Social Justice in Urban–Rural Flood Exposure: A Case Study of Nanjing, China
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Data
2.3. Methods
2.4. Variables
3. Results and Discussion
3.1. Measuring Exposure to Flood Risk
3.2. Comparison of Group in Flood Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wing, O.E.J.; Lehman, W.; Bates, P.D.; Sampson, C.C.; Quinn, N.; Smith, A.M.; Neal, J.C.; Porter, J.R.; Kousky, C. Inequitable patterns of US flood risk in the Anthropocene. Nat. Clim. Chang. 2022, 12, 156–162. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H. Integrating agent-based approaches with flood risk models: A review and perspective. Water Secur. 2020, 11, 100076. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H.; Botzen, W.J.; Clarke, K.; Cutter, S.L.; Hall, J.W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther, H. Integrating human behaviour dynamics into flood disaster risk assessment. Nat. Clim. Chang. 2018, 8, 193–199. [Google Scholar] [CrossRef]
- Li, M.; Kwan, M.-P.; Yin, J.; Yu, D.; Wang, J. The potential effect of a 100-year pluvial flood event on metro accessibility and ridership: A case study of central Shanghai, China. Appl. Geogr. 2018, 100, 21–29. [Google Scholar] [CrossRef]
- Fang, J.Y.; Lincke, D.; Brown, S.; Nicholls, R.J.; Wolff, C.; Merkens, J.L.; Hinkel, J.; Vafeidis, A.T.; Shi, P.J.; Liu, M. Coastal flood risks in China through the 21st century—An application of DIVA. Sci. Total Environ. 2020, 704, 135311. [Google Scholar] [CrossRef] [PubMed]
- Jongman, B.; Hochrainer-Stigler, S.; Feyen, L.; Aerts, J.C.J.H.; Mechler, R.; Botzen, W.J.W.; Bouwer, L.M.; Pflug, G.; Rojas, R.; Ward, P.J. Increasing stress on disaster-risk finance due to large floods. Nat. Clim. Chang. 2014, 4, 264–268. [Google Scholar] [CrossRef]
- Knighton, J.; Hondula, K.; Sharkus, C.; Guzman, C.; Elliott, R. Flood risk behaviors of United States riverine metropolitan areas are driven by local hydrology and shaped by race. Proc. Natl. Acad. Sci. USA 2021, 118, e2016839118. [Google Scholar] [CrossRef]
- Walker, G.; Burningham, K. Flood risk, vulnerability and environmental justice: Evidence and evaluation of inequality in a UK context. Crit. Soc. Policy 2011, 31, 216–240. [Google Scholar] [CrossRef]
- Collins, T.W.; Grineski, S.E.; Chakraborty, J. Environmental injustice and flood risk: A conceptual model and case comparison of metropolitan Miami and Houston, USA. Reg. Environ. Chang. 2017, 18, 311–323. [Google Scholar] [CrossRef]
- Brown, J.D.; Damery, S.L. Managing flood risk in the UK: Towards an integration of social and technical perspectives. Trans. Inst. Br. Geogr. 2003, 27, 412–426. [Google Scholar] [CrossRef]
- Mohai, P.; Pellow, D.; Roberts, J.T. Environmental Justice. Annu. Rev. Environ. Resour. 2009, 34, 405–430. [Google Scholar] [CrossRef]
- Collins, T.W.; Grineski, S.E.; Nadybal, S. Social disparities in exposure to noise at public schools in the contiguous United States. Environ. Res. 2019, 175, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Schlosberg, D.; Collins, L.B. From environmental to climate justice: Climate change and the discourse of environmental justice. WIREs Clim. Change 2014, 5, 359–374. [Google Scholar] [CrossRef]
- Kaufmann, M.; Priest, S.J.; Leroy, P. The undebated issue of justice: Silent discourses in Dutch flood risk management. Reg. Environ. Chang. 2016, 18, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.-H.; Chan, J.K.H.; Huang, Y.-L. Environmental justice and flood prevention: The moral cost of floodwater redistribution. Landsc. Urban Plan. 2019, 189, 36–45. [Google Scholar] [CrossRef]
- Turner, B.L., 2nd; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed]
- Zahran, S.; Brody, S.D.; Peacock, W.G.; Vedlitz, A.; Grover, H. Social vulnerability and the natural and built environment: A model of flood casualties in Texas. Disasters 2008, 32, 537–560. [Google Scholar] [CrossRef]
- Burningham, K.; Fielding, J.; Thrush, D. ‘It’ll never happen to me’: Understanding public awareness of local flood risk. Disasters 2008, 32, 216–238. [Google Scholar] [CrossRef]
- Zhang, Y.; Peacock, W.G. Planning for Housing Recovery? Lessons learned from Hurricane Andrew. J. Am. Plan. Assoc. 2009, 76, 5–24. [Google Scholar] [CrossRef]
- Chakraborty, J.; Collins, T.W.; Montgomery, M.C.; Grineski, S.E. Social and Spatial Inequities in Exposure to Flood Risk in Miami, Florida. Nat. Hazards Rev. 2014, 15, 04014006. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Ge, Y.; Xia, S.; Yuan, Y.; Li, W.R.; Xu, H.Y. Examining social vulnerability to flood of affordable housing communities in Nanjing, China: Building long-term disaster resilience of low-income communities. Sustain. Cities Soc. 2021, 71, 102939. [Google Scholar] [CrossRef]
- Koks, E.E.; Jongman, B.; Husby, T.G.; Botzen, W.J.W. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environ. Sci. Policy 2015, 47, 42–52. [Google Scholar] [CrossRef]
- Chakraborty, J.; Grineski, S.E.; Collins, T.W. Hurricane Harvey and people with disabilities: Disproportionate exposure to flooding in Houston, Texas. Soc. Sci. Med. 2019, 226, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Poussard, C.; Dewals, B.; Archambeau, P.; Teller, J. Environmental Inequalities in Flood Exposure: A Matter of Scale. Front. Water 2021, 3, 633046. [Google Scholar] [CrossRef]
- Kelly-Reif, K.; Wing, S. Urban-rural exploitation: An underappreciated dimension of environmental injustice. J. Rural Stud. 2016, 47, 350–358. [Google Scholar] [CrossRef]
- Jamshed, A.; Birkmann, J.; McMillan, J.M.; Rana, I.A.; Feldmeyer, D.; Sauter, H. How do rural-urban linkages change after an extreme flood event? Empirical evidence from rural communities in Pakistan. Sci. Total Environ. 2020, 750, 141462. [Google Scholar] [CrossRef]
- Straub, A.M.; Gray, B.J.; Ritchie, L.A.; Gill, D.A. Cultivating disaster resilience in rural Oklahoma: Community disenfranchisement and relational aspects of social capital. J. Rural Stud. 2019, 73, 105–113. [Google Scholar] [CrossRef]
- Tiepolo, M.; Galligari, A. Urban expansion-flood damage nexus: Evidence from the Dosso Region, Niger. Land Use Policy 2021, 108, 105547. [Google Scholar] [CrossRef]
- Fielding, J.L. Inequalities in exposure and awareness of flood risk in England and Wales. Disasters 2011, 36, 477–494. [Google Scholar] [CrossRef]
- Smiley, K.T. Social inequalities in flooding inside and outside of floodplains during Hurricane Harvey. Environ. Res. Lett. 2020, 15, 0940b3. [Google Scholar] [CrossRef]
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstockf, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Sci. Total Environ. 2019, 658, 1228–1238. [Google Scholar] [CrossRef]
- Grineski, S.E.; Collins, T.W.; Ford, P.; Fitzgerald, R.; Aldouri, R.; Velázquez-Angulo, G.; Romo Aguilar, M.D.L.; Lu, D. Climate change and environmental injustice in a bi-national context. Appl. Geogr. 2012, 33, 25–35. [Google Scholar] [CrossRef]
- Grineski, S.E.; Collins, T.W. Geographic and social disparities in exposure to air neurotoxicants at US public schools. Environ. Res. 2018, 161, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Messager, M.L.; Ettinger, A.K.; Murphy-Williams, M.; Levin, P.S. Fine-scale assessment of inequities in inland flood vulnerability. Appl. Geogr. 2021, 133, 102492. [Google Scholar] [CrossRef]
- Chakraborty, J.; McAfee, A.A.; Collins, T.W.; Grineski, S.E. Exposure to Hurricane Harvey flooding for subsidized housing residents of Harris County, Texas. Nat. Hazards 2021, 106, 2185–2205. [Google Scholar] [CrossRef]
- Chakraborty, L.; Rus, H.; Henstra, D.; Thistlethwaite, J.; Minano, A.; Scott, D. Exploring spatial heterogeneity and environmental injustices in exposure to flood hazards using geographically weighted regression. Environ. Res. 2022, 210, 112982. [Google Scholar] [CrossRef]
- Liang, K.Y.; Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Nadybal, S.M.; Collins, T.W.; Grineski, S.E. Light pollution inequities in the continental United States: A distributive environmental justice analysis. Environ. Res. 2020, 189, 109959. [Google Scholar] [CrossRef]
- Wu, C.-D.; Chern, Y.-R.; Pan, W.-C.; Lung, S.-C.C.; Yao, T.-C.; Tsai, H.-J.; Spengler, J.D. Effects of surrounding environment on incidence of end stage renal disease. Sci. Total Environ. 2020, 723, 137915. [Google Scholar] [CrossRef]
- Hasunuma, H.; Takeuchi, A.; Ono, R.; Amimoto, Y.; Hwang, Y.H.; Uno, I.; Shimizu, A.; Nishiwaki, Y.; Hashizume, M.; Askew, D.J.; et al. Effect of Asian dust on respiratory symptoms among children with and without asthma, and their sensitivity. Sci. Total. Environ. 2021, 753, 141585. [Google Scholar] [CrossRef]
- Callender, R.; Canales, J.M.; Avendano, C.; Craft, E.; Ensor, K.B.; Miranda, M.L. Economic and mental health impacts of multiple adverse events: Hurricane Harvey, other flooding events, and the COVID-19 pandemic. Environ. Res. 2022, 214, 114020. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.W.; Jimenez, A.M.; Grineski, S.E. Hispanic health disparities after a flood disaster: Results of a population-based survey of individuals experiencing home site damage in El Paso (Texas, USA). J. Immigr. Minority Health 2013, 15, 415–426. [Google Scholar] [CrossRef]
- Pan, W. Akaike’s information criterion in generalized estimating equations. Biometrics 2001, 57, 120–125. [Google Scholar] [CrossRef]
- Maantay, J.; Maroko, A. Mapping urban risk: Flood hazards, race, environmental justice in New York. Appl. Geogr. 2009, 29, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Cutter, S.L.; Boruff, B.J.; Lynn Shirley, W. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk, Natural Hazards, People’s Vulnerability and Disasters; Routledge: London, UK, 2004. [Google Scholar]
- Chen, J.; Gao, J.; Chen, W. Urban land expansion and the transitional mechanisms in Nanjing, China. Habitat Int. 2016, 53, 274–283. [Google Scholar] [CrossRef]
- Wang, B.; Loo, B.P.Y.; Zhen, F.; Xi, G. Urban resilience from the lens of social media data: Responses to urban flooding in Nanjing, China. Cities 2020, 106, 102884. [Google Scholar] [CrossRef]
- Fielding, J. Environmental injustice or just the lie of the land: An investigation of the socio-economic class of those at risk from flooding in England and Wales. Sociol. Res. Online 2007, 12, 12–34. [Google Scholar] [CrossRef]
- Song, J.; Chang, Z.; Li, W.; Feng, Z.; Wu, J.; Cao, Q.; Liu, J. Resilience-vulnerability balance to urban flooding: A case study in a densely populated coastal city in China. Cities 2019, 95, 102381. [Google Scholar] [CrossRef]
Variable | Description | Min | Max | Mean | SD |
---|---|---|---|---|---|
Dependent Variable | |||||
proportion of built-up area inundated by flood | Percentage of built-up area with surface runoff depth more than 0.4 m in urban areas (%) | 0.014 | 1.000 | 0.397 | 0.260 |
Independent Variable | |||||
Proportion of elderly people | Percent of population over 75 years (%) | 0.009 | 0.162 | 0.098 | 0.030 |
Proportion of children | Percent of population under 14 years (%) | 0.023 | 0.143 | 0.097 | 0.019 |
Proportion of immigrants | Percent of immigrant population (%) | 0.015 | 0.728 | 0.325 | 0.138 |
Proportion of agricultural household registration | Percent of agricultural household registration (%) | 0.038 | 0.985 | 0.478 | 0.335 |
Proportion of females | Percent of females (%) | 0.391 | 0.522 | 0.481 | 0.021 |
Percent of low-education population | Percent of low-education population (≤9 years of education) | 0.123 | 0.975 | 0.769 | 0.184 |
Total (People) | Q1: Lowest 20% | Q2 | Q3 | Q4 | Q5: Highest 20% | Q5–Q1: Difference | |
---|---|---|---|---|---|---|---|
Proportion over 75 years old | 699,214 | 16.74% | 19.52% | 18.39% | 19.94% | 25.41% | 8.67% |
Proportion under 14 years old | 727,833 | 16.46% | 19.68% | 22.33% | 21.11% | 20.42% | 3.96% |
Proportion of immigrant population | 2,243,008 | 18.23% | 18.25% | 12.92% | 23.06% | 27.54% | 9.30% |
Proportion of females | 3,709,430 | 15.72% | 19.19% | 20.74% | 20.15% | 24.20% | 8.48% |
Proportion of low-education population | 5,499,171 | 18.12% | 19.88% | 20.89% | 20.17% | 20.93% | 2.81% |
Proportion of resident population | 7,695,187 | 15.74% | 18.95% | 20.76% | 20.55% | 23.99% | 8.25% |
The Whole City | Urban Centre | Suburban Areas | Rural Areas | |||||
---|---|---|---|---|---|---|---|---|
ps | Sig. | ps | Sig. | ps | Sig. | ps | Sig. | |
Proportion over 75 years old (%) | −0.124 | 0.222 | 0.375 | 0.012 * | −0.222 | 0.168 | −0.114 | 0.685 |
Proportion under 14 years old (%) | −0.316 | 0.001 ** | −0.334 | 0.027 * | −0.218 | 0.177 | −0.207 | 0.459 |
Proportion of immigrant population (%) | −0.059 | 0.564 | 0.131 | 0.398 | −0.525 | 0.001 ** | −0.039 | 0.889 |
Proportion of agricultural household registration (%) | −0.467 | 0.000 ** | −0.331 | 0.028 * | −0.140 | 0.388 | 0.029 | 0.919 |
Proportion of females (%) | −0.034 | 0.737 | 0.311 | 0.040 * | −0.230 | 0.153 | 0.211 | 0.451 |
Proportion of low-education population (%) | −0.452 | 0.000 ** | −0.188 | 0.222 | −0.339 | 0.033 * | −0.311 | 0.260 |
Sample size | 99 | 44 | 40 | 15 |
P = 10 | The Whole City | Urban Centre | Suburban Areas | Rural Areas | ||||
---|---|---|---|---|---|---|---|---|
Beta | Sig. | Beta | Sig. | Beta | Sig. | Beta | Sig. | |
Intercept | 0.743 | 0.000 ** | 0.898 | 0.000 ** | 0.425 | 0.000 ** | 0.807 | 0.003 ** |
Urban centre | ||||||||
Suburban areas | −0.257 | 0.010 * | ||||||
Rural areas | −0.159 | 0.035 * | ||||||
Proportion over 75 years old (%) | 0.259 | 0.077 | 0.259 | 0.318 | 0.098 | 0.310 | −0.678 | 0.005 ** |
Proportion under 14 years old (%) | −0.210 | 0.176 | −0.328 | 0.050 | 0.119 | 0.479 | −0.682 | 0.000 ** |
Proportion of immigrant population (%) | −0.064 | 0.667 | 0.077 | 0.686 | −0.280 | 0.010 * | 0.061 | 0.770 |
Proportion of agricultural household registration (%) | −0.177 | 0.031 * | 0.047 | 0.870 | −0.109 | 0.152 | 0.061 | 0.819 |
Proportion of females (%) | −0.021 | 0.865 | −0.041 | 0.827 | −0.141 | 0.001 ** | 0.674 | 0.015 * |
Proportion of low-education population (%) | −0.245 | 0.057 | −1.273 | 0.002 ** | −0.060 | 0.463 | 0.020 | 0.875 |
QIC | 27.936 | 16.232 | 9.685 | 9.365 | ||||
QICC | 21.622 | 16.064 | 14.814 | 14.207 | ||||
∣QIC–QICC∣ | 6.314 | 0.168 | 5.129 | 4.842 | ||||
Sample size | 99 | 44 | 40 | 15 |
The Whole City | Urban Centre | Suburban Areas | Rural Areas | |||||
---|---|---|---|---|---|---|---|---|
Beta | Sig. | Beta | Sig. | Beta | Sig. | Beta | Sig. | |
Intercept | 0.833 | 0.000 ** | 0.809 | 0.000 ** | 0.638 | 0.000 ** | 0.927 | 0.000 ** |
Urban centre | ||||||||
Suburban areas | −0.214 | 0.001 ** | ||||||
Rural areas | −0.132 | 0.035 * | ||||||
Proportion over 75 years old (%) | 0.289 | 0.031 * | 0.365 | 0.122 | 0.051 | 0.805 | 0.103 | 0.780 |
Proportion under 14 years old (%) | −0.127 | 0.385 | −0.155 | 0.401 | 0.262 | 0.089 | −0.816 | 0.009 ** |
Proportion of immigrant population (%) | −0.141 | 0.245 | −0.040 | 0.827 | −0.339 | 0.000 ** | 0.262 | 0.326 |
Proportion of agricultural household registration (%) | −0.248 | 0.002 ** | 0.224 | 0.349 | −0.271 | 0.000 ** | −0.539 | 0.000 ** |
Proportion of females (%) | −0.013 | 0.901 | 0.035 | 0.790 | −0.220 | 0.263 | 0.650 | 0.000 ** |
Proportion of low-education population (%) | −0.238 | 0.074 | −1.225 | 0.000 ** | 0.032 | 0.737 | 0.205 | 0.342 |
QIC | 21.936 | 12.355 | 9.390 | 9.622 | ||||
QICC | 21.171 | 15.239 | 15.034 | 14.195 | ||||
∣QIC–QICC∣ | 0.765 | 2.884 | 5.644 | 4.573 | ||||
Sample size | 99 | 44 | 40 | 15 |
P = 50 | The Whole City | Urban Centre | Suburban Areas | Rural Areas | ||||
---|---|---|---|---|---|---|---|---|
Beta | Sig. | Beta | Sig. | Beta | Sig. | Beta | Sig. | |
Intercept | 0.860 | 0.000 ** | 0.788 | 0.000 ** | 0.755 | 0.000 ** | 1.814 | 0.000 ** |
Urban centre | ||||||||
Suburban areas | −0.148 | 0.083 | ||||||
Rural areas | −0.071 | 0.270 | ||||||
Proportion over 75 years old (%) | 0.214 | 0.134 | 0.334 | 0.087 | −0.032 | 0.914 | −0.212 | 0.530 |
Proportion under 14 years old (%) | −0.001 | 0.997 | −0.019 | 0.915 | 0.381 | 0.098 | −1.228 | 0.001 ** |
Proportion of immigrant population (%) | −0.117 | 0.450 | 0.078 | 0.591 | −0.320 | 0.006 ** | 0.280 | 0.369 |
Proportion of agricultural household registration (%) | −0.229 | 0.015 * | −0.233 | 0.001 ** | −0.193 | 0.001 ** | −0.719 | 0.018 * |
Proportion of females (%) | −0.056 | 0.617 | −0.093 | 0.491 | −0.300 | 0.169 | 0.513 | 0.113 |
Proportion of low-education population (%) | −0.229 | 0.005 ** | −0.501 | 0.000 ** | −0.012 | 0.901 | −0.063 | 0.694 |
QIC | 21.631 | 10.321 | 12.646 | 10.220 | ||||
QICC | 21.330 | 14.937 | 15.407 | 14.360 | ||||
∣QIC–QICC∣ | 0.301 | 4.616 | 2.761 | 4.140 | ||||
Sample size | 99 | 44 | 40 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, H.; Ye, Z.; Zhang, H.; Jiang, B.; Zhang, Y. Social Justice in Urban–Rural Flood Exposure: A Case Study of Nanjing, China. Land 2022, 11, 1588. https://doi.org/10.3390/land11091588
Chen Y, Liu H, Ye Z, Zhang H, Jiang B, Zhang Y. Social Justice in Urban–Rural Flood Exposure: A Case Study of Nanjing, China. Land. 2022; 11(9):1588. https://doi.org/10.3390/land11091588
Chicago/Turabian StyleChen, Yi, Hui Liu, Zhicong Ye, Hao Zhang, Bifeng Jiang, and Yang Zhang. 2022. "Social Justice in Urban–Rural Flood Exposure: A Case Study of Nanjing, China" Land 11, no. 9: 1588. https://doi.org/10.3390/land11091588
APA StyleChen, Y., Liu, H., Ye, Z., Zhang, H., Jiang, B., & Zhang, Y. (2022). Social Justice in Urban–Rural Flood Exposure: A Case Study of Nanjing, China. Land, 11(9), 1588. https://doi.org/10.3390/land11091588