]. Among them, GISA2.0 was generated from multi-source LULC maps;
the others can be divided into passive optical (Landsat series, Sentinel-2) and active radar
(Sentinel-1, TerraSAR-X, TanDEM-X) products in terms of primary data sources, both of
which face challenges in the mapping of human settlements [19,33]. Spectral confusion and
seasonal changes in ground objects can negatively influence the performance of optical
maps. Due to the similarity of spectral features, misclassifications often occur between
sand (or sandy soil) and concrete surfaces. The same goes for shrubbery and low or old
buildings [34,35]. The influence of seasonal factors is mainly reflected in the soil moisture
assay and ground surface temperature, which is related to the climate and soil type [34].
The influence is even greater on maps such as GHSL and GLC30, which were generated
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from single-date optical scenes [19]. For active radar products, object height is a primary
influential factor [33]. For example, GUF may misclassify forest regions as rural settlements
due to their similar low backscattering signals [36].

In the literature, rural settlements have received far fewer concerns than urban
places [17,18]. Several studies developed methods to map rural settlements [37–39], but
they targeted small-scale regions. Although no rural-specific dataset has been produced on
a global scale, human settlements detected by many global LULC datasets at 10 m or 30 m
resolutions cover rural settlements. However, there is limited research that has focused on
validating these products in their mapping of rural settlements. An exception is Matthias
et al. [36], who validated the accuracy of the GUF in a rural area in Burkina Faso. They
found that the GUF presents a 50.9% correctness in a low building-dense condition, which
performs better than the GHSL Landsat (beta) (14.86% correctness). Another study by
Klotz et al. [18] examined two cities and the nearby rural areas in Central Europe. They
confirmed the ability of the GUF and GHSL (the earlier version of GHS-BUILT-S2) in iden-
tifying small settlement fragments compared with low-resolution LULC data. However,
these studies only evaluated two high-resolution datasets and concentrated on a small area
while neglecting the types of rural settlements and regional variation. It is necessary to
evaluate the performance of the latest LULC datasets in their mapping of different types of
rural settlements on a larger scale.



Land 2022, 11, 1308 4 of 21

Table 1. Overview of the 16 rural-related global LULC datasets.

Abbr. Map Producer Resolution Earliest/Latest
Release Time Time Cover Map Type

Map
Representations
Related to Rural

Settlement

Primary Data
Sources

ESRI Land Cover Sentinel-2 10 m Land
Use/Land Cover ESRI 10 m 2021/2022 2017–2021 Thematic

(10 classes) Built-up area Sentinel-2

WSF World Settlement Footprint
European Space Agency
(ESA) and the German

Aerospace Center (DLR)
10 m 2020/2021 2015; 2019 Binary

(settlement/not settlement) Human settlement Sentinel-1 and
Landsat 8

WorldCover ESA WorldCover European Space Agency
(ESA) 10 m 2021 2020 Thematic

(11 classes) Impervious surface Sentinel-1 and
Sentinel-2

GHS-BUILT-S2 (from
the GHSL

series)

Global Human
Settlement Layer Built-up

Grid
Derived from

Sentinel-2 Global Image

European
Commission-Joint
Research Centre

10 m 2020 2018
Continuous (built-up

probability
values)

Built-up area Sentinel-2

FROM-GLC10
Finer Resolution Observation

and Monitoring of Global
Land Cover

Tsinghua University 10 m; 30 m 2019 2017 Thematic
(10 classes) Impervious surface Sentinel-2

GUF Global Urban Footprint German Remote Sensing
Data Center (DFD) 12 m 2017 2011

Binary
(settlement/not

settlement)
Human settlement TerraSAR-X and

TanDEM-X

GISD30 Global 30 m Impervious
Surface Dynamic Dataset

Aerospace Information
Research Institute, Chinese

Academy of Sciences
30 m 2022 1985–2020 Continuous (built year

values) Impervious surface Landsat 4, 5, 7 and 8

GISA2.0 Global Impervious Surface
Area 2.0 Wuhan University 30 m 2022 1972–2019 Continuous (built year

values) Impervious surface GISA1.0, GAIA,
GAUD, GHSL

GLC30 GlobeLand30 National Geomatics Center
of China 30 m 2014/2021 2000; 2010;

2020
Thematic

(10 classes) Artificial surface
Landsat Series (2000;
2010; 2020) and GF-1
(only 2020 version)

GAUD Global Annual Urban
Dynamics

Global Annual Urban
Dynamics 30 m 2020 1985–2015 Continuous (built year

values) Urban area Landsat Series

GAIA Annual Maps of Global
Artificial Impervious Area Tsinghua University 30 m 2019 1978–2018 Continuous (built year

values) Impervious surface Landsat Series

GMIS Global Man-made
Impervious Surface

NASA Goddard Space
Flight Center and the

Department of
Geographical Sciences at

the University of Maryland

30 m 2017 2010
Continuous
(impervious

surface percentage)
Impervious surface Landsat Series

HBASE Global Human Built-up And
Settlement Extent 30 m 2017 2010

Binary
(HBASE/ROAD/not

HBASE);
Continuous (HBASE

percentage)

Built-up area Landsat Series
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Table 1. Cont.

Abbr. Map Producer Resolution Earliest/Latest
Release Time Time Cover Map Type

Map
Representations
Related to Rural

Settlement

Primary Data
Sources

MGUP MODIS Global Urban Extent
Product Wuhan University 250 m 2021 2001–2018

Binary
(urban area/not

urban area)
Urban area MODIS

MCD12Q1 v6 The MODIS Land Cover
Type Product

Land Processes Distributed
Active Archive Center (LP

DAAC)
500 m 2019/2021 2000–2020 Thematic

(17 classes)
Urban and Built-up

Lands MODIS

MOD500
MODIS 500m
Map of Global
Urban Extent

University of
Wisconsin and

Boston
500 m 2009 2001/2002

Binary
(urban area/not

urban area)
Urban area MODIS
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3. Study Area and Data
3.1. Study Area

We chose China (see Figure 1) as the study area because of its vast territory and
diverse rural settlements [40]. It has different ground and house materials, elevation, and
settlement density that may significantly influence the mapping accuracy. Another reason
we rely on the evidence from China is that we can obtain reliable rural settlement data
for validation. Since 2009, the National Bureau of Statistics of China (NBSC) has annually
published the latest zoning codes and urban-rural division codes, which allowed us to
obtain the names and locations of rural settlements within the whole territory [41].

3.2. Data

The classification criteria proposed by the NBSC in 2008 introduced four types of
rural-related units: city fringe, town fringe, township, and village [42]. City fringe and
town fringe cover both urban and rural settlements; hence, rural settlements in city fringes
and town fringes are more likely to have features that are similar to urban settlements. Both
townships and villages can be regarded as rural settlements; the former are larger and have
more continuous built-up areas than the latter. This study introduced four types of units
because they all cover types of rural settlements. We collected the names of settlements and
their zoning codes from the 2021 data, and we used an online geocoding service to map
the settlement locations. Each point represents the respective seat in government, which
is usually located in the center of the unit. In 2021, the number of registered rural-related
units was 487,524, where 6.06% were city fringes, 11.22% were town fringes, 2.41% were
townships, and 80.31% were villages. Figure 1 describes the spatial distribution of rural
settlements at the prefectural level. It can be observed that most of the rural settlements
were distributed in Eastern and Central China.

Eight of sixteen global LULC maps in Table 1 were selected as target layers for accuracy
tests, including the ESRI Land Cover, WSF, ESA WorldCover, GHS-BUILT-S2, GISD, GISA2.0,
GLC30, and GAIA. Among the exclusions, the GMIS and HBASE only describe the scenes
from 2010, which would be difficult to compare with products that were produced around
2020 [26,43]. The GUF [20] and GROM-GLC10 [44] were the earlier products from the same
research groups of WSF and GAIA, respectively. The GAUD [45], MGUP [46], MCD12Q1
v6 [16], and MOD500 [12] focused on the identification of urban areas, which were beyond our
research’s scope [45]. Figure 1 introduces Google Earth (GE) images to delineate five typical
rural settlements with different functions (village, town fringe, or township) or landforms
(plateau, mountainous, plain, or hill). The settlements identified by the eight maps indicated
that the ability to detect different types of rural settlements varied by the product used.

One type of dataset refers to those at the resolution of 10 m. The ESRI Land Cover
(hereafter called ESRI) was generated from the Sentinel-2 with a deep learning model. The
model handles six bands from the Sentinel-2, including green, blue, red, near-infrared, and
two short-infrared bands; images from multiple dates were integrated to avoid cloud cover
or other adverse effects [28]. The WSF was the first human settlement map to combine
optical (Landsat 8) and radar (Sentinel-1) products at a 10 m resolution. Previous research
indicated that the WSF had a better performance in detecting small villages and depicting
urban boundaries than the GUF (12 m resolution), GHSL (GHS-BUILT 2018 version, 30 m
resolution), and GLC30 (30 m resolution) in Igboland (a region located in south-eastern
Nigeria), Kampala (the largest city of Uganda), and Bangalore (the capital of the Indian
state of Karnataka) [19]. The GHS-BUILT-S2 (hereafter called GHSL) is the latest product
of the GHSL series published in 2020 [47]. Its pixel value represents the proportion of
built-up area, which is a better solution for handling mixed pixels. The other LULC map
is the ESA WorldCover (hereafter called ESA) [22], which was also generated from both
optical (Sentinel-2) and radar (Sentinel-1) products. In summary, the ESRI, GHSL, and ESA
mainly employed deep learning models to extract the characteristics of ground objects; the
WSF focused on texture feature extraction and spectral index construction, and it used the
support vector machine model to classify pixels.
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Figure 1. Study area and rural settlements. (a) Longzhen; (b) Nangou; (c) Fanhuxi; (d) Langsha;
(e) Chongji.
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The other global LULC maps chosen were produced at a 30 m resolution. The GISD30,
GCL30, and GAIA were directly derived from the Landsat Series; GISA2.0 was developed
based on existing impervious surface products, including the GISA1.0 [24], GAIA, GAUD,
and GHSL. Thanks to the long-time coverage of the Landsat Series, GISD30, GISA2.0, and
GAIA can provide a continuous pixel value to represent the built year of each impervious
surface pixel, and the earliest year can date back to 1972. For these continuous pixels, we
converted them to ensure that the data could represent all of the impervious surfaces of
the latest year. For example, in the GISD30, all pixels representing the impervious surface
from 1985 to 2020 were considered as the existing impervious surface in 2020 and were
converted to the same pixel value.

To construct validation sample units (VSU), we utilized the GE images as a reference
layer for a visual interpretation because they have been widely acknowledged as one of
the most important data sources for accuracy assessment [14,48,49]. Because the LULC
maps were produced in varying years, this study only selected the rural settlements that
had not changed significantly in recent years as the samples for accuracy assessment. As
ecological and topographical factors significantly affect the identification accuracy of human
settlements, we performed a spatial stratified sampling (SSS) by considering ecological [34]
and geomorphic [50] effects. We used Shuttle Radar Topography Mission 3 v4.1 (SRTM3
v4.1), a digital elevation model (DEM) with a 90 m resolution released by NASA [51], to
measure the similarities between rural settlements.

4. Methodology
4.1. Method of Sampling

Rural settlements are typical geospatial objects whose spatial autocorrelation is re-
flected in their similar natural, economic, and cultural characteristics among neighboring
units [52]. The significant positive spatial autocorrelation does not satisfy the independence
hypothesis of classical sampling theory. Similar samples that contain overlapping informa-
tion result in the loss of samples used for effective estimation [53,54]. In China, a typical
example is on the North China Plain, where the clusters of villages have similar settlement
scales, architectural styles, and natural environments [55]. To consider the spatial autocor-
relation and heterogeneity of rural settlements in China, we employed spatial stratified
sampling techniques to sample the rural settlements.

The SSS was developed from the classical stratified sampling method. The SSS requires
a minimum variance within layers and a maximum variance between layers, and it also
considers the space continuity of objects within the same layer. The selection of prior
knowledge for the stratification is crucial to benefit the effect of SSS. As the optical sensors
and radar are sensitive to ecological and topographical environments, we obtained the
stratified layer for sampling by integrating an ecological regionalization layer [34] and a
geomorphic zoning layer [50].

The total sample size of the entire study area was calculated by simple random
sampling. When the population is infinite or unknown, the sample size (ss) can be calculated
by giving the confidence level and confidence interval:

ss =
Z2 p(1 − p)

c2 , (1)

where Z is the Z value (e.g., 1.96 means a 95% confidence level), p is the percentage of
picking a choice (which is often set to 0.5 by default), and c is the confidence interval (e.g.,
0.04 = ±4). When the population is known and finite, the sample size can be modified
using:

new ss =
ss

1 + ss−1
pop

, (2)

where new ss is the modified sample size and pop is the number of the population.
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Next, we distributed the total samples to each stratification region according to the
weights. As elevation is another influencing factor [39], we created a 1 km buffer around
each rural settlement and calculated the elevation range within the buffer, whereby the
similarity of samples within a stratification region could be measured. Meanwhile, to
reduce redundant information among sample points in each stratification region, we used
Neiman allocation [56] to determine the sample size of each region, which is determined
by:

nh = n × NhSh

∑ NhSh
, (3)

where nh is the sample size of the hth region, n is the total sample size, Nh is the number of
rural settlements within the hth region, and Sh is the standard deviation of the elevation
range in the hth region.

4.2. Establishment of Validation Sample Units

The location of each sampling point provided by the NBSC was examined with the GE
images to ensure that it was located in a rural settlement. VSUs were then constructed after
the validation procedure. Figure 2 shows an example of a VSU. Two tiers of validation grids
were placed over each rural settlement, and were centered on the location of the sampling
point. One tier contained 500 m × 500 m grids, which fit the common coarse-resolution
products, such as the MOD500 or MCD12Q1. The size was large enough to roughly cover
the rural settlement patches because the average patch size of a rural settlement in China
is 16.27 hectares [55]. The grids were used to examine whether LULC maps omitted the
entire rural settlement. The grids in another tier were created at a resolution of 30 m and
grouped into a 16 × 16 square for one rural settlement to fill an approximately 500 m
× 500 m grid. When pixel-based analyses were performed in these 30 m × 30 m grids,
10 m resolution datasets were resampled to 30 m resolution maps to match the grid size.
Following previous studies’ methodology on the accuracy assessment of mapping urban
settlements [17,18], a grid containing more than 50% of the built-up area in the GE images
was considered rural. In addition, the inner country roads (the roads covered by rural
settlement pixels in Figure 2) were treated as rural settlements to ensure morphological
integrity. Meanwhile, historical images of each site were used to ensure that there had
been no significant changes over the past five years, which would make LULC maps from
different years comparable.
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In addition to rural settlement types (city fringe, town fringe, township, and village),
we applied four regions [57] (Northeastern, Eastern, Central, and Western China) and five
urban agglomerations (Beijing–Tianjin–Hebei, Yangtze River Delta, Middle Yangtze, Pearl
River Delta, and Chengdu–Chongqing) [58] in China (see Figure 1) to further explore the
regional variation in the identification accuracy of these products.

4.3. Accuracy Assessment Indicators

Overall accuracy assessments, including omission and area tests, were applied to the
eight maps. A rural settlement was identified as omitted when the map had no settlement
pixel within the 500 m × 500 m grid of the corresponding VSU. For the area tests, we
calculated the area of pixels in each VSU.

Pixel-based accuracy assessments were performed by following the pixel-based error
matrix in Table 2.

Table 2. Conceptualization of the pixel-based error matrix.

Map Under Test

Presence Absence

Reference map Presence True Positive
(TP)

False Negative
(FN)

Absence False Positive
(FP)

Ture Negative
(TN)

Following Foody’s recommendations [59], we employed overall accuracy (OA,
Equation (4)), producer’s accuracy (PA, Equation (5)), user’s accuracy (UA, Equation (6)),
and F-score (F, Equation (7)) equations:

OA =
TP + TN

TP + TN + FP + FN
, (4)

PA =
TP

TP + FN
, (5)

UA =
TP

TP + FP
, (6)

F =
2TP

2TP + FP + FN
, (7)

Among them, OA represents the total proportion of correctly classified pixels. PA and
UA are also referred to in data science as “recall” and “precision”, respectively. The former
emphasizes whether all rural settlement pixels can be found, and the latter considers the
probability that all rural settlement pixels in the region are correctly classified. In general,
PA and UA are negatively correlated. The F-score can be regarded as a balanced value of PA
and UA, representing the comprehensive accuracy of the map under the test. Note that the
famous Cohen’s kappa coefficient was not adopted in our study because it is quite sensitive
to multi-categories. In the case of rural settlement identification, we were not concerned
about other types of land. The number of rural settlement pixels varied significantly among
VSUs, reducing the comparability of kappa coefficients.

5. Results
5.1. Sampling

The whole study area was divided into 12 stratification regions using the SSS method.
Following Equation (2), setting 95% as the confidence level and 2% as the confidence
interval, the sample size was calculated to be 2376, with a population size of 487,524. The
stratification regions and sample rural settlements are shown in Figure 3.
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Figure 3. Stratification regions and sample rural settlements.

5.2. Accuracy Assessment
5.2.1. Omission Test

Table 3 shows the results of the omission test. As the GHSL has a continuous value
to represent the percentage of built-up area in a pixel, we tested the accuracy of the map
in increments of 10%. We finally selected 10% as the threshold value because it had a
minimum value in the omission rate. Additionally, we believed that a lower threshold
value might help detect scattered small rural settlements.

For the total omissions, all four maps at 10 m resolutions (ESA, ESRI, GHSL, WSF) had
an omission rate smaller than 10%, indicating that they could identify the existence of rural
settlements in China. Among them, the ESRI reached the lowest omission rate (3.74%),
followed by the GHSL (3.95%), ESA (5.41%), and WSF (8.17%). However, the omission
rates of maps at 30 m resolutions were significantly higher than those of 10 m resolution
products.

Villages had the highest omission rates for all maps, probably due to the fragmented
built-up area. Maps at 10 m resolution had outstanding performances for city fringes, town
fringes, and townships, with the omission rates scoring lower than 5%. The performances
of the four maps at 30 m resolution were inferior to the 10 m resolution products, regardless
of the settlement type. An exception was the GISD30, which performed well in mapping
the rural settlements of city fringes with an omission rate equal to 0.69%.

The omission rates of rural settlements in Northeastern China and Eastern China were
relatively low, probably because a large share of the rural settlements in the two regions
were plain and relatively well-developed. Western China provided the highest omission
rate in all maps, probably due to more the bare lands, mountains, and discrete patterns of
rural houses. Similar findings were observed in urban agglomeration comparison. The
maps performed significantly better in three of the eastern urban agglomerations (the
Pearl River Delta, the Yangtze River Delta, and the Beijing–Tianjin–Hebei) than in the
central and western urban agglomerations (Middle Yangtze and Chengdu–Chongqing).
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Among the eastern urban agglomerations, the omission rate of the ESRI achieved 0% in the
Yangtze River Delta and Pearl River Delta urban agglomerations, but reached 5.84% in the
Beijing–Tianjin–Hebei urban agglomeration, indicating a significant regional variation.

Table 3. Sample rural settlements omitted by the eight LULC maps.

ESA ESRI GHSL
* WSF GAIA GISA2.0 GISD30 GLC30 8-Map

Mean

Total Omissions 126 87 92 190 1148 723 347 862 446.88
Omission rate (%) 5.41 3.74 3.95 8.17 49.33 31.07 14.91 37.04 19.2

(a) By Type (%) Class Size
City Fringe 0.69 0 0.68 1.38 11.03 7.59 0.69 11.72 4.22 145

Town Fringe 1.89 0.75 1.13 1.89 31.7 14.34 5.28 24.15 10.14 265
Township 0 0 1.72 3.45 56.9 18.97 8.62 17.24 13.36 58

Village 6.46 4.57 4.67 9.74 54.6 35.66 17.59 41.47 21.85 1859

(b) By region (%)
Eastern China 0.32 1.74 0.15 1.74 25.24 11.51 3.79 16.72 7.65 634
Central China 2.7 1.95 0.45 4.05 40.93 19.04 11.54 37.03 14.71 667
Western China 11.35 6.64 9.42 16.17 74.73 54.82 26.02 53.32 31.56 934

Northeastern China 0 1.09 0 1.09 18.48 11.96 3.26 11.96 5.98 92

(c) By Urban
Agglomeration (%)

Beijing-Tianjin-Hebei 0.65 5.84 0.65 1.3 26.62 18.83 5.84 8.44 8.52 154
Chengdu-Chongqing 7.37 1.05 0.52 10.53 66.32 47.89 23.16 70 28.36 190

Middle-Yangtze 2.67 0.89 0.44 1.33 45.78 17.78 11.56 50.67 16.39 225
Pearl River Delta 0 0 0 0 35.48 6.45 0 6.45 6.05 31

Yangtze River Delta 0 0 0 1.41 11.27 4.93 2.11 28.87 6.07 142

* The rural settlement pixels in the GHSL were extracted at a threshold value of 10%.

5.2.2. Area Test

Figure 4 shows the area test result by functional type. In each subgraph, the x-axis
represents the actual rural settlement area obtained by the visual interpretation in each
VSU, and the y-axis represents the rural settlement area identified by each LULC map.
Each point represents a VSU. The points that are closer to the (0,0) and (1,1) diagonal show
better agreement with the actual area. Meanwhile, the points below (or above) the diagonal
indicate that the landcover map underestimated (or overestimated) the rural settlement
area. In general, maps at 10 m resolutions either overestimated (The ESRI and GHSL) or
underestimated (The ESA and WSF) the rural settlements, whereas dots of maps at 30 m
resolutions were dispersed around the diagonals. All maps except the WSF tended to
overestimate the area of city fringes, probably due to their connection to urban areas. The
ESA had the best performance in city fringes, town fringes, and townships, with a lower
random deviation. The green dots that piled up in the lower left corner indicate that small-
area villages are likely to be underestimated or omitted. The GHSL and ESRI could capture
small villages, but the deviation of the ESRI was extremely large. Therefore, the GHSL is
best used to estimate the size of villages. Although it had some slight overestimations, we
can adjust the threshold to alleviate the overestimation problem while preserving its ability
to capture small villages, due to the continuity of its pixel values.

Figures 5 and 6 illustrate the area test results by region and urban agglomeration,
respectively. Western rural settlements, especially tiny rural settlements, are most likely to
be omitted and underestimated. This provides additional evidence that rural settlements
in Western China are challenges for all LULC maps. For Central China, only GHSL can
effectively estimate small and large rural settlements. ESA has advantages in dealing with
medium-sized rural settlements. The point patterns of Northeastern China and Eastern
China are similar, where ESA, WSF, and GISA2.0 have effective estimations.
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In the Beijing–Tianjin–Hebei urban agglomeration, the ESA, GHSL, and WSF effec-
tively detected rural settlements; the ESRI had a high omission rate for small villages
under five hectares, and its estimations for large rural settlements were more accurate. In
the Yangtze River Delta and Middle Yangtze urban agglomerations, both the ESA and
WSF performed well, but the latter had a slight underestimation tendency. The Chengdu–
Chongqing urban agglomeration is located in Western China, where the countryside is
relatively underdeveloped and the topography is complicated. Small settlements in the
urban agglomeration were frequently omitted from LULC maps, except for in the ESRI
and GHSL; the ESA and WSF demonstrated superior area estimation skills if the omission
rates were ignored. It is worth mentioning that two 30 m resolution maps, namely the
GISD30 and GISA2.0, showed pleasing estimation effects in the Pearl River Delta urban
agglomeration.

5.2.3. Pixel-Based Accuracy Test

Four accuracy indicators were calculated to reflect the overall accuracy by averaging
the result of each error matrix in rural settlement units. Table 4 presents the results. The
numbers without parentheses were generated with all of the VSUs. In general, the ranks
and overall trends of the indicators were consistent with the omission results. The GHSL
ranks first of the F-scores (0.669), with a relative balance between the PA (0.806) and UA
(0.663). The ESRI ranks second in the F-scores (0.636) and benefitted greatly from having
the highest producer’s accuracy (0.896), which indicates that it rarely missed real rural
settlement pixels. However, a relatively high OA usually corresponds to a low UA. A
typical example is the ESRI, whose UA value equals 0.538, even lower than the maps at
30 m resolution (GISA2.0 and GISD30). The ESA, WSF, and GISD30 roughly belonged to
the same type in terms of PA (0.428–0.505), UA (0.705–0.790), and F-score (0.504–0.566).
Among them, the UA of the WSF was the highest (0.79), reflecting that the rural settlement
pixels of the WSF were more reliable than those of the other two maps.
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Table 4. The four overall accuracy indicators of the eight LULC maps.

Overall
Accuracy

Producer’s
Accuracy

User’s
Accuracy F-score

10 m
Resolution

ESA 0.851 (0.846) 0.505 (0.560) 0.764 (0.847) 0.566 (0.627)
ESRI 0.765 (0.760) 0.896 (0.937) 0.538 (0.564) 0.636 (0.666)

GHSL * 0.836 (0.833) 0.806 (0.840) 0.663 (0.659) 0.669 (0.697)
WSF 0.836 (0.825) 0.428 (0.503) 0.790 (0.928) 0.511 (0.600)

30 m
Resolution

GAIA 0.756 (0.736) 0.272 (0.539) 0.411 (0.813) 0.297 (0.586)
GISA2.0 0.818 (0.823) 0.405 (0.588) 0.588 (0.853) 0.438 (0.637)
GISD30 0.831 (0.820) 0.457 (0.538) 0.705 (0.830) 0.504 (0.593)
GLC30 0.805 (0.718) 0.475 (0.754) 0.452 (0.718) 0.445 (0.707)

* The rural settlement pixels in the GHSL were extracted at a threshold value of 10%.

The numbers in parentheses refer to the indicators calculated without the omitted
VSUs. This result reflects the detection ability of the maps under scenarios that do not
consider omissions, such as tracking the area changes of selected rural settlements [60].
The OAs of seven of the LULC maps (excluding the GISA2.0) became lower than those
calculated with all VSUs. This is because the true negative (TN) pixels of the omitted
USVs can still provide a high OA. From the F-score, there is no significant difference in the
comprehensive accuracy of the eight LULC maps without omissions. The lowest was 0.589
(GAIA) and the highest was 0.707 (GLC30). Meanwhile, apart from the GHSL and ESRI,
the maps had a low PA along with a high UA.

We examined the numerical distribution of the F-score through violin plots (see
Figure 7) to determine the best LULC map for portraying rural settlements by type and
region. A probability density function (PDF) was generated to show the distribution of the
number of VSUs. For each violin, a higher center of gravity indicates a higher accuracy;
a wider PDF suggests more concentrated values. The distributions of the F-score further
confirm our findings. Four maps at 10 m resolutions present similar patterns in the city
fringe, town fringe, and township, but the PDFs of the four maps at 30 m resolutions
decline from city fringes to villages. No map has a concentrated PDF with a high F-score
in the category of villages. Violin plots of the Western China and Chengdu–Chongqing
urban agglomerations suggest poor performances of the maps. In Eastern, Central, and
Northeastern China, the GHSL has the most centralized high PDF, followed by the ESA,
WSF, and ESRI. The GISD30 performs as well as 10 m resolution maps in East China and
Northeast China and ranks first place in the Pearl River Delta urban agglomeration.
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6. Discussion

Some issues need to be further discussed to help better understand the accuracy of the
products in their mapping of rural settlements.

6.1. Map Resolution

Maps at 10 m resolutions outperformed those at 30 m resolution. Given that the scale
of a single building is roughly dozens of meters large [17,18] and the houses in the rural
areas are usually small, it is easier to detect the presence of tiny villages for maps at 10 m
resolutions. One exception is the ESRI, which had an excellent capability to detect rural
settlements while neglecting the outlines of individual buildings. The product might be
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applicable for rural studies that do not involve area measurement and building contours.
Small villages may be difficult to detect in 30 m resolution products due to the influence of
mixed pixels.

6.2. Type of Rural Settlements

Practically, the functional characteristics of the maps should be considered when their
accuracy is similar. The four maps with 10 m resolutions were sensitive to the development
level of areas. If the target rural settlements located in city fringe, town fringe, or township
were developed, the ESA, WSF, and GHSL may provide satisfactory performances in
obtaining their boundary or area. The performances of all maps dramatically decreased
in villages, probably because the training datasets of these maps were mainly extracted
from urban areas and few were obtained from rural areas. Only the GHSL could strike
a reasonable compromise between area and omission rate, which has made substantial
improvements when compared with its early version at the 30 m resolution [19,36]. Hence,
the GHSL is the best choice for studying small villages.

6.3. Spatial Variation across Regions

The ability to detect rural settlements in Eastern and Western China significantly
differed, most likely due to the climate type, topography, architectural style, and economic
development. However, many rural settlements with similar characteristics in scale, terrain,
elevation, and architectural style were more accurately detected in Eastern China than in
the west. This is more apparent for maps with 30 m resolutions. The performances of LULC
products based on urban agglomerations were consistent with the results of regions, but the
discrepancies among maps were more pronounced. For instance, the Chengdu–Chongqing
urban agglomeration was better served by the GHSL, while the GISD30 better portrayed
the Pearl River Delta urban agglomeration. Therefore, more exploration of the potential
factors behind spatial heterogeneity is desirable to improve the ability of mapping rural
settlements.

6.4. Balance between PA and UA

The F-score was employed in this paper to measure the comprehensive accuracy.
Where there is little difference in the F-Score, PA and UA can reflect the functional tendency
of the LULC maps, which can make a more detailed division of the application scenarios.
For instance, the ESRI with its high PA overestimates the area of rural settlements because
the ESRI typically covers small buildings with larger patches. The WSF with larger UA
values can accurately depict building contours and may be suitable for drawing rural house
layers.

6.5. Rural Roads

Both the ESA and WSF use optical and radar images, which exhibited similar effects
and consistent trends in most situations. However, the WSF always tended to underes-
timate the area of rural settlements. The reason could be that the WSF only preserved
buildings, whereas the VSUs treat roads as part of the rural settlements. The ESA detected
impervious roads inside rural settlements and independent arterial roads outside of the
rural settlements. The ESRI could detect roads when they were connected near buildings.
The GHSL, with a lower threshold value, could more effectively distinguish rural roads.
Among the maps at 30 m resolutions, the GAIA, GISD30, and GISA2.0 products could only
identify wide impervious roads in urban areas, and the GLC30 could not identify any types
of roads.

6.6. The Continuous Value of Built-Up Probability

Among the eight LULC maps, only the GHSL provides a continuous value to represent
the proportion of built-up area in the mixed pixels. It allows users to flexibly detect rural
settlements by determining the threshold value. For example, a slight increase in threshold
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value can improve the capture ability for detecting small built-up areas and reducing the
omission rate. If we remove roads by setting a high threshold value, it is difficult to detect
small settlements. However, the extent to which the threshold value has influence on the
extraction of rural roads still needs to be tested.

6.7. Pixel Values of the Built Year

The development and evolution of rural settlements are important topics in rural
research. The GAIA, GISD30, and GISA2.0 products take the year of the built-up area as a
pixel value (as early as 1972, GISA2.0). The expansion process of cities or villages can be
captured by multi-year layers. Although the comprehensive accuracy of these maps is not
as good as that of 10 m resolution LULC maps, the GISD30 and GISA2.0 can also be used
in many rural areas, particularly closer to cities in Eastern China or Northeastern China,
notably in Pearl River Delta urban agglomeration.

7. Conclusions

This study selected eight of the latest LULC datasets to compare their accuracy for
rural settlement detection using China as the study area. We created 2376 validation sample
sites through the SSS method and conducted omission tests, area comparisons, and pixel-
based accuracy tests. The results show that the maps at 10 m resolution are more precise
than those at 30 m resolution; the GHSL has the highest comprehensive accuracy in various
scenarios and one can flexibly adjust the threshold value to find a proper range of rural
settlement size; the ESRI outperforms the other maps in detecting the existence of rural
settlements, but it dramatically overestimates the area; the GISD30 performs best among
maps with 30 m resolutions, notably in the Pearl River Delta urban agglomeration; villages
in Western China remains a big challenge for all maps. Table 5 presents the recommended
maps for various scenarios.

Table 5. Wise-use recommendations for LULC maps under different scenarios.

Map Quality Description Recommended Maps

Most Recent Map The maps are recent. ESRI provides global maps from 2015 to 2021, updated annually.
ESA and GISD30 offer versions for 2020.

Long Time Coverage Aggregating the built-up year on
one map as pixel values.

GISD30 published a time-aggregated map for 1985–2020.
GISA2.0 provides maps of earlier dates (1972–2019) but is inferior to

GISD30 in all aspects.

Highest Comprehensive Map
Accuracy

Strong agreement with the VSUs,
providing the best balance of PA and

UA.

GHSL is capable of mapping as many rural settlements as possible
while simultaneously providing a high likelihood that the pixels

obtained are rural settlements.
Highest Producer’s

Accuracy (PA)
As many as rural settlements

detected
ESRI can cover the most extensive rural settlement pixels.

GHSL with a low threshold (e.g., 10%) follows ESRI closely.

Highest User’s Accuracy (UA) Less false positives. WSF has the highest UA regardless of the omission rate.
ESA ranks second in UA, but its PA is higher than that of WSF.

Best for Estimating Area Capability to estimate the area of a
rural settlement.

ESA estimates area accurately in city fringes, town fringes, and
township areas.

GHSL with a low threshold value is suitable for estimating the area of
small rural settlements of less than 5 hectares.

WSF is the most accurate product in estimating the area of buildings.

Low Omission Rate Fewer rural settlements ignored

ESRI (globally optimal) has the lowest omission rates in all rural
settlement types.

GHSL (locally optimal) has the lowest omission rates (all less than 1%)
in 5 urban agglomerations and three
regions (excluding Western China).

Roads Including roads GHSL can capture finer concrete paths.
ESA only detects wide arterials.

Excluding roads WSF only depicts the presence of buildings and completely removes
any roads between buildings.

Functional Types

High accuracy in the city fringes,
town fringes, or townships
(relatively developed rural

settlements)

GHSL performs best, followed by ESRI, ESA, and WSF.
GISD30 can support rural settlements in city fringes.

High accuracy in villages (relatively
less developed rural settlements)

GHSL is the only map used for pixel-scale analysis; other maps should
consider omission rates across regions.
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The results of this study indicate that there was spatial heterogeneity in the accuracy
of mapping rural settlements. However, we only used China as the study area because
of the availability of data; if more detailed information on villages from other countries is
available, the ability of the maps to detect rural settlements can be further explored.
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