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Abstract: The establishment of a regional historical landslide inventory plays an indispensable role
in landslide assessment and prevention. In this study, based on the Google Earth platform, an
inventory of ancient landslides in Hualong County, Qinghai Province was established. The inventory
includes 3517 ancient landslides with individual areas ranging from 2354.6 m2 to 12.44 km2. The
dominant characteristics include an elevation of 2600–2800 m, slope of 10–20◦, aspects SW, W, and
NW, mudstone and sandstone of Paleoproterozoic, Neoproterozoic and Quaternary loess, 8–10 km
from faults, 0–1 km from rivers, cultivated and grassland types, NDVI of 0.25–0.3, and an average
precipitation in the range of 480–500 mm. In addition, the geometric analysis of landslides shows
that the average height and length of ancient landslides in the study area are 151.92 m and 429.52 m,
respectively. The power law relationship between the two is L = 0.41 × H1.37. The ancient landslide
inventory of this study exhibits an integrated pattern of the development characteristics and spatial
distribution of landslides in the Tibetan Plateau and the upper Yellow River basin, as well as providing
a significant reference for subsequent landslide susceptibility mapping in the area.

Keywords: ancient landslides; remote sensing interpretation; Google Earth; GIS; spatial distribution

1. Introduction

Landslides are a common type of natural hazard and often lead to serious conse-
quences on human lives. According to statistics, 4862 fatal landslides occurred worldwide
from 2004 to 2016, killing a total of 55,997 people [1]. These data significantly demonstrate
that landslides are extremely destructive and hazardous. Therefore, landslide-related re-
search is an important element of disaster prevention and control [2]. Landslides have been
thoroughly and comprehensively studied by researchers worldwide. For example, there are
more than 20,000 articles on landslide research in the Web of Science core database. These
studies include landslide event documentation, stability analysis, numerical simulation,
regional risk assessment, and monitoring and warning [3,4]. These are certainly not all the
research categories, but they do reflect current research trends. In most of these studies, the
establishment of a landslide inventory is the primary and fundamental work [5]. A detailed
and accurate landslide inventory is important in conducting a variety of relevant studies,
including the spatial distribution of landslides [6,7], the impact on landscape evolution [8,9],
and landslide susceptibility mapping [10,11].

Globally, regional inventories of historical landslides have been established in some coun-
tries or regions on different scales, including global, national, regional, or event-specific [12].
For example, the EM-DAT dataset (International Disaster Database) was compiled by KU
Leuven in Belgium [13]. Pennington et al. (2015) established the national landslide database
in the UK, which was subsequently improved by Taylor et al. (2015) [14,15]. Shao et al.
(2020) established a regional landslide inventory in Baoshan City, China [16]. Li et al.
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(2022) analyzed ancient landslides around the Baihetan hydropower plant in China [17].
Tian et al. (2019) and Tsou et al. (2018) analyzed the coseismic landslides triggered by the
2017 Mw6.5 Jiuzhaigou Earthquake and the 2015 Gorkha earthquake [18,19].

Above, China is one of the most frequently mentioned countries with the severe land-
slide disasters. Relevant statistics show that 28,139 people were killed by fatal landslides in
China from 1950–2016 [20]. The high frequency of landslides in the Qinghai province is
attributed to the strong tectonic activity and dramatic topographic changes of the area since
the eastern and western edges are adjacent to the Loess Plateau and the Tibetan Plateau, re-
spectively [21]. Hualong County is located at the northeastern edge of the Qinghai province,
bordering the Loess Plateau and sitting at the intersection of the South Qilian Block and the
West Qinling Block. Futhermore, Hualong County is bordered by the upper reaches of the
Yellow River, yielding a large topographic drop and interlaced tributaries. The above, in
addition to climate, precipitation, stratigraphic lithology, and other environmental factors
enormously facilitated the development of ancient landslides. Numerous studies have
been conducted to investigate landslides occurring around Hualong County. One group of
researchers found 243 landslides through field surveys and evaluated the susceptibility of
landslides using an informative model [22]. Another group carried out a landslide survey
in part of the areas of the upper Yellow River region [23].

However, with the development of technology, the limitations of the methodologies
or techniques utilized in previous studies are gradually emerging. In detail, the selection
of the study areas needs to be reconsidered, most of the interpretable images or platforms
need to be updated, and the methods for building landslide databases require innovation.
The distribution of ancient landslides was in urgent need of updating and improvement.
Therefore, this study examines the visual interpretation of high-resolution satellite images
of the study area based on Google Earth. Finally, it compiles a detailed ancient landslide
inventory map and analyzes the landslide spatial distribution. The results of this study
are important to supporting a subsequent landslide susceptibility analysis and to disaster
prevention and control in the region.

2. Study Area Overview

The study area is located in the upper reaches of the Yellow River, which is also the
transition zone between the Loess Plateau and the Tibetan Plateau, covering a total area
of 2740 km2 (Figure 1). In terms of topography and geomorphology, the study area is
adjacent to the Lajishan Mountains in the north and connected to the Yellow River in the
south. The overall topography from north to south includes the Lajishan Mountain, the
Intermountain Basin, and the Yellow River Valley, showing a stair-stepping pattern. The
regional elevation is between 1824 and 4420 m. Influenced by the overall movement of
the Tibetan Plateau, the tectonic activity in the study area is intense, with mainly NW-SE
strikes. Typical structures are the Lajishan fault zone (DLNR), the Xunhua reverse fault
(XHF), and the Wajiatan reverse fault (WJTF) [24]. In addition, multi-stage sub-mountains,
the Yellow River gorge, and river valley terraces are also present.

The oldest chronological strata in the area are the Paleoproterozoic Hualong group
and the Tuolai group, while the most widely distributed strata are the Neoproterozoic and
Paleoproterozoic sedimentary rocks and the Quaternary sediments. The specific strata
types are elaborated on in the subsequent analysis. With regards to the water system, the
rivers in Hualong County belong to the Yellow River system and have many tributaries.
Hualong County has a highland continental semi-arid climate, and thus receives heavy
precipitation during summer and fall. The precipitation in this region gradually increases
with altitude.
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Figure 1. Topographic map of the study area showing major faults and earthquakes. (a, b) Location 
map of the study area. (c) Regional tectonic map of the study area. The base map of (a) is derived 
from Google Earth. The base map of (b) is derived from https://www.webmap.cn/ (accessed on 15 
October 2022). The water system data in (c) are derived from https://www.webmap.cn/. Historical 
earthquake data were obtained from https://data.earthquake.cn (accessed on 15 October 2022). 
Faults data were obtained from http://dcc.cgs.gov.cn/ (accessed on 15 October 2022). 

According to the statistics based on the data published by the China Earthquake Net-
works Center (https://data.earthquake.cn), the earthquake catalog in the study area is as 
follows (Table 1). 

Table 1. Catalog of historical earthquakes in the study area. 
Date Longitude Latitude Ms 

2/24/1819 102.3 36.1 5.75 

12/22/1968 101.9 36.2 5.4 

6/1/1996 101.78 36.13 2.8 

7/4/1998 101.91 36.1 2.6 

5/5/2004 101.91 36.1 2.4 

10/15/2017 102.22 36.27 2.8 

3. Data and Methodology 
3.1. Remote Sensing Interpretation 

Visual interpretation and automatic extraction based on artificial intelligence are two 
types of common methods for landslide interpretation at present. Undoubtedly, auto-
matic extraction is the most rapidly developing research direction, but this method also 
requires improvement on certain points. For example, different remote sensing image 
types, regional geomorphological features, landslide types, and other factors may affect 
the accuracy of the results [25,26]. Therefore, at present, this type of method is more suit-
able for the rapid assessment of landslides in disaster events [27]. In the current study, 
visual interpretation is still the widely adopted method [28]. For this study, we used suf-
ficient human and time resources to perform a visual interpretation of the study area. The 
obtained database can be enriched with sample sets for automatic extraction models. With 

Figure 1. Topographic map of the study area showing major faults and earthquakes. (a,b) Location
map of the study area. (c) Regional tectonic map of the study area. The base map of (a) is derived
from Google Earth. The base map of (b) is derived from https://www.webmap.cn/ (accessed on
15 October 2022). The water system data in (c) are derived from https://www.webmap.cn/ (accessed
on 15 October 2022). Historical earthquake data were obtained from https://data.earthquake.cn
(accessed on 15 October 2022). Faults data were obtained from http://dcc.cgs.gov.cn/ (accessed on
15 October 2022).

According to the statistics based on the data published by the China Earthquake Net-
works Center (https://data.earthquake.cn, accessed on 15 October 2022), the earthquake
catalog in the study area is as follows (Table 1).

Table 1. Catalog of historical earthquakes in the study area.

Date Longitude Latitude Ms

24 February 1819 102.3 36.1 5.75
22 December 1968 101.9 36.2 5.4

1 June 1996 101.78 36.13 2.8
4 July 1998 101.91 36.1 2.6
5 May 2004 101.91 36.1 2.4

15 October 2017 102.22 36.27 2.8

3. Data and Methodology
3.1. Remote Sensing Interpretation

Visual interpretation and automatic extraction based on artificial intelligence are
two types of common methods for landslide interpretation at present. Undoubtedly,
automatic extraction is the most rapidly developing research direction, but this method
also requires improvement on certain points. For example, different remote sensing image
types, regional geomorphological features, landslide types, and other factors may affect the
accuracy of the results [25,26]. Therefore, at present, this type of method is more suitable
for the rapid assessment of landslides in disaster events [27]. In the current study, visual
interpretation is still the widely adopted method [28]. For this study, we used sufficient
human and time resources to perform a visual interpretation of the study area. The
obtained database can be enriched with sample sets for automatic extraction models. With
the rapid development of remote sensing technology, the advantages of high resolution,
multi-temporal phase, and high spatial coverage make remote sensing interpretation more

https://www.webmap.cn/
https://www.webmap.cn/
https://data.earthquake.cn
http://dcc.cgs.gov.cn/
https://data.earthquake.cn
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convenient and accurate. On this basis, the workspace gradually shifts from 2D to 3D
views, enabling the interpretation of some specific features. The Google Earth platform
provides high- and ultra-high resolution optical satellite images on a global scale (and even
multi-temporal images in some areas), and can observe landscapes from a 3D view, which
is highly adaptable to landslide interpretations [29–31]. The satellite images display a 100%
coverage of the study area and mainly date from August 2012 to December 2020.

Ancient landslide investigations suggested that these landslides reach a steady state
after the initial sliding process and could remain visible for thousands of years. New geolog-
ical events such as earthquakes or rainfalls can lead to the resurrection of ancient landslides
or the occurrence of new landslides in their original locations [32]. Such situations can
also be induced by the recovery of vegetation and human activities. As a result, different
degrees of landslide modifications have been preserved over time. These modifications
have reduced the degree of difference between the tonal texture and other features of the
ancient landslide and its surroundings, but have had little effect on the contours formed by
the ancient landslide, of which the outlines and forms are still clearly visible. Therefore, in
this study, we referred to the relevant judgment criteria to determine the ancient landslides,
mainly adopting the geomorphological and morphological characteristics of landslides
as the basis for judgment [33–35]: (1) the back wall of the landslide is often chair-shaped,
with obvious curved ridge-lines; (2) platform depressions are developed in the middle
and rear of a landslide body, and fissures are distributed in the middle and front edge;
(3) an irregular stair-stepping pattern is distributed on the landslide body; (4) in terms of
plane morphology, the landslide shows curved images, namely, “two ditch troughs with
the same origin”; (5) since the ancient landslides were formed early and often possess a
large scale, groups of residents or cultivated lands may be seen on the landslide; (6) as there
are many water systems in the study area, landslides close to water systems may have
caused historical river-blocking events, and their leading edges may squeeze the rivers;
(7) in the process of remote sensing interpretation, we superimposed multiple types of
geographic elements (e.g., roads, water systems, and townships) in Google Earth, to make
a comprehensively correct judgment and avoid interpretation errors as much as possible.
Figure 2 shows four typical ancient landslide images.

3.2. Environmental Factors

Related research reported that in the Yellow River basin, geological hazards are gen-
erated by the interaction of multiple processes that include geology, geomorphology, and
climate [36]. According to the characteristics of the study area and the purpose of the
study, we selected elevation, slope, aspect, distance from faults, distance from rivers,
NDVI index, precipitation, land type, and stratigraphic lithology as impact factors for
detailed analyses. The DEM data were obtained from “ALOS PALSAR 12.5 m DEM”
(https://search.asf.alaska.edu/) (accessed on 20 October 2022). The data for faults, rivers,
and lithology were obtained from the “Spatial Database of China Land Area 1:250,000 Divi-
sional Constructed Tectonic Map” (http://dcc.cgs.gov.cn/) (accessed on 15 October 2022),
and were further spliced and cropped using GIS to obtain the relevant data in the study area.
NDVI data were obtained from “The NDVI of the Qinghai Province at 500 m Resolution
(2015–2019)” (http://www.geodata.cn/) (accessed on 21 October 2022). These data are
a 16-day synthetic product: one raster was generated every 16 days. It was acquired by
Moderate Resolution Imaging Spectroradiometer (MODIS) for the period 2015–2019 with
a spatial resolution of 500 m. The original data were obtained from the NASA website
(https://ladsweb.modaps.eosdis.nasa.gov/) (accessed on 21 October 2022). After format
conversion, projection conversion, data mosaic, data cropping, and multi-period data
processing using the python language for batch processing to average NDVI values, precip-
itation data were acquired from the “1 km resolution monthly precipitation dataset of China
from 1901 to 2020” (http://www.geodata.cn/). We selected the precipitation data from 2012
to 2020 to calculate the mean values. Land type data were selected from the 30 m resolution
2020 land use data released by the Ministry of Natural Resources of the People’s Republic

https://search.asf.alaska.edu/
http://dcc.cgs.gov.cn/
http://www.geodata.cn/
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.geodata.cn/
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of China (http://www.globallandcover.com/) (accessed on 14 October 2022). Finally, we
interpolated and resampled all the rasters to unify their spatial resolution to 12.5 m.
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Figure 2. Typical landslide images on Google Earth. (a) at 35.98◦ N, 102.39◦ E, (b) at 35.972◦ N,
102.383◦ E, (c) at 36.018◦ N, 102.5◦ E, (d) at 35.96◦ N, 102.42◦ E. The white arrows represent the general
direction of the landslides sliding. The white dashed line is the boundary of the landslides.

Based on the landslide polygon data, we extracted the attribute values of all the
environmental factors through GIS. Thus, the environmental factor values corresponding
to the landslide position were obtained and used for subsequent statistical analysis.

4. Results and Analysis
4.1. Landslide Inventory

This study identified 3517 landslides with a total area of 419.52 km2. Landslide distri-
bution data can be obtained from our Supplementary Material. The overall distribution of
the landslides is shown in Figure 3a. Figure 4 indicates that the landslides are unevenly
distributed with some obvious aggregations. We transferred the landslide polygons to
point elements and conducted a kernel density analysis with a search radius of 10 km. The
results are shown in Figure 3b. It is noticeable that the landslides are mainly clustered in
the south and southeast of the study area. By contrast, in the central and northern areas,
landslides are less prominent.

http://www.globallandcover.com/
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Figure 3. (a) Landslide distribution map and (b) density map.

We conducted field surveys of typical landslides in the area, shot images using UAV
photography, and finally compared them with the corresponding locations on the Google
Earth platform. The significance of this work is two-fold: to adjust certain details of the
interpreted signs we have established to accord better with the actual situation, and to
validate the landslide data we initially obtained, mainly in dense areas. This includes
removing the wrongly interpreted date and adding missing landslides. Figure 4 shows the
field photos of typical landslides.

We measured the area of each landslide and the results are shown in Figure 5. The
average area of the landslides is 119,283 m2, with the largest individual landslide reaching
12.44 km2 and the smallest 2354.6 m2. The frequency density refers to the ratio of the
landslide area value frequency to the interval. The area under the curve represents the
frequency distribution of landslide area values. The cumulative frequency curve reflects
the trend of the relative frequency of landslide area values from 0 to 1. Both curves reflect
that landslide area values between 104 and 105 m2 are the most prominent, consistent with
previous statistical results.
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Figure 4. Typical landslide display map. (a) Enlarged map of the corresponding location in Figure 3.
(b,c) Images of the field landslide at different angles, taken from the corresponding location in (a),
located at 36◦4′48′′ E, 102◦29′59′′ N. (d) Enlarged map of the corresponding location in Figure 3. (e,f)
Images of the field landslide at different angles, taken from the corresponding location in (a), located
at 35◦56′3′′ E, 102◦32′22′′ N.
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4.2. H/L

In several large-scale landslide investigations, the equivalent friction coefficient of
landslides is an essential index for analysis. Mathematically, it refers to the ratio of the
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landslide height (H) to the sliding distance (L). The related analysis of the dominant
factors of landslides in the upper Yellow River has suggested that landslides dominated by
earthquakes and rainfalls differ distinctly in both planform and movement patterns [37]. In
related research regarding landslides in mountainous areas of southwest China, landslides
were divided into three classes according to the formation mode [38]. The equivalent
friction coefficient associated with rocky collapse is greater than 0.6, while that of high
remote landslide-debris flow hazard is less than 0.33. In this study, we set the elevation
difference of the landslide area as H and set the length of its planar geometry as L. Figure 6
shows the H-L scatter plot and fitted curve, in which the landslide height ranges from 13 to
786 m, with an average height of 151.92 m. In addition, the sliding distance of the landslide
ranges from 75.64 to 5497.24 m, with an average of 429.52 m. Related studies have shown
that H and L of landslides have a power function or linear relationship [39,40], the former
of which was employed in this study for curve fitting. The obtained fitting results are
expressed as Equation (1):

L = 0.41× H1·37 (1)
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Figure 7 shows the probability distribution of H/L values. The values are concentrated
between 0.3 and 0.4, illustrating that the ancient landslides in the study area were highly
mobile, similar to the results obtained by Zhuang et al. (2022) [41], who studied all the
non-seismically triggered landslides across the Loess Plateau. Related studies have shown
that the equivalent friction coefficients of high-speed remote landslides range from 0.1
to 0.3 [42,43]. In terms of triggering factors, earthquake-triggered landslides or those
greatly affected by earthquakes have higher H/L values than rainfall-triggered landslides
at the same scale [44]. One group of researchers conducted a statistical analysis of ancient
landslides in Lvliang, China [45]. This region has a typical Loess Plateau landscape with
few historical earthquakes. Their results showed that the H/L values were concentrated in
the range of 0.2–0.25, probably attributable to the high water content of the soil. Related
studies analyzed the coseismic landslides triggered by the 2015 Nepal earthquake [46]. In
their study, the mean value of H/L was 0.7. By studying the 2017 large landslide in Maoxian
County, Sichuan Province, China, studies suggested that it took place in a strong seismic
zone and and was affected by two large earthquakes. After calculation, they obtained an
equivalent friction angle of 23◦ and a converted H/L value of 0.42 [47]. Studies on the
morphology of coseismic landslides triggered by the 2018 Palu earthquake in Indonesia
obtained a mean H/L value of 0.56 [48]. Following these previous studies, we tentatively



Land 2023, 12, 136 9 of 17

concluded that most of the landslides in the study area are high-speed remote landslides,
which are more strongly influenced by factors such as topography and geology. The H/L
of landslides in the study area is closer in terms of numerical distribution to that of rainfall-
triggered landslides. To accurately determine the main trigger of landslides, it would be
necessary to consider additional factors such as the hydrogeological conditions of slopes,
precipitation intensity, and seismic parameters in subsequent studies.
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4.3. Spatial Distribution

In this step, we aimed to divide the impact factors into different sections. The total
area of each section may demonstrate many differences, thus affecting the number and area
of landslides within the section. For this purpose, we primarily chose landslide number
density (LND) and landslide area percentage (LAP) as the two indicators to evaluate
landslide abundance [49], and thereby evaluate the spatial distribution characteristics of
ancient landslides in Hualong County.

LND =
Landslidenumber

Theclassi f icationareao f the f actorinterval (CA)
(2)

LAP =
Landslidearea

Theclassi f icationareao f the f actorinterval (CA)
(3)

4.3.1. Topographic Factors

The lowest elevation of the landslide site is 2040 m, while the highest is 3872 m.
Therefore, to divide the elevation range into ten intervals, we set 2000 m as the starting
point and 200 m as the interval. The statistical results are shown in Figure 8. From
2600 to 2800 m, both LND and LAP reach the maximum value of 2.42 km−2 and 28.16%,
respectively, and the total area of this interval is 531.95 km2, indicating that the number
and area of landslides in this interval are significantly larger than those in other intervals.
According to statistics, 1289 landslides developed in this interval with an area of 149.8 km2,
accounting for 36.65% and 35.71% of the total, respectively.
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Figure 8. Relationship between elevation and landslide distribution. (a) Elevation distribution in the
study area. (b) Statistics of landslide indicators in the elevation intervals.

The slope of the study area ranges from 0–80.27◦, but the highest slope angle of the
landslide area reaches 48.77◦. Thus, we only considered slopes within 0–50◦, with a 10◦

interval. The corresponding results are shown in Figure 9. In the slope interval of 10–20◦,
both LAP and LND reach their peaks at 27.24% and 1.76 km−2, respectively. In addition, it
is to be noted that landslides are dominantly developed in the interval of 20–30◦. The LAP
and LNP are 12.36% and 1.61 km−2, respectively, second only to the above-peak ones.
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The due north direction is set as 0◦, and 10◦ is used as an interval for statistical analysis.
The results are shown in Figure 10. In the slope intervals of 0–10◦, 40–50◦, 90–100◦, 130–140◦,
220–230◦, 270–280◦, and 310–320◦, the landslides are very developed compared with those
in other intervals. Among them, the maximum LAP value is located within the interval of
270–280◦, reaching 109.21%. This is due to the development of large individual landslides
in the interval. Large individual landslides may cover multiple slopes rather than a single
one, but in the statistics, we selected the slope with the largest proportional area as its
property. The maximum LND value is 5.93 km−2, which occurs in the interval of 310–320◦.
In addition, landslide number and landslide area reach their maximums in the interval of
220–230◦ and 270–280◦, peaking at 429 and 70 km2, respectively. After associating the slope
to specific directions, we found that landslides developed predominantly in the SW, W, and
NW directions.
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4.3.2. Geological Factors

The earliest dated strata in the study area are the Paleo-Proterozoic Hualong group
and the Tuolai group, while the most recent are the multi-type sediments of the Quaternary
Holocene. Due to the complex lithology, we divided the interval by stratigraphic age. The
detailed classification is shown in Table 2. The statistical results are shown in Figure 11.
In the stratigraphic intervals of the Paleogene and Neogene strata, the LAP and LNP
values are much higher than those in other intervals. In the Neogene strata, the maximum
LAP value reaches 24.81%, while the maximum LND value (2.36 km−2) is observed in the
Paleogene strata.

Table 2. Descriptions of categorized lithology in the study area.

Lithology No. Stratum Main Lithology Description

Pt1 Paleo-Proterozoic Gneiss, Marble Schist, Amphibolite
Є Cambrian Andesite, Basalt
O Ordovician Andesite, Basalt, Slate, Sandstone
S Silurian Shale, Sandstone, Conglomerate, Andesite, Basalt
D Devonian Conglomerate, Sandstone, Breccia
T Triassic Slate, Limestone
K Cretaceous Mudstone, Sandstone
E Paleogene Siltstone, Mudstone, Gypsum

N Neogene Mudstone, Siltstone, Sandstone,
Conglomeratic sandstone

Q Quaternary Quaternary deposits, Loess
γ Pre-Jurassic Granite, Amphibole
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The farthest landslide from the faults occured at a distance of 15,040 m. Given that
these distant faults only exert a limited impact on landslides, we combined the intervals
above 10 km into a single interval, while the remaining intervals were set to 2 km. The
statistical results are shown in Figure 12, in which the area in the region 0–2 km from the
faults is very high, reaching 1094.1 km2. This is related to the widespread distribution of
the fault, which to some extent causes the low LAP and LND values therein. The LND
reaches its maximum (1.62 km−2) in the region that is 4–6 km from the faults, while the
LAP reaches its maximum (24.52%) in the 8–10 km range.
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Figure 12. Relationship between the distance from the faults and the landslide distribution. (a) The
distribution of the distance from the faults in the study area. (b) Statistics of landslide indicators in
the intervals of the distance from the faults.

The study area is characterized by multiple types of land, including cultivated land,
forest land, grassland, shrubland, wetland, water bodies, tundra, artificial surface, bare land,
and glacial snow. However, those occupied by landslides are only cultivated land, forest
land, grassland, and shrubland. We categorized the four types of land into four sections and
compiled the statistical results, as shown in Figure 13. It is noticeable that in the grassland
section, both LND and LAP reach their maximum at 1.7 km−2 and 18.09%, respectively.
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4.3.3. Hydrological and Ecological Factors

The maximum mean annual precipitation in the study area is 667.23 mm. Specifi-
cally, in the region occupied by landslides the maximum and minimum precipitation are
639.21 mm and 444.78 mm, respectively. Therefore, we selected 440 mm as the starting
point and 20 mm as the interval, obtaining 10 intervals. The statistical results are shown
in Figure 14, in which LND, LAP, and CA all initially increase and subsequently decrease.
Both LND and LAP reach their maximum in the interval of 480–500 mm, being 2.6 km−2

and 33.93%, respectively.
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precipitation intervals.

As the study area is located in the Yellow River basin, rivers are widely distributed.
The farthest landslide from the rivers occured at a distance of 5200.96 m. As there were only
42 landslides with a distance greater than 4 km, we set 1 km as the interval and combined
the regions with distances larger than 4 km into one single interval. The statistical results
are shown in Figure 15, in which the overall interval area gradually decreases with the
increase of the distance from the rivers, but the variations of LAP and LNP are complicated.
LAP reaches its maximum (16.82%) within 0–1 km from the rivers, while LND reaches its
maximum (1.52 km−2) within 3–4 km.
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In addition, vegetation is an important factor affecting the occurrence of landslides,
and the NDVI index can effectively reflect the degree of vegetation. In the study area, the
NDVI index ranges from −0.13 to 0.55, while the index in the landslide-distributed region
ranges from 0.12 to 0.48. Therefore, we set 0.1 as the starting point and 0.05 as the interval.
The statistical results are shown in Figure 16, where LND and LAP reach their maximum
values at 2.49 km−2 and 34.89%, respectively, in the interval of 0.25–0.3.
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5. Discussion

In terms of topographic factors, landslides were predominantly distributed in the
elevation of 2600–2800 m. Other researchers obtained similar results [50], that is, landslide
elevation values are mainly concentrated between 2000–2800 m, especially 2400–2800 m.
This elevation range corresponds to a low mountainous hilly area, adjacent to the river
valley alluvial plain. We suggest that the strong downcutting of the Yellow River and the
anadromous erosion of the tributaries have an important influence on landslide develop-
ment in this area. Additionally, the slope of the landslides in the study area is concentrated
at 10–20◦, partly consistent with the 15–20◦ obtained in previous research [50]. This small
slope bias is common in ancient landslide studies. Since large ancient landslides are formed
early, they may slide again or slowly migrate in the case of instability, thus decreasing the
landslide slope. With regard to aspect, landslide development is most prominent in the SW,
W, and NW directions, and most of the faults in the study area are oriented in the NW-SE
direction. Thus, we suggest that landslides are controlled by a variety of environmental
factors, in addition to fault activities.

In terms of stability, the surface of mudstone is strongly weathered and is prone to
softening and disintegration when exposed to water. By contrast, the lower intact mudstone
or sandstone is a relative water barrier, and a soft structural surface is easily formed above
this layer [51]. Loess has large pores and vertical joints with good permeability, and
thus is prone to softening and sliding when exposed to water [52]. All these properties
provide favorable conditions for the development of landslides. Most of the land types
in Hualong County are cultivated land, grassland, and forest land. Landslides mainly
develop within the grassland and arable land categories, possibly related to agricultural
irrigation. Due to long periods of agricultural irrigation, groundwater in the loess area is
influenced by irrigation recharge, and the water level continues to rise, resulting in the
gradual deformation of soil at the foot of the slope, causing slope instability. For this type
of landslide, the most affected area is the Heifangtai area in Lanzhou City [53].

Precipitation is another important factor in triggering landslides [54]. In our study area,
landslides were mainly concentrated in the average precipitation range of 480–500 mm.
NDVI represents the degree of vegetation, and landslide development is dominant in
the NDVI value range of 0.25–0.3. Related studies have shown that in Hualong County,
the precipitation increases with the increase of vertical elevation. Therefore, a possible
interpretation can be proposed: the vegetation in the low-elevation hilly area is sparse
with strong soil erosion. The heavy precipitation from the high-altitude northern mountain
range area inevitably converges to the southern hilly area, and the surface water flow
results in strong erosion. As a result, the mountain slope forms a steep slope or free faces
therein, which in turn leads to slope destabilization and eventually triggers landslides.

The regularity of landslide distribution is not obvious in the analysis of the fault and
river factors. If we consider only the number and area, then we get a gradually decreasing
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trend, but this is not objective. We must admit that both LND and LAP have high values in
intervals far from the factors. We consider this to be a reflection of the limited degree of
influence of the factor, but also an indication of the complexity of landslide genesis in the
region. This complexity will be the main object of future study.

6. Conclusions

Based on the Google Earth platform, an inventory of ancient landslides in Hualong
County, Qinghai Province, China was deciphered and established. In total, 3517 landslides
were identified in the study area, covering an area of 419.52 km2. The average area of the
landslides was 119,283 m2, among which the largest individual landslide had an area of
12.44 km2, and the smallest 2354.6 m2.

This study showed that the 2600–2800 m elevation range is the landslide-prone zone,
and the slope of the landslides is concentrated in the range of 10–20◦. Furthermore,
landslides with SW, W, and NW aspects are predominant. Mudstone and sandstone of the
Paleoproterozoic and Neoproterozoic systems and Quaternary loess form the main strata
in the landslide occurrence area. Landslides are concentrated within 8–10 km from the
fault and 0–1 km from the rivers. Cultivated land and grassland are the main land types in
landslide occurrence areas. Finally, landslides are predominantly concentrated in the areas
with an NDVI from 0.25 to 0.3, average precipitation from 480 to 500 mm, and an elevation
ranging from 2600 to 2800 m.

Geometric analysis of landslides showed that the average height and length of the
ancient landslides in the study area were 151.92 m and 429.52 m, respectively. The regression
relationship (L = 0.41 × H1.37) was obtained by fitting the heights (H) and lengths (L).
The inventory of ancient landslides in Hualong County established in this study can
provide a reference value for the mapping and hazard evaluation of landslide susceptibility
in the area and is critical for understanding the long-term influence of landslides on
geomorphic evolution.

Supplementary Materials: Landslide vector data interpreted in this study can be downloaded from
https://www.mdpi.com/article/10.3390/land12010136/s1.
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