An Assessment of the Rational Range of Eco-Compensation Standards: A Case Study in the Nujiang Prefecture, Southwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Framework
2.2. Study Area
2.3. Methods
2.3.1. Ecosystem-Service-Value Method
- (1)
- Standard unit ecosystem-service-value equivalent factor
- (2)
- Estimating the ecosystem service value
2.3.2. Water Footprint Method
2.3.3. Opportunity Cost Method
2.4. Data Source
3. Results
3.1. Spatia—Temporal Evolution of ESVs in Nujiang Prefecture
3.2. Self-Consumption of ESV in Nuijiang Prefecture
3.3. Opportunity Cost of Ecological Protection in Nujiang Prefecture
3.4. Rational Range of Eco-Compensation Standard in Nujiang Prefecture
4. Discussion
4.1. Advantages and Uncertainties of Eco-Compensation Standards Recommended by This Study
4.2. Policy Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatta, L.D.; van Oort, B.E.H.; Rucevska, I.; Baral, H. Payment for ecosystem services: Possible instrument for managing ecosystem services in Nepal. International Journal of Biodiversity Science. Ecosyst. Serv. Manag. 2014, 10, 289–299. [Google Scholar]
- Wang, J.L.; Zhou, W.Q.; Pickett, S.T.A.; Yu, W.J.; Li, W.F. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.Y.; Tian, Y.Y.; Jiang, G.H. Spatio-temporal investigation of the interactive relationship between urbanization and ecosystem services: Case study of the Jingjinji urban agglomeration, China. Ecol. Indic. 2018, 95, 152–164. [Google Scholar] [CrossRef]
- Morya, C.P.; Punia, M. Impact of urbanization processes on availability of ecosystem services in National Capital Region of Delhi (1992–2010). Environ. Dev. Sustain. 2022, 24, 7324–7348. [Google Scholar] [CrossRef]
- Zúñiga-Sarango, W.; Gaona, F.P.; Reyes-Castillo, V.; Iñiguez-Armijos, C. Disrupting the Biodiversity–Ecosystem Function Relationship: Response of Shredders and Leaf Breakdown to Urbanization in Andean Streams. Front. Ecol. Evol. 2020, 8, 592404. [Google Scholar] [CrossRef]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Ni, Z.Z.; Luo, K.; Zhang, J.X.; Feng, R.; Zheng, H.X.; Zhu, H.R.; Wang, J.F.; Fan, J.R.; Gao, X.; Cen, K.F. Assessment of winter air pollution episodes using long-range transport modeling in Hangzhou, China, during World Internet Conference, 2015. Environ. Pollut. 2018, 236, 550–561. [Google Scholar] [CrossRef]
- Salzman, J.; Bennett, G.; Carroll, N.; Goldstein, A.; Jenkins, M. The global status and trends of Payments for Ecosystem Services. Nat. Sustain. 2018, 1, 136–144. [Google Scholar] [CrossRef]
- Santos, R.; Ring, I.; Antunes, P.; Clemente, P. Fiscal transfers for biodiversity conservation: The Portuguese Local Finances Law. Land Use Policy 2012, 29, 261–273. [Google Scholar] [CrossRef]
- Ruggiero, P.G.; Metzger, J.P.; Tambosi, L.R.; Nichols, E. Payment for ecosystem services programs in the Brazilian Atlantic Forest: Effective but not enough. Land Use Policy 2019, 82, 283–291. [Google Scholar] [CrossRef]
- Diswandi, D. A hybrid Coasean and Pigouvian approach to Payment for Ecosystem Services Program in West Lombok: Does it contribute to poverty alleviation? Ecosyst. Serv. 2017, 23, 138–145. [Google Scholar] [CrossRef]
- Yu, H.; Xie, W.; Yang, L.; Du, A.; Almeida, C.M.; Wang, Y. From payments for ecosystem services to eco-compensation: Conceptual change or paradigm shift? Sci. Total Environ. 2020, 700, 134627. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.G.; Li, S.X.; Ouyang, Z.Y.; Tam, C.; Chen, X.D. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Liu, M.; Meng, Y. A comprehensive ecological compensation indicator based on pollution damage–protection bidirectional model for river basin. Ecol. Indic. 2021, 126, 107708. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H. Data mining for evaluating the ecological compensation, static and dynamic benefits of returning farmland to forest. Environ. Res. 2021, 201, 111524. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, M.; Yang, L. Calculation of ecological compensation standards for arable land based on the value flow of support services. Land 2021, 10, 719. [Google Scholar] [CrossRef]
- Wang, K.; Ou, M.; Wolde, Z. Regional differences in ecological compensation for cultivated land protection: An analysis of chengdu, Sichuan Province, China. Int. J. Environ. Res. Public Health 2020, 17, 8242. [Google Scholar] [CrossRef]
- Li, Z.; Rao, D.; Liu, M. The Impact of China’s Grassland Ecological Compensation Policy on the Income Gap between Herder Households? A Case Study from a Typical Pilot Area. Land 2021, 10, 1405. [Google Scholar] [CrossRef]
- Fan, J.; Li, P. The scientific foundation of major function oriented zoning in China. J. Geogr. Sci. 2009, 19, 515–531. [Google Scholar] [CrossRef]
- Fan, J.; Sun, W.; Zhou, K.; Chen, D. Major function oriented zone: New method of spatial regulation for reshaping regional development pattern in China. Chin. Geogr. Sci. 2012, 22, 196–209. [Google Scholar] [CrossRef]
- Pan, X.; Xu, L.; Yang, Z.; Yu, B. Payments for ecosystem services in China: Policy, practice, and progress. J. Clean. Prod. 2017, 158, 200–208. [Google Scholar] [CrossRef]
- He, J.; Wan, Y.; Tang, Z.; Zhu, X.; Wen, C. A Developed Framework for the Multi-District Ecological Compensation Standards Integrating Ecosystem Service Zoning in an Urban Area in China. Sustainability 2019, 11, 4876. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Cao, S.; Zhang, A. Preferences in Farmland Eco-Compensation Methods: A Case Study of Wuhan, China. Land 2021, 10, 1159. [Google Scholar] [CrossRef]
- Gao, X.; Shen, J.; He, W.; Sun, F.; Zhang, Z.; Zhang, X.; Yuan, L.; An, M. Multilevel governments’ decision-making process and its influencing factors in watershed ecological compensation. Sustainability 2019, 11, 1990. [Google Scholar] [CrossRef]
- Xiong, K.; Kong, F. The analysis of farmers’ willingness to accept and its influencing factors for ecological compensation of Poyang Lake wetland. Procedia Eng. 2017, 174, 835–842. [Google Scholar] [CrossRef]
- Novikova, A.; Rocchi, L.; Vaznonis, B. Valuing Agricultural Landscape: Lithuanian Case Study Using a Contingent Valuation Method. Sustainability 2019, 11, 2648. [Google Scholar] [CrossRef]
- Zhong, S.; Geng, Y.; Huang, B.; Zhu, Q.; Cui, X.; Wu, F. Quantitative assessment of eco-compensation standard from the perspective of ecosystem services: A case study of Erhai in China. J. Clean. Prod. 2020, 263, 121530. [Google Scholar] [CrossRef]
- Sheng, W.; Zhen, L.; Xie, G.; Xiao, Y. Determining eco-compensation standards based on the ecosystem services value of the mountain ecological forests in Beijing, China. Ecosyst. Serv. 2017, 26, 422–430. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, J. Quantitative standard of eco-compensation for the water source area in the middle route of the South-to-North Water Transfer Project in China. Front. Environ. Sci. Eng. China 2011, 5, 459–473. [Google Scholar] [CrossRef]
- Wunder, S.; Engel, S.; Pagiola, S. Taking stock: A comparative analysis of payments for environmental services programs in developed and developing countries. Ecol. Econ. 2008, 65, 834–852. [Google Scholar] [CrossRef]
- Hanley, N.; Mourato, S.; Wright, R.E. Choice Modelling Approaches: A Superior Alternative for Environmental Valuatioin? J. Econ. Surv. 2001, 15, 435–462. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, J.; Liu, H.; Xia, M. Study on eco-compensation standard for adjacent administrative districts based on the maximum entropy production. J. Clean. Prod. 2019, 221, 644–655. [Google Scholar] [CrossRef]
- Gao, X.; Shen, J.; He, W.; Sun, F.; Zhang, Z.; Zhang, X.; Zhang, C.; Kong, Y.; An, M.; Yuan, L.; et al. Changes in Ecosystem Services Value and Establishment of Watershed Ecological Compensation Standards. Int. J. Environ. Res. Public Health 2019, 16, 2951. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, X. Ecological compensation standard, payment amount and adjustment target in national key ecological function areas. J. Xi’an Jiaotong Univ. Soc. Sci. 2017, 37, 1–9. [Google Scholar]
- Deng, H.; Zheng, P.; Liu, T.; Liu, X. Forest Ecosystem Services and Eco-Compensation Mechanisms in China. Environ. Manag. 2011, 48, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wilkes, A. Biodiversity impact analysis in northwest Yunnan, southwest China. Biodivers. Conserv. 2004, 13, 959–983. [Google Scholar] [CrossRef]
- Van den Bergh, J.C. Externality or sustainability economics? Ecol. Econ. 2010, 69, 2047–2052. [Google Scholar] [CrossRef]
- Cheng, X.; Fang, L.; Mu, L.; Li, J.; Wang, H. Watershed Eco-Compensation Mechanism in China: Policies, Practices and Recommendations. Water 2022, 14, 777. [Google Scholar] [CrossRef]
- Schomers, S.; Matzdorf, B. Payments for ecosystem services: A review and comparison of developing and industrialized countries. Ecosyst. Serv. 2013, 6, 16–30. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of ecosystem services valuation method based on value equivalent factor of unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Xie, G.; Zhen, L.; Lu, C.-X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Jiang, W.; Lü, Y.; Liu, Y.; Gao, W. Ecosystem service value of the Qinghai-Tibet Plateau significantly increased during 25 years. Ecosyst. Serv. 2020, 44, 101146. [Google Scholar] [CrossRef]
- Cui, N.; Sheng, S. Quantitative Research on Cultivated Land Ecological Compensation Standard Based on Equity. Bull. Soil Water Conserv. 2021, 41, 138–143. [Google Scholar]
- Wang, Y.; Li, G. The evaluation of the watershed ecological compensation standard of ecosystem service value: A case of Weihe watershed upstream. Acta Ecol. Sin. 2019, 39, 108–116. [Google Scholar]
- Zhang, X.K.; Wang, Y. Study on Ecological Compensation of Xijiang Economic Belt in Guangxi Based on Water Footprint. Ecol. Econ. 2020, 36, 168–172. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Bielski, S.; Marks-Bielska, R.; Novikova, A.; Vaznonis, B. Assessing the Value of Agroecosystem Services in Warmia and Mazury Province Using Choice Experiments. Agriculture 2021, 11, 4. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, F.-P.; Li, F.; Chen, X.-N.; Xu, X.; Shao, Z.-Y. Ecological compensation standard of trans-boundary river basin based on ecological spillover value: A case study for the Lancang–Mekong River Basin. Int. J. Environ. Res. Public Health 2021, 18, 1251. [Google Scholar] [CrossRef]
- Mankiw, N.G. Principles of Economics; Cengage Learning: Boston, MA, USA, 2020. [Google Scholar]
- Hoekstra, A.Y.; Hung, P.Q. Globalisation of water resources: International virtual water flows in relation to crop trade. Glob. Environ. Change 2005, 15, 45–56. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. Water Footprints of Nations; Value of Water Research Report Series 16; UNESCO-IHE: Delft, The Netherlands, 2004. [Google Scholar]
- Rees, W.E. Ecological Footprints and Appropriated Carrying Capacity: What Urban Economics Leaves Out. In The Earthscan Reader in Rural–Urban Linkages; Routledge: London, UK, 2018; pp. 285–297. [Google Scholar]
- Hoekstra, A.Y. Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis. Ecol. Econ. 2009, 68, 1963–1974. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The Water Footprint of Global Food Production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- Ge, L.; Xie, G.; Zhang, C.; Li, S.; Qi, Y.; Cao, S.; He, T. An evaluation of China’s water footprint. Water Resour. Manag. 2011, 25, 2633–2647. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Ran, Y.J.; Lei, D.M.; Liu, L.; Gao, L.P. Impact of Land Use Change on Ecosystem Service Value in Urban Agglomeration of Central Yunnan Province During 2000–2020. Bull. Soil Water Conserv. 2021, 41, 310–322. [Google Scholar]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Huang, Y. Spatial and temporal changes in ecosystem service values in karst areas in southwestern China based on land use changes. Environ. Sci. Pollut. Res. 2021, 28, 45724–45738. [Google Scholar] [CrossRef]
- Pagiola, S.; Arcenas, A.; Platais, G. Can Payments for Environmental Services Help Reduce Poverty? An Exploration of the Issues and the Evidence to Date from Latin America. World Dev. 2005, 33, 237–253. [Google Scholar] [CrossRef]
- Gauvin, C.; Uchida, E.; Rozelle, S.; Xu, J.; Zhan, J. Cost-effectiveness of payments for ecosystem services with dual goals of environment and poverty alleviation. Environ. Manag. 2010, 45, 488–501. [Google Scholar] [CrossRef]
- Wu, L.; Jin, L.S. How eco-compensation contribute to poverty reduction: A perspective from different income group of rural households in Guizhou, China. J. Clean. Prod. 2020, 275, 122962. [Google Scholar]
- Brown, P.H.; Xu, K. Hydropower development and resettlement policy on China’s Nu River. J. Contemp. China 2010, 19, 777–797. [Google Scholar] [CrossRef]
- Deng, X.; Yan, S.; Song, X.; Li, Z.; Mao, J. Spatial targets and payment modes of win–win payments for ecosystem services and poverty reduction. Ecol. Indic. 2022, 136, 108612. [Google Scholar] [CrossRef]
- Choruma, D.J.; Odume, O.N. Exploring Farmers’ Management Practices and Values of Ecosystem Services in an Agroecosystem Context—A Case Study from the Eastern Cape, South Africa. Sustainability 2019, 11, 6567. [Google Scholar] [CrossRef]
Classification of Ecosystem Services | Farmland | Forestland | Grassland | Waterbody | Unused Land | |
---|---|---|---|---|---|---|
Primary Type | Secondary Type | |||||
Provision services | Food production | 1.11 | 0.25 | 0.23 | 0.80 | 0.01 |
Raw material | 0.25 | 0.58 | 0.34 | 0.23 | 0.01 | |
Water provision | −1.31 | 0.30 | 0.19 | 8.29 | 0.01 | |
Regulation services | Air regulation | 0.89 | 1.91 | 1.21 | 0.77 | 0.07 |
Climate regulation | 0.46 | 5.71 | 3.19 | 2.29 | 0.05 | |
Environment purification | 0.13 | 1.67 | 1.05 | 5.55 | 0.20 | |
Support services | Hydrological regulation | 1.50 | 3.74 | 2.34 | 102.24 | 0.12 |
Soil conservation | 0.52 | 2.32 | 1.47 | 0.93 | 0.07 | |
Nutrients-cycle maintenance | 0.16 | 0.17 | 0.11 | 0.07 | 0.01 | |
Culture services | Biodiversity | 0.17 | 2.12 | 1.34 | 2.55 | 0.07 |
Aesthetic landscape | 0.07 | 0.93 | 0.59 | 1.89 | 0.03 | |
Total | 3.95 | 19.70 | 12.06 | 125.61 | 0.65 |
Primary Type | Secondary Type | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Provision services | Food production | 6.86 | 6.78 | 6.78 | 6.78 |
Raw material | 11.45 | 11.64 | 11.64 | 11.63 | |
Water provision | 5.23 | 5.48 | 5.48 | 5.60 | |
Regulation services | Air regulation | 38.30 | 38.85 | 38.84 | 38.80 |
Climate regulation | 109.04 | 111.20 | 111.17 | 111.07 | |
Environment purification | 33.37 | 33.93 | 33.92 | 33.96 | |
Support services | Hydrological regulation | 86.64 | 87.96 | 87.94 | 89.20 |
Soil conservation | 45.94 | 46.67 | 46.66 | 46.61 | |
Nutrients-cycle maintenance | 3.66 | 3.70 | 3.70 | 3.70 | |
Culture services | Biodiversity | 41.66 | 42.36 | 42.34 | 42.33 |
Aesthetic landscape | 18.39 | 18.69 | 18.69 | 18.69 | |
Total | 400.54 | 407.29 | 407.17 | 408.36 |
Items | Virtual Water /(m3·kg−1) | Consumption/×106 m3 | |||||
---|---|---|---|---|---|---|---|
2005 | 2010 | 2015 | 2020 | ||||
Water for agriculture | Agriculture product | Wheat | 1.36 | 18.20 | 10.20 | 15.45 | 11.43 |
Rice | 0.65 | 23.51 | 25.50 | 25.34 | 14.37 | ||
Corn | 0.63 | 47.62 | 57.55 | 60.60 | 51.08 | ||
Barley | 1.61 | 17.32 | 15.92 | 19.04 | 11.91 | ||
Soybeans | 1.94 | 30.98 | 34.60 | 38.67 | 31.70 | ||
Potatoes | 0.19 | 11.28 | 11.02 | 22.76 | 23.56 | ||
Oil crops | 3.95 | 2.88 | 5.58 | 7.90 | 4.46 | ||
Sugar crops | 0.10 | 6.70 | 7.68 | 7.91 | 1.31 | ||
Vegetables | 0.23 | 14.69 | 16.98 | 18.61 | 21.12 | ||
Tobacco leaves | 2.23 | 0.00 | 0.00 | 0.00 | 0.21 | ||
Livestock product | Pork | 2.21 | 39.50 | 53.00 | 57.81 | 65.86 | |
Beef | 12.56 | 24.7 | 38.17 | 50.34 | 33.91 | ||
Mutton | 5.20 | 12.90 | 17.74 | 20.46 | 22.88 | ||
Eggs | 3.55 | 0.96 | 0.94 | 1.42 | 1.50 | ||
Milk | 1.00 | 0.19 | 0.17 | 0.41 | 0.36 | ||
Water for industry | - | - | - | 7.65 | 22.94 | 21.00 | 7.15 |
Water for human life | - | - | - | 8.36 | 14.17 | 18.00 | 13.96 |
Water for ecology | - | - | - | 0.31 | 0.61 | 3.00 | 6.75 |
Total water footprint | - | - | - | 267.77 | 332.75 | 388.73 | 326.20 |
Water availability | - | - | - | 6497.10 | 4569.00 | 4317.00 | 6669.00 |
Year | ESV /×CNY 102 Million | Consumption Factor/% | Correction Factor/% | Upper Limit /×CNY 102 Million |
---|---|---|---|---|
2005 | 400.54 | 4.12 | 31.25 | 120.01 |
2010 | 407.29 | 7.28 | 33.96 | 128.25 |
2015 | 407.17 | 9.00 | 53.20 | 197.12 |
2020 | 408.36 | 4.89 | 58.58 | 227.52 |
Year | Upper Limit/×CNY 102 Million | Lower Limit/×CNY 102 Million |
---|---|---|
2005 | 120.01 | 6.17 |
2010 | 128.25 | 10.02 |
2015 | 197.12 | 30.34 |
2020 | 227.52 | 41.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, W.; Qu, L.; Li, K.; Guo, C.; Li, J. An Assessment of the Rational Range of Eco-Compensation Standards: A Case Study in the Nujiang Prefecture, Southwestern China. Land 2022, 11, 1417. https://doi.org/10.3390/land11091417
Xiao W, Qu L, Li K, Guo C, Li J. An Assessment of the Rational Range of Eco-Compensation Standards: A Case Study in the Nujiang Prefecture, Southwestern China. Land. 2022; 11(9):1417. https://doi.org/10.3390/land11091417
Chicago/Turabian StyleXiao, Weidong, Liquan Qu, Kai Li, Chuanxu Guo, and Jie Li. 2022. "An Assessment of the Rational Range of Eco-Compensation Standards: A Case Study in the Nujiang Prefecture, Southwestern China" Land 11, no. 9: 1417. https://doi.org/10.3390/land11091417
APA StyleXiao, W., Qu, L., Li, K., Guo, C., & Li, J. (2022). An Assessment of the Rational Range of Eco-Compensation Standards: A Case Study in the Nujiang Prefecture, Southwestern China. Land, 11(9), 1417. https://doi.org/10.3390/land11091417