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Abstract: Coastal areas are usually considered as pioneering areas for economic development and
reform due to their unique geographical locations and ecological conditions. Correspondingly, rapid
urbanization in coastal urban agglomerations has resulted in population concentration and land
use/cover change (LUCC), leading to the decline of habitat quality and biodiversity. However, few
studies have quantitatively explored the impacts of urban agglomeration expansion in coastal zones
on habitat quality. Taking the Guangdong-Hong Kong-Macao-Great Bay Area (GBA) as a case study,
we applied the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to assess
the habitat quality based on land use data obtained from remote sensing images from 1980 to 2020
and developed a geographically weighted regression model to quantitatively analyze the response of
habitat quality to urbanization. The results showed that (1) LUCC in the GBA was dramatic from
1980 to 2020, dominated by the shift from various land use types to construction land, which led to
increased fragmentation; (2) the overall habitat quality showed a decreasing trend, characterized by
low values in the central part and high values in the surrounding area; (3) population and construction
land such urbanization elements had a more significantly negative effect on habitat quality changes,
while the relationships among slope, road distance, and habitat quality changes were complex. Based
on above analysis, this paper suggests that future land management in the GBA should develop in
the direction of intensification, refinement, and regional integration.

Keywords: urbanization; habitat quality; InVEST model; geographically weighted regression;
coastal area

1. Introduction

Coastal zones are interaction areas between terrestrial and marine ecosystems [1].
Their unique geographical locations and abundant natural resources make them important
biological habitats, as well as key zones for urbanization and economic development [2].
With the continuous advancement of urbanization, land use changes caused by population
concentration and industrial and infrastructure construction have led to habitat fragmen-
tation and loss, thereby affecting biodiversity [3–6]. Furthermore, this trend has been
getting worse over the past years [7]. Previous studies have suggested that coastal cities are
expanding exponentially [8] and the loss of ecosystem services is particularly prominent in
coastal zones [9]. Therefore, it is necessary to understand the state and variation process
of habitat quality in coastal agglomerations and then to analyze the mechanism of habitat
quality degradation due to urban expansion [10].

Land use and land cover change (LUCC) is the main threat to biodiversity loss, which
is closely related to habitat quality decline [3,4,11]. Habitat quality is a core indicator of
eco-environmental level [12]. Relevant studies are mainly based on LUCC, investigating the
spatial and temporal evolution of habitat quality [13], taking scene simulations using urban

Land 2023, 12, 34. https://doi.org/10.3390/land12010034 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12010034
https://doi.org/10.3390/land12010034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0003-4972-3595
https://doi.org/10.3390/land12010034
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12010034?type=check_update&version=1


Land 2023, 12, 34 2 of 24

expansion models (e.g., the Conversion of Land Use and its Effects at Small Region Extent
model and the Cellular Automata model) [14,15], constructing regional ecological security
patterns [16], and predicting the future direction of ecological patterns [17]. Researchers
have found that the unpromising LUCC trend (i.e., the rapid increase of construction
land and significant decrease of wetlands) has a close relationship with socio-economic
development [1,18]. What deserves to be noticed is that this pattern is the result of rapid
urban expansion [1]. In addition, urbanization also results in the decrease of landscape con-
nectivity and the increase of fragmentation [19,20]. Studies on habitat landscape changes
in cities are critical for biodiversity conservation [19,21]. Landscape analysis focuses on
the type, shape, distribution, and arrangement of ecosystem components under differ-
ent land cover conditions, which can reveal the urbanization effect on habitats inspatial
dimension [14,18,22]. Different from other methods for monitoring variations in land-
scape patterns, i.e., land use models and remote sensing, the landscape index can provide
precise information about landscape configuration and patterns [14,23]. It is a common
method for quantitatively describing landscape fragmentation, diversity, and structure.
However, while most researchers have explored the impacts of LUCC on habitat quality,
study on spatial heterogeneity at a landscape level is scarce [22]; This issue needs to be
addressed [22,24,25].

Habitat quality refers to the capacity of an ecosystem to provide the conditions for
species to survive and multiply, reflecting the level of ecosystem services as an important
aspect of biodiversity [26–28]. Habitat quality assessments have become an important
component in assessments of ecosystem services [7]. They can help us understand the
carrying capacity of regional ecosystems and the welfare gained by humans, making it
possible to construct a sustainable management pattern [5,29]. Calderon and An analyzed
the effects of pool, riffle, and run ecosystems on fish [30]; Cuffney et al. assessed the
responses of benthic macroinvertebrates to urbanization and LUCC by field reconnaissance
and according to various indicators [31]. Previous studies on biodiversity have mainly
been conducted in the form of field surveys. Due to its high cost in terms of time and labor,
this method is not suitable for large-scale studies [32]. In recent years, with progress in
computer technology, GIS, and remote sensing technology, more attention is being paid
to the dynamic monitoring of habitat quality on a large scale [12,25]. In this regard, there
are two common methods: the first adopts an index system, e.g., the analytical hierarchy
process, fuzzy comprehensive evaluation, and artificial neural networks [33–35]; the second
includes ecosystem models, such as the Habitat Suitability Index model, Social Values
for Ecosystem Services model, Integrated Valuation of Ecosystem Services and Trade-offs
(InVEST) model [36–38], etc. Among them, the InVEST model generates habitat quality
maps based on LUCC and the distribution of threat factors [39,40]. It is widely used to
quantify habitat quality in different regions and on different scales due to its ease of use
and flexible output [41,42].

Rapid coastal urbanization in recent years has profoundly affected land use patterns,
resulting in the reduction of ecological land; this trend will continue [7]. Therefore, the
influence of human activities, especially urbanization, on coastal ecosystems has become
a hot spot in recent years. Numerous studies have explored the impact of coastal ur-
banization on regional ecosystems from the perspectives of ecological patterns, land use,
and landscapes. Mayer-Pinto et al. investigated the structure and function of microbial
communities in artificial and natural coastal environments [43]. They focused on how the
differences between the two ecosystems were reflected in biodiversity changes. Dupras
et al. studied the variation of ecosystem services on the Mediterranean coast based on
LUCC [44]. Aguilera et al. investigated the effects of urbanization on coastal ecosystem
spatial connectivity from a landscape pattern perspective [45]. More and more studies have
shown that urbanization has led to coastal ecosystem degradation. Therefore, land use
optimization seems to be necessary in urban construction. Common methods with which
to analyze the influence of urbanization on habitat quality include correlation analysis [46],
regression model [45], and index appraisal [1]. These approaches are appropriate for solv-
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ing questions about the impact of a single factor (e.g., land use conversion) on habitat
quality but are not suitable for analyses of the extent and direction of natural and social
factors in the process of urbanization. Some studies have noted that habitat loss caused by
LUCC is the result of interactions between natural ecosystems and humans. Such influ-
ences of LUCC are usually spatially autocorrelated because of their similar geographical
environments [47]. The geographically weighted regression (GWR) model introduces the
location attributes into regression analysis; it is a robust method for solving problems about
spatial heterogeneity [48,49]. Currently, the GWR model is being used in various spatial
correlation studies. Su et al. analyzed the spatial changes between agriculture landscape
and urbanization; those authors noted that the GWR model has better explanatory accuracy
and yields richer information [50]. Shearmur et al. also used it to explore the spatial and
temporal differences behind the reasons for employment growth in Canada, showing that
the model has strong explanatory power for socioeconomic problems [51].

The Guangdong-Hong Kong-Macao Greater Bay Area (GBA), which borders on the
South China Sea, is one of the most economically open and active regions in China. Over
the past four decades, it has experienced rapid urbanization and dramatic LUCC, which
has placed increasing pressure on regional ecological areas and biodiversity [52–54]. To this
end, taking GBA as a case study, the aim of this study is to fill in the gap in habitat quality
assessments during the period of rapid coastal urbanization. The research objectives of this
study are: (1) to analyze the rate and direction of land use changes in GBA; (2) to investigate
the landscape pattern features and variation tendency; (3) to explore the spatial-temporal
evolution characteristics of habitat quality from 1980 to 2020; and (4) to quantitatively
reveal the impact of coastal urbanization on habitat quality based on the dimensions of
nature and society.

2. Materials and Methods
2.1. Study Area

The GBA (21◦17′ N–23◦55′ N, 111◦59′ E–115◦25′ E) is a cluster of nine cities in Guang-
dong Province, namely, Guangzhou, Jiangmen, Zhaoqing, Zhuhai, Shenzhen, Huizhou,
Dongguan, Foshan, and Huizhou, as well as the two special administrative regions of Hong
Kong and Macao. It is located in southern China, at the intersection of the Pearl River and
the South China Sea, with a long coastline and vast maritime area (Figure 1). The GBA
covers approximately 56,000 km2. The east, north, and west sides are surrounded by hills,
with plains in the center and southeast. GBA is the fourth largest bay area in the world
after the New York Bay Area and the San Francisco Bay Area in USA and the Tokyo Bay
Area in Japan. As such, it is an important carrier for the country to construct a world-class
city cluster and participate in global enterprise. In 2020, the total population of the GBA
exceeded 86 million, the regional gross domestic product (GDP) reached 166.88 billion dol-
lars, and the urbanization rate reached over 80% (Guangdong Provincial Bureau Statistics
and Survey office of the National Bureau of Statistics in Guangdong, 2021). The “Outline
Development Plan for the GBA”, released in 2019, pointed out the need to develop an
international first-class bay area for living, working, and travelling, which underlined the
urgency of the eco-environmental protection.
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Figure 1. Location of the study area. DG: Dongguan; FS: Foshan; GZ: Guangzhou; HK: Hong Kong;
HZ: Hhuizhou; MC: Macao; JM: Jiangmen; SZ: Shenzhen; ZH: Zhuhai; ZS: Zhongshan; ZQ: Zhaoqing.

2.2. Data Sources and Preparation

The datasets in this study mainly included the following three aspects:

1. Land use data: Land use data of study area for 1980, 1990, 2000, 2010, and 2020 were
obtained from the Land use and Land Cover of China (CNLUCC) data provided
by the Resource Environment Science and Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn/, accessed on 1 July 2022), with a spatial resolution
of 30 m. CNLUCC data based on Landsat TM series remote sensing images were
processed using the supervised classification method, with an accuracy of more than
90% [55]. According to the present research needs and the Chinese land resource
classification system, we reclassified the original land cover types into six categories:
cultivated land, forestland, grassland, water bodies, construction land, and unused
land. The spatial distributions of land use types in the GBA from 1980 to 2020 are
displayed in Figure 2.

2. Socioeconomic data: Raster datasets of population density in 1990, 2000, and 2010 were
obtained from the same source as above, with a spatial resolution of 1 km (Figure 3a–c).
For the missing data, we calculated the weights of each district and county, referred to
statistical yearbooks, and completed them according to adjacent years. The vector data
of administrative boundaries and roads came from the National Geomatics Center
of China (https://nfgis.nsdi.gov.cn/, accessed on 1 July 2022). Considering that the
changes of roads were not obvious during a certain period, we only chose Road I
and II in two periods (Figure 3d), corresponding to the periods of 1980–2000 and
2000–2020, respectively.

https://www.resdc.cn/
https://nfgis.nsdi.gov.cn/


Land 2023, 12, 34 5 of 24

3. DEM data: SRTM elevation data, with a spatial resolution of 30 m, were obtained
from the official website (https://earthexplorer.usgs.gov/, accessed on 1 July 2022).
The slope data of study area were generated from DEM, as shown in Figure 3e.
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2.3. Methods
2.3.1. Analysis of Land Use Change

Land use transfer matrices can quantitatively describe the land use type and status
in a certain period. We used the overlay analysis tool in ArcGIS to calculate the land use
transfer matrix for different periods and analyzed the intensity of land use changes based
on the land use dynamic degree.

A single land use dynamic degree represents an increase or decrease of a specific land
use type area during the study period [56]. The calculation formula is as follows:

K =
LUb − LUa

LUa
(1)

where LUa and LUb denote an area of the same land use type at the beginning and end of
the study period, respectively.

Comprehensive land use dynamic degree (LC) quantitatively describes the land use
change rate in a particular period, reflecting comprehensive changes in land use area [32,57].
The formula is as follows:

LC =
∑n

i=1 ∆LUij

2 ∑n
i=1 LUi

× 1
T
× 100% (2)

where LUi represents the land use area at the initial time and ∆LUij represents the land use
area converted from type i to type j within period T.

2.3.2. Landscape Index

It is essential to consider whether the indices are independent when selecting them. In
order to describe the fragmentation, aggregation, dominance, and diversity of landscapes,
we selected indices at the class and landscape levels, as shown in Table 1 [58], which were
calculated in the Fragstats 4.2 software.

Table 1. Landscape indices used in this study.

Landscape
Metrics Formula Description

Class level

Number of patches (NP) NP = ni, where ni is the number of
patches of type i

NP ∈ [1 , +∞) reflects the spatial pattern
of a landscape and has a positive
correlation with fragmentation.

Mean patch size (MPS) MPS =
∑n

j=1 aij

ni
, where aij is the area of

patches of type i
MPS ∈ (0 , +∞); the lower the value, the

greater fragmentation of patch class.

Largest path index (LPI) LPI =
max(aij)

A × 100%, where A is total
area

LPI ∈ (0 , 100] refers to the ratio of the
largest patch area to the total landscape

area. Its value can characterize the
dominance of a given landscape type.
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Table 1. Cont.

Landscape
Metrics Formula Description

Landscape
level

Patch density (PD) PD = N
A , where N is the is the total

number of patches in the landscape

PD ∈ (0 , +∞]; a higher value means
more patches per unit area and greater

fragmentation.

Perimeter-area fractal
dimension (PAFRAC)

PAFRAC =
2

N ∑m
i=1 ∑n

j=1(ln pij×ln aij)−∑m
i=1 ∑n

j=1 ln pij×∑m
i=1 ∑n

j=1 ln aij

N ∑m
i=1 ∑n

j=1 ln pij
2−∑m

i=1 ∑n
j=1 ln pij

PAFRAC ∈ [1 , 2] describes the
complexity of the landscape. When the
value tends to 1, it means that the patch

shape is simple.

Aggregation index (AI)
AI = gii

max→gii
, where gii is the number

of similar neighboring patches of a
given landscape type

AI ∈ (0 , 100] examines the degree of
clustering of classes within a landscape;

the smaller the value, the higher the
dispersion degree.

Shannon’s diversity index
(SHDI)

SHDI = −∑m
i=1 Pi ln Pi, where Pi is the

probability of the occurrence of
landscape patch type i in the landscape

SHDI ∈ [0 , +∞) reflects the richness of
each patch type within the landscape.

2.3.3. Habitat Quality Assessment Model

The InVEST habitat quality model assesses habitat quality and the threat degree to
biodiversity based on LUCC, which is reflected in the habitat quality index, ranging from 0
to 1; the larger the value, the better the habitat quality. The formula is as follows:

Qxj = Hj

[
1−

(
Dz

xj

Dz
xj + kz

)]
(3)

where Qxj is the habitat quality of grid x in land use type j; Hj is the habitat adaptability
of land use type j; z and k are the normalization constant and half-saturation constant,
respectively; and Dxj is the habitat degradation degree, defined as follows:

Dxj =
R

∑
r=1

Yr

∑
y=1

(
ωr

∑R
r=1ωr

)
ryirxyβxSjr (4)

where R and Yr indicate the number of threat factors and grids, respectively; ωr is the
weight of threat factor r; ry is the threat value of grid y; irxy indicates the impact of threat
value ry in grid y on habitat grid x; βx is the anti-interference level of the habitat; and Sjr is
the relative sensitivity of habitat type j to threat factor r.

There are two attenuation methods for irxy, represented by the following equations:

Linear attenuation : irxy = 1−
(

dxy

dr max

)

Exponential decay : irxy = exp
[
−
(

2.99
dr max

)
dxy

]
where dxy is the distance between habitat grid x and threat grid y and dr max is the maximum
impact distance of threat factor r.

The input parameters of the InVEST model include land use maps for each period,
threat factor data (including maximum impact distance, weight, and degradation type),
threat factor maps, sensitivity of land use types to each threat, and the level of legal
protection from disturbance in each grid. In this study, we considered all grids in the study
area to be equally protected and mainly considered the effects of other parameters.

With this model, it is first necessary to distinguish the habitats. As reflections of human
activity, construction land and cultivated land can both lead to habitat fragmentation,
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threatening the natural ecosystem to a certain extent. Therefore, we defined cultivated
land, construction land, and unused land with low vegetation coverage such as sand, bare
ground, and bare rocky land as threat sources, and forestland, grassland, and water bodies
as habitats.

The parameters to be adjusted according to the specific conditions in the study area
include the maximum impact distance (i.e., the weights) of threat factors, the suitability
scores of different land use types, and the sensitivity to threat sources, which were deter-
mined based on the model guidebook and research results from other scholars [16,39,59,60].
The specific parameters are shown in the Tables 2 and 3.

Table 2. Threats and their maximum influence distances and weights.

Threat Factors dr max/km Weight ωr Distance-Decay Function

CT 8 0.5 linear
UL 10 1 exponential
RS 8 0.8 exponential

OCL 9 0.9 linear
UL 5 0.3 exponential

Table 3. Habitat suitability and sensitivity of each land use type.

Land Use Types Suitability CT UL RS OCL UL

CT 0.5 0 0.7 0.5 0.6 0.3
WL 1 0.7 0.9 0.7 0.8 0.3
SH 1 0.6 0.8 0.6 0.7 0.2
SP 1 0.5 0.7 0.5 0.6 0.2

OWL 0.8 0.4 0.7 0.5 0.6 0.2
GL 0.9 0.5 0.8 0.7 0.8 0.4
RV 1 0.7 0.9 0.7 0.8 0.2
LK 1 0.7 0.9 07 0.8 0.2
RE 1 0.3 0.5 0.3 0.4 0.2
TD 1 0.8 1 0.8 0.7 0.2
FA 0.8 0.8 1 0.8 0.7 0.3
UL 0 0 0 0 0 0
RS 0 0 0 0 0 0

OCL 0 0 0 0 0 0
UL 0.3 0.3 0.5 0.4 0.5 0
SA 1 0.2 0.6 0.4 0.5 0.1

CT: cultivated land; WL: woodland; SH: shrubbery; SP: sparse woodland; OWL: other woodland; GL: grassland;
RV: rivers; LK: lakes; RE: reservoir; TD: tidal; FA: flat; UL: Urban land; RS: rural settlement; OCL: other construction
land; UL: unused land; SA: sea.

2.3.4. Quantitative Analysis of the Impact of Urbanization

1. Fundamental principle

Regression analysis is a common method to explore relationships among variables.
As a global regression, ordinary least squares (OLS) is based on the minimum estimated
residual sum of squares to determine the regression model. It can be stated as:

y = β0 +
k

∑
i=1
βixi + ε

where y is the explanatory variable; β0 is the intercept; βi is the regression parameter
coefficient of independent variable xi; ε is the random error term fitted to the normal
distribution; and k is the number of independent variables.

Due to the different natural geographic conditions, regulatory policies, and effects
across the study area, the impacts of urbanization on habitat quality are complex and
changeable. In other words, the drivers of urbanization are spatially heterogeneous. The
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GWR model introduces the location attributes as distances based on weights into the
regression equation, which can describe the spatial non-stationary nature of urbanization
factors more precisely and make the results more reliable. Therefore, with each regression
point as a center, this study established local regression equations for GWR analysis within
a certain radius. It can be expressed as:

yi = β0(ui, vi) +
k

∑
j=1
βj(ui, vi)xij + εi

where (ui, vi) is the geographic coordination for location i; βj(ui, vi) represents the regres-
sion coefficient for independent variable xj at location i; β0(ui, vi) is the intercept; and εi is
the random error term where εi ∼ N

(
0,σ2).

The regression coefficient at position (ui, vi) is given by β̂(ui, vi):

β̂(ui, vi) =
(

XTW(ui, vi)X
)−1

XTW(ui, vi)Y

where W(ui, vi) is the spatial weight matrix.
The calculation of weights depends on the distance decay function. Gaussian function

is one of the commonly used methods, which can be stated as:

ωij = exp
(
−

dij

b

)2

where dij is the distance between sample points i and j; and b is the bandwidth.
Bandwidth is the distance band for each local regression equation. It directly affects

the fitting accuracy of the model and is perhaps the most important parameter to consider
for GWR [61]. This study adopted the AICc method to determine the optimal bandwidth
with the minimum AIC value.

2. Model construction

Natural elements and human activities are key factors contributing to habitat quality
differentiation [53]. Firstly, terrain is generally considered to affect the density, scale, and
spatial distribution of urban land [62]. Since the terrain of the study area showed obvious
ring-shaped features, we considered slope as a geographical determinant of urban expan-
sion when analyzing the direct influence of natural factors on habitat quality. Secondly,
socioeconomic indicators reflect the intensity of human activities, which indirectly affect
habitat quality. Among them, land urbanization, population urbanization, and transporta-
tion are the driving force, core, and carrier of urbanization, respectively [63]. Therefore, we
selected the construction land area, population, and road distances as socioeconomic factors.
In other words, taking the changing values of habitat quality as dependent variables, the
slope, changes in construction land area, population, and road distances in different periods
were chosen as explanatory variables to establish the regression model.

In order to unify the resolution, we used ArcGIS to create fishing grids with a spatial
resolution of 1 km as basic units for the statistics of urban drivers and habitat quality
changes in the GBA. “Near Analysis” and “Zonal Statistics” were used to calculate the
average slope in each grid, changes of construction land area and population in different
periods, the nearest distance from the center of a grid to an arterial road, as well as the
changes of average habitat quality value in each grid. Finally, this raster layer, with
a resolution of 1 km, was used as the input of the regression model. Due to the lack of
data in Hong Kong and Macao, this part only considered the nine cities in the Pearl River
Delta. Meanwhile, in order to reduce the influence of errors in the supplementary data, we
compared the OLS and GWR results for the 1980–2000 and 2000–2020 periods to choose the
optimal model.
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We checked whether there were any residual explanatory variables according to the
OLS output report tables generated by ArcGIS. The results showed that the VIF value of
each variable was less than 10 and passed the significance test; therefore, all parameters
could be used in the GWR model. In this case, we used the geographically weighted
regression tools in ArcGIS and chose the AICc bandwidth method. The fitting results are
shown in Table 4 and Figure 4.

Table 4. Comparison of two regression models.

Measuring
Metrics

1980–2000 2000–2020

OLS GWR OLS GWR

Sigma 0.057 0.050 0.072 0.056
AICc −152,720.269 −167,632.616 −128,410.083 −154,192.882

R2 0.683 0.765 0.778 0.867
Radj

2 0.683 0.762 0.778 0.865
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It can be considered that the GWR model is a significant improvement on the OLS
model when the difference of AICc values is greater than 3. The above table shows that
GWR model has lower Sigma and AIC values and better goodness-of-fit, so the regression
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coefficient results of the GWR model were used for the impact analysis. The local R2

results for this model are shown in Figure 5. It can be seen that compared with the period
of 1980–2000, the range of better fitting results from 2000 to 2020 is wider, especially in
the northwest and southwest margins of the GBA. This is mainly because the changes in
habitat quality were not significant in these regions from 1980 to 2000 (as discussed in detail
in Sections 3.3 and 3.4). However, in general, the selected variables are appropriate for
constructing the GWR model.
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3. Results
3.1. Land Use Change Characteristics

We calculated the land use dynamics and the transfer matrix in the four periods of
1980–1900 (I), 1990–2000 (II), 2000–2010 (III), and 2010–2020 (IV). The results are shown in
Figure 4.

It can be seen that cultivated land, forestland, and construction land have always been
the main land types in the GBA, accounting for about 90% of the total area (Figure 6a). As
shown, the area proportion of each land type has undergone great changes over the years.
Notably, the area of construction land has increased by 5531.29 km2, with the ratio of 4.73%
in 1980 increasing to 14.79% in 2020; this land types is mainly distributed in the central
and southeastern area. Its growth accelerated annually, reached the peak of 6.01% from
2000 to 2010, and then slowed down. Correspondingly, the cultivated land area showed
on a general downward trend, but the rate was controlled in the last period. Although
the area of unused land is decreasing at a relatively high speed year by year, the change
is not significant in the whole study area due to the low area ratio. The water area was
reduced after 2000 but increased slightly over the whole period. The areas of forestland
and grassland were relatively stable. LC was on the rise from 1980 to 2010, increasing
by 1.65 times (Figure 6b). This indicates that the rate of land use in the GBA increased
significantly in this period and then slowed down. In addition, after 1990, the LC was
greater than the overall dynamic degree during the study period (0.21%).

The area of cultivated land declined by 1186.74 km2 from 1980 to 1990; it was mainly
converted into construction land, water bodies, and forestland (Table 5). From 1990 to
2000, the main trends were the transformation of cultivated land, forestland, and water
bodies into construction land; this mainly occurred on the banks of the Pearl River (e.g.,
Foshan, Shenzhen, and Dongguan) (Figure 7). The scale of LUCC enlarged in this period.
From 2000 to 2010, as the transformation of other land use types, especially cultivated land
to construction land, continued and the level became more intense, the expansion rate
of construction land reached a peak, displaying a tendency of expansion from the center
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to the periphery. Meanwhile, 576.60 km2 of water bodies were converted into cultivated
land. This mainly occurred in Foshan, accounting for 73.68% of the total area transferred in
this way.
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Figure 6. Area proportion of different land use types in the GBA (a), land use dynamic degree by
cover type in each period (b). CT: cultivated land; FL: forestland; GL: grassland; WB: water bodies;
CL: construction land; UL: unused land.

Table 5. Land use transfer matrix by period.

Period Land Use Type CT FL GL WB CL UL

I (/km2)

CT 15,424.87 292.76 16.25 401.83 473.60 2.29
FL 235.33 30,333.68 38.57 42.84 81.50 0.24
GL 15.30 171.13 1211.75 4.42 6.54 0.04
WB 120.37 41.31 4.51 3164.17 26.53 0.10
CL 76.16 30.94 2.37 18.68 2466.51 0.02
UL 45.98 6.61 0.21 77.86 11.27 12.14

II (/km2)

CT 13,808.67 288.80 16.40 796.60 1015.63 0.41
FL 285.58 30,156.38 49.06 53.60 349.69 0.31
GL 17.75 61.31 1151.30 4.76 38.82 0.11
WB 153.71 51.91 3.90 3387.48 151.77 0.21
CL 76.28 36.84 2.77 16.01 2934.92 0.01
UL 0.25 0.62 0.09 0.12 0.01 14.54

III (/km2)

CT 11,516.64 354.63 19.51 684.89 1766.25 0.27
FL 307.93 29,378.12 50.87 95.44 762.81 0.60
GL 21.32 102.73 1019.86 14.06 65.53 0.05
WB 576.60 68.89 7.34 3090.56 516.04 0.12
CL 183.08 135.39 6.34 79.46 4106.61 0.07
UL 2.33 1.02 0.10 0.42 4.44 7.22

IV (/km2)

CT 11,404.05 203.63 21.65 186.64 790.19 0.14
FL 226.06 29,156.00 86.05 104.85 456.87 0.29
GL 13.74 36.46 1011.18 7.39 33.87 0.03
WB 102.37 67.58 12.33 3509.94 270.58 0.14
CL 337.45 180.03 47.48 82.57 6572.97 0.02
UL 0.42 0.30 0.05 0.18 1.49 6.17
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Figure 7. Spatial distribution of major conversions of land use types from 1980 to 2020 in the GBA.

The Sankey diagram below clearly reflects the main direction and scale of land use
conversion over the years (Figure 8). Notably, over the past 40 years, the increase in
construction land mainly came from the occupation of cultivated land, forestland, and
grassland. The expansion mainly occurred in coastal cities and their main districts such as
Dongguan, Shenzhen, the Yuexiu District of Guangzhou, the Chancheng District of Foshan,
etc. At the same time, there were also conversions among cultivated land, water bodies,
and forestland, due to adjustments of the agricultural structure and the implementation of
a farming compensation policy.
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3.2. Land Use Change from the Perspective of Landscape Indices
3.2.1. Class Level Analysis

Figure 9 shows the results of the landscape pattern indices at the class level. NP and
MPS indicate the fragmentation of landscape classes. NP of construction land showed
a downward trend, even if the values were much higher than in other classes. Additionally,
MPS was relatively small but obviously increased from 2010 to 2020. This trend indicates
the continuous expansion and integration of construction land, developing in spatial
congregation. From 1980 to 2010, cultivated land NP increased by 41.81%, and its MPS
had the greatest change, with a decrease of 46.48%. NP and MPS of water, grassland, and
unused land remained steady throughout the study period, although there were some
fluctuations. LPI can indirectly reflect the level of human disturbance. Although forestland
LPI fluctuated very little, the changes were notably more substantial than in other classes.
This indicated that forestland was the dominant landscape at the class level, and that it was
not significantly influenced by human activities.
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3.2.2. Landscape Level Analysis

PD reflects landscape heterogeneity in a unit area. From 1980 to 2010, PD consistently
increased from 0.459 to 0.503 (Table 6). It was worth mentioning that PD decreased to
0.444 in 2020. The possible reason for this was that construction land gradually integrated
and congregated from the scattered patches into large patches in that period. PAFRAC
showed a peak of 1.450 in 2000, indicating the most complex patch shape at this time, before
decreasing to 1.407 in 2010 and varying slightly in the other periods. SHDI is sensitive to the
unbalanced distribution of landscape classes. From 1980 to 2020, SHDI increased steadily
from 1.112 to 1.220, reflecting that the landscape class showed balanced development. AI
decreased first then increased during the whole period. At the beginning of economic
development, large-scale land resources were divided, leading to a scattered distribution.
The combination and annexation of construction land patches was the main reason for the
slight increase of AI after 2010.

Table 6. Landscape indices at the landscape level.

Indices 1980 1990 2000 2010 2020

PD 0.459 0.464 0.473 0.503 0.444
PAFRAC 1.447 1.449 1.450 1.407 1.408

SHDI 1.112 1.117 1.167 1.204 1.220
AI 96.684 96.626 96.508 96.576 96.731

3.3. Characteristics of Habitat Quality Changes in the Context of Urbanization

In reference to the results from and reclassification methods used in previous studies,
we classified habitat quality values as poor (I: 0–0.3), medium (II: 0.3–0.6), good (III: 0.6–0.8),
and excellent (IV: 0.8–1) and displayed them hierarchically (Figure 10).

Spatially, it showed that the habitat quality was lower in the middle of GBA and higher
in its surroundings. The level of habitat quality differed significantly within the different
cities. As the leading cities, the average values of the habitat quality index in Guangdong
and Shenzhen were only 0.68 and 0.60, respectively. The habitat quality of cities along the
Pearl River, including Dongguan, Foshan, Zhongshan, and Zhuhai, were in the medium
level (Figure 11a). Peripheral cities in GBA, including Zhaoqing, Jiangmen, and Huizhou,
had better habitat quality. It is worth noting that Hong Kong still had a high level, at 0.75
or even higher, because the city has been at complete urbanization phase.

Figure 9b reveals that the average habitat quality presented a downward trend from
1980 to 2020 in the GBA. The decrease speed accelerated over the years in the first three
periods, and the area proportion with poor habitat quality increased from 5.12% to 14.96%
(Figure 11c). In the areas with decreased habitat quality, 5.43% of them dropped by more
than 0.5, while 94.57% dropped by 0–0.5. Four cities, i.e., Dongguan, Shenzhen, Foshan and
Zhongshan, experienced the most significant decline, with decreases of 40.81%, 37.21%,
26.80%, and 19.93%, respectively.
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Figure 11. Temporal changes in habitat quality by city (a) (the different colors from top to bottom
represent a decreasing range of habitat quality, i.e., <10%, 10–20%, 20–30%, >30% respectively),
annual average value of habitat quality in the GBA (b), proportions of different habitat qualities in
different grades (c).

3.4. Habitat Quality Response to Urbanization Factors
3.4.1. Impact of Natural Factors

The regression coefficients between slope and habitat quality differed significantly
within the two phases (Figure 12). Generally, the extreme values of coefficients were greater
than the marginal zones in the central and southeastern areas with less slope than the
marginal zones. Initially, the significant negative correlation was mainly distributed in the
central and southern cities, including Foshan, Zhongshan, and Dongguan. After 2000, the
dependence of the slope coefficient on habitat quality changed to a positive correlation,
and the range of significant negative impact expanded to the surrounding areas.
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3.4.2. Impact of Socioeconomic Factors

The expansion of construction land mainly came at the expense of cultivated land,
which was the chief reason for habitat quality reduction. The variation of habitat quality was
significantly negatively correlated with construction land, which was distributed widely
(Figure 13a). Although the previous regression result exhibited greater extreme coefficient
values, the negative area was extended to the entire GBA from 2000 to 2020. Notably, most
areas, and in particular, Shenzhen, Guangzhou, and Zhongshan, experienced significant
habitat quality degradation due to the increasing impacts of construction. Population also
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had a negative effect on habitat quality. (Figure 13b) The negative correlation was most
prominent in the cities with relatively low population densities and extensive vegetation
coverage, such as Zhaoqing, Jiangmen, and Huizhou, because the habitat quality there
was more sensitive to population growth. Transportation is a critical foundation for
urbanization. Road construction usually results in the degradation and fragmentation of
the ecological environment. The relationships between road distance and habitat quality
were varied in different places (Figure 13c). From 1980 to 2000, the negative impact was
concentrated in the cities with denser road webs such as Foshan, Zhongshan, and Shenzhen.
Along with the improvement of transportation infrastructure, the road network became
denser and denser, and the area with negative impact expanded further. This influence was
more notable in Guangzhou, which has become an important transportation city.
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4. Discussion
4.1. Spatial Pattern of Habitat Quality

The terrain conditions of the GBA shape the distribution pattern of habitat quality as
“higher in the middle and lower in the surroundings”. In the vast central plains, frequent
human activities and large-scale land reclamations have accelerated the disturbance of
habitats, resulting in a lower level of habitat quality. Relatively complete forest and grass-
land resources are abundant in the western and northeastern areas with more mountains
and hills, which provide a good basis for biodiversity. Moreover, the scale of land use
change was small within the whole city; thus, the level of habitat quality was higher in the
marginal cities than that in the central cities. Additionally, over a long period of time, cities
of the east coast of the Pearl River, represented by Shenzhen, Dongguan, and Huizhou,
developed faster than those on the west coast [64]. More fragmented patches with low
habitat quality were concentrated in the southeastern hinterland. In a word, in areas with
higher development levels and economic vitality, the negative impacts of human activities
on the natural environment are greater, and thus, the decline in habitat quality is more
significant. The same applies within cities. The most intensive socioeconomic activities
are concentrated in central urban areas, and the patches with low habitat quality tend to
spread around these areas.

4.2. Drivers of Habitat Quality Change

Our results are consistent with previous research, suggesting that during rapid ur-
banization, excessive human activities and the increase of demand for construction land
to support development accelerate the evolution of land use patterns, directly resulting
in significant habitat quality degradation [40,65,66]. In terms of indirect factors, based on
previous studies, we consider that geographical conditions form the foundation of urban-
ization, as they determine the orientation of urban development to a certain extent [53,57].
Policy guides the development of urban agglomeration [67]. Population growth and road
construction are the driving forces for urban expansion. In 1980, the pattern of opening up
this coastal area, marked by the foundation of the Special Economic Zone, was initiated,
and the road network in China began to expand from that time. Economic development
and transportation construction mutually promoted each other, providing the conditions
for population flow [68]. The massive influx of immigrants and the growth of the non-
agricultural population were often associated with the rapid expansion of residential and
commercial land. At this time, the region was still in the initial stage of economic construc-
tion. The rate of land use change grew with the increase in land demand. With the growth
of industry and commerce and the stimulating effect of the real estate craze, various activi-
ties divided and occupied large swathes of cultivated land and forestland. The expansion
of construction land came at the cost of land use types with higher habitat suitability. This
process has destroyed the relative integrity and connectivity of land resources and led to
habitat degradation. The period of 2000–2010 saw the most rapid urban development and
economic growth. Excluding Hong Kong and Macao, the gross regional product of the nine
cities in the Pearl River Delta increased from 847.129 billion yuan to 380.2846 billion yuan,
and the population increased from 42.8978 million to 56.2295 million. The extent and speed
of land use change reached a peak during this period. On the one hand, the agglomeration
effect of urban development caused construction land to expand from the main urban
area to the surrounding area, showing the trend of spatial concentration. On the other
hand, non-agricultural construction and agricultural structure adjustments accelerated
the fragmentation of cultivated land and forest patches. Forestland reclamation and the
replacement of dike ponds with highly economically beneficial construction land were
common. At the same time, in order to compensate for the cultivated land that was lost
during the early industrial development, large-scale land reclamation from beaches or
the sea led to a significant reduction of water bodies. This was considered one of the
main causes of habitat quality decline in this period. Additionally, road construction has
contributed to the population concentration, leading to landscape fragmentation and the
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reduction of biological habitats, which have further deepened the negative impact on habi-
tat quality [14]. After 2010, economic growth tended to be stable and urban development
reached a level of maturity. With an increase of governmental supervision and ecological
regulations, urban planning has become more rational. Additionally, regional ecological
degradation and habitat quality decline have been effectively limited. Especially since
the implementation of the Pearl River Delta Reform and Development Plan, cities have
intensified their land management and construction activities. The disordered sprawl of
construction land has also been controlled. For Hong Kong and Macao, conservation areas,
such as urban catchments and country parks, were delimited at the beginning of planning.
Thus those cities still show a relatively stable level of habitat quality for high-density cities.

Our study provides a new perspective for analyzing the relationship between the
urbanization process and changes in habitat quality caused by LUCC. Compared with
previous studies, this paper takes spatial heterogeneity into consideration. Combined
with a dynamic analysis of regional landscapes, it reveals the spatial characteristics and
underlying process of urban expansion and clearly reflects the spatial variability of such im-
pacts [22,47]. However, there are some limitations in this study. For example, to ensure the
consistency of the research scale, we set the grid size to 1 km× 1 km in the regression model
but neglected the fact that some landscape indices are sensitive to resolution. Furthermore,
the threat factor in the InVEST model is subjective because of the difficulty in obtaining
direct observation data; thus, there is room for improvement in the applied model.

The impact of urbanization on the environment is complex and variable. It is essential
to focus on LUCC in long time series and take the effects of various factors into consider-
ation, so as to make more targeted decisions of land management. This requires further
studies on how to select landscape indices and set parameter values in order to reflect
evolution features more precisely in the study area.

4.3. Proposals for Optimizing Urban Land Management

Through our results, it can be seen that the rapid expansion of construction land in
the GBA from 1980 to 2020 has squeezed numerous ecological spaces. The main threat to
regional ecological security has come from urbanization development and increasingly in-
tense human activities, making the ecological environment foundation more fragile. Coastal
lands managed and developed in a sustainable manner can provide national and regional
benefits, notably in terms of achieving the Sustainable Development Goals (SDGs) [69].
Therefore, it is essential to divide functional areas rationally, exploit land resources mod-
erately, and harmonize the relationship among cultivated land, construction land, and
ecological land; this aspect deserves more attention from long-term urban development de-
cision makers. With these issues in mind, according to the specific development features of
the corresponding cities, a few suggestions for land management in the GBA are proposed:

1. As the pilot cities of eco-environmental protection and policy reform, Guangdong
and Shenzhen are required to integrate scattered land resources and improve land
utilization efficiency. From an urban planning perspective, governments should
divide areas by function and specify land use types (e.g., residential land, industrial
and mining land, ecological protection land). Furthermore, it is urgent to establish
red lines for construction land increments and strengthen the penalties for illegal
construction. Meanwhile, governments should enhance cooperation with Hong Kong
and Macao in ecological protection, promote the construction of public Transport-
Oriented Development (TOD), and encourage green roof construction by learning
from foreign experience. The ultimate goal is to achieve intensive and efficient
development of mega-cities in the future.

2. In the four cities along the Pearl River, i.e., Foshan, Dongguan, Zhongshan, and
Zhuhai, reclamation activities of tidal flats and sea are common. Local govern-
ments should pay attention to the protection of coastal tidal flats and promote
post-cultivation management. As for inter-provincial cooperation, it should rely
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on neighboring cities, strive to enhance cross-administrative cooperation in land
planning, and strengthen wetland protection.

3. Forestland resources are widely distributed in Zhaoqing, Jiangmen, and Huizhou,
acting as ecological barrier for the GBA. These cities should develop a scientific and
operational protection system for their natural resources, e.g., through strengthen-
ing soil and water conservation. Sustainable rural construction also deserves more
attention. Governments should amend the extensive development of rural areas,
strengthen the construction of public facilities, and encourage population clustering
in city centers.

5. Conclusions

The evolution characteristics of land use and habitat quality in the GBA from 1980
to 2020 were explored in this study using the InVEST model. Furthermore, the impact of
urbanization on habitat quality was quantitatively investigated using the GWR model. The
results indicated that the GBA has experienced frequent and dramatic LUCC, dominated by
the rapid expansion of construction land and the continuous reduction of cultivated land.
These phenomena were more obvious in the southeastern cities which underwent rapid
economic development, represented by Shenzhen and Dongguan. The overall landscape
pattern has been moving on a diversity and balance way, influenced by the change of land
use patterns, and the degree of landscape fragmentation increased. From 1980 to 2020, the
habitat quality in the GBA showed a decreasing trend, with the most significant change
occurring in the period of 2000 to 2010. The level of habitat quality in the outer areas was
higher than that in the central regions. Human activities likely accelerate the degradation
of habitat quality. Terrain conditions determined the overall distribution pattern of habitat
quality. The effects of construction land, population, and road construction on habitat
quality displayed significant spatially heterogeneity. We suggest that local governments
should improve land use efficiency and engage in rational planning of urban functional
zones in order to limit further deterioration of habitat quality.
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