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Abstract: Nowadays, climate change not only leads to riverine floods and flash floods but also to
inland excess water (IEW) inundations and drought due to extreme hydrological processes. The
Carpathian Basin is extremely affected by fast-changing weather conditions during the year. IEW
(sometimes referred to as water logging) is formed when, due to limited runoff, infiltration, and
evaporation, surplus water remains on the surface or in places where groundwater flowing to
lower areas appears on the surface by leaking through porous soil. In this study, eight different
machine learning approaches were applied to derive IEW inundations on three different dates in 2021
(23 February, 7 March, 20 March). Index-based approaches are simple and provide relatively good
results, but they need to be adapted to specific circumstances for each area and date. With an overall
accuracy of 0.98, a Kappa of 0.65, and a QADI score of 0.020, the deep learning method Convolutional
Neural Network (CNN) gave the best results, compared to the more traditional machine learning
approaches Maximum Likelihood (ML), Random Forest (RF), Support Vector Machine (SVM) and
artificial neural network (ANN) that were evaluated. The CNN-based IEW maps can be used in
operational inland excess water control by water management authorities.

Keywords: inland excess water; water logging; water classification; machine learning; convolutional
neural network; deep learning; Sentinel-2

1. Introduction

One of the main and permanent challenges of Carpathian Basin water management
and the paradoxical hydrological situation is the consecutive occurrence of inland excess
water (IEW) and drought at the same locations within years or even seasons.

The description and research into this phenomenon, which is the result of natural and
anthropogenic processes, has a long history in domestic water management in Hungary.
The definition of the term has constantly been changing in scientific literature, and to date,
there is no single definition that can be considered exact [1]. Palfai has collected over fifty
definitions of IEW, thus highlighting the complexity of the phenomenon [2]. He brought
the different interpretations together in the following formulation: “IEW is a specific type
of water, a periodic but fairly permanent phenomenon in flat areas, covering a relatively
large area”. Laszloffy categorized IEW as all water that is produced from precipitation
or groundwater in an area protected by embankments, and that has no natural outlet [3].
According to Rakonczai, “floodwaters generated in flat areas, mostly outside the exempted
floodplains of rivers” are called IEW [4]. A distinction can be made between three technical
definitions of IEW when inland floods occur: the area is covered by continuous water
surfaces, slow water movement accumulates on the ground, and rising water levels in
drainage systems [4—6]. According to the biological interpretation, IEW is formed “when
there is more moisture in the pores in the soil layer than the vegetation can tolerate” [7].
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From an economic point of view, “IEW is said to occur when damage is caused when the
loss of yield due to flooding or soil saturation exceeds the value of the surplus yield of
areas not affected by IEW” [4]. Crop losses are most at risk from IEW in the spring-summer
period. Summer IEW is mostly caused by short periods of high-intensity or prolonged
low-intensity rainfall, generating yield losses and economic damage [8].

Outside of the Carpathian basin, the phenomenon is also known, e.g., in other low-
lying countries like the Netherlands, Poland, and Germany [9]. In other countries, these
floods are often referred to as waterlogging [10] or ponding water [11]. Waterlogging is
defined as the disruption of the water and oxygen balance in the soil when the root zone of
a crop in a waterlogged soil is deprived of oxygen (hypoxia) and the chlorophyll content of
the plant is reduced due to stress [10,12,13]. Compared to IEW, this is the process when
the open water surface does not yet appear in remotely sensed data, but the plants show
signs of stress even in the almost saturated soils. Such studies are commonly observed
in irrigated agricultural areas, where soils are saturated with water, and damaging salt
accumulations occur [14-17]. Pounding water is defined as water accumulating in closed
depressions. This definition best approximates IEW [11]. Climate change models predict
increased precipitation intensity in the Carpathian Basin, which potentially increases the
risk of IEW in the future [18]. To effectively address the inundations and take measures
to prevent them or mitigate their damage, it is important to understand where and why
these natural hazards occur. The inundations can be very dynamic in nature. Depending
on meteorological conditions (temperature, precipitation, wind speed) before, during, and
after their development, they can quickly appear but also can disappear fast.

Significant advances have been made in the field of IEW research in recent years,
which partly address the challenges listed above. With advances in remote sensing and
geospatial information technology, synthetic mapping techniques have become increasingly
sophisticated. As Awange et al. [19] have formulated, the essence of geospatial modeling
is to combine different map layers selected for analysis in such a way as to obtain a new
synthetic map layer that, based on the information of the original map layers, provides the
user with completely new information. Bozdn et al. [20] distinguished three main technical
approaches to mapping IEW. Direct mapping is based on the geospatial processing of
satellite imagery or aerial photographs. In this case, we see a snapshot of the current
situation of the area under study and do not get information on the root causes. Synthetic
mapping based on regression of dependent and independent factors allows for the analysis
of cause-and-effect relationships but depends heavily on the quality of the databases
used [21]. Spanoudaki et al. [22] formulated that there are several model frameworks
available for the analysis of hydrological processes and their interpretation (e.g., MIKE
SHE [23], MODFLOW [24]). Physics-based models are highly data-intensive and require
reliable data sources. Therefore, the measurement and determination of IEW extent by field
and/or remote sensing at the national scale is still subject to considerable uncertainty [25,26].
A third approach is integrated hydrological modeling based on the relationship between
hydrological variables and IEW discharge. This type of dynamic modeling provides the
most detailed information for estimating discharges [27].

To better understand IEW as a natural phenomenon but influenced by anthropogenic
factors, it is necessary to follow the evolutionary process of its formation and disappearance.
Therefore, studies over longer time series, with a high temporal resolution and over large
areas, are required. Satellites can provide data for these studies, but it is essential to use as
many of the available images as possible, even if they are partly cloudy. From a water man-
agement perspective, it is important to know the extent and duration of IEW inundations,
especially in agricultural areas. In the presented work, we investigated which water sur-
face delineation approach based on segmentation, supervised classification, and machine
learning is the most effective procedure for creating IEW maps and studying inundation
time series. For this purpose, we used multiple Sentinel-2 images with varying degrees
of cloud cover. Continuous monitoring can also be used to understand the development
of IEW, to mitigate the risk they pose to infrastructure and agriculture, and to understand



Land 2023, 12, 36

30f22

how surplus water can be reused in periods of drought. We tested threshold-based segmen-
tation of Normalized Difference Vegetation Index (NDVI), Normalized Difference Water
Index (NDWI), and Modified Normalized Difference Vegetation Index (MNDWI) maps.
We applied supervised classification using the more traditional machine learning models
Maximum Likelihood (ML), Random Forest (RF), and Support Vector Machine (SVM).
Finally, we applied an artificial neural network (ANN) and Convolutional Neural Network
(CNN) to delineate IEW.

NDVI is a well-known, simple index for quantifying green vegetation. The index
ranges between —1 and 1. The higher the value, the higher the chlorophyll content of the
plants due to the sensitivity differences in the red and near-infrared bands. Lower values
are useful for delimiting soil and water surfaces [28,29]. NDVI is one of the most popular
indexes used in remote sensing studies [30]. NDWI was first proposed by McFeeters
(1996) [31]. It uses the green and near-infrared bands of multispectral data. It is based
on the principle that water bodies produce maximum reflection in the green band while
showing minimum reflection in the NIR band. The MNDWI method was also used to
extract water bodies; it is based on the normalized difference of the green and shortwave
infrared bands [32]. Spectral indexes can be sensitive in built-up areas where reflectance
from buildings can cause overestimated results [33].

Random forests are a common method for generating land cover classifications [34].
The classification consists of a combination of tree classes, where each tree class is generated
using a random vector taken independently from the input. From the vector, and for each
tree, the most popular class casts a vote for input classification and vector classification. RF
uses a combination of the features of each class in the sample set to select the most popular
voted class from all the tree predictors using the trees in the forest [35]. Random forests have
been applied in many remote sensing applications [36], including wetland classification [37].
The Support Vector Machine uses a special type of function called “hyperplane” to divide
the learning examples into two parts [38]. Such a function specifies to what extent an
element belongs to a given class. If there are multiple classes, then multiple functions can
be used to implement the classification. A comprehensive overview of the application of
SVM and RF in remote sensing is given by Sheykhmousa et al. [39]. Maximum likelihood
is a statistical estimation that is used to estimate the parameters of an assumed probability
distribution based on some observed data. This is achieved by maximizing a likelihood
function such that the set of observed data is the most likely given the hypothesized
statistical model. The point in the parameter space that maximizes the likelihood function
is called the maximum likelihood estimate. The logic of ML is both intuitive and flexible,
and as such, the method has become a dominant tool for statistical inference [40]. The ML
algorithm is implemented in many software packages for image processing and is often
used as a conventional and robust baseline for classification studies [41-43].

Deep learning is a group of machine learning models that represent data at different
levels of abstraction by means of multiple processing layers [44]. The simplest version of
deep learning is a multi-layer perceptron (MLP) with a large number of hidden layers. MLP
is a fully connected artificial neural network in which the parameters are updated in the
training phase using the backpropagation algorithm [45]. ANNSs have been successfully de-
ployed to many geographic applications, for example, in satellite image classification [46,47]
and landslide risk [48]. A special type of deep learning model is the convolutional neural
network which was originally designed for computer vision problems. CNNs consist of a
series of processing layers, where each layer is a set of convolution filters that detect image
features. The early layers form feature detectors that are specialized to detect basic shapes
like linear features, corners, or circles, while successive layers form higher-level feature
detectors [49]. CNNs have been used in object detection and classification applications
ranging from medical imaging to automated driving and remote sensing [50]. In remote
sensing applications, the networks have, for example, been used for land use classifica-
tion based on Sentinel-2 imagery [51], water segmentation [52], and human settlements
mapping [53].
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The aim of this study is to evaluate eight different machine learning approaches to
derive IEW inundations from high-resolution Sentinel-2 imagery on three different dates
in 2021. The first date was used to collect the training data, which was then applied to
classify each acquisition. A detailed accuracy assessment was conducted to identify the
most successful classification method.

2. Materials and Methods
2.1. Study Area

Our research is focused on one of the most vulnerable areas to IEW of the Carpathian
Basin (Figure 1). The high clay content of the soil types, the many former buried riverbeds,
and the lack of drainage makes this an area highly exposed to inundations. In terms
of precipitation, the annual amount of 500-550 mm is not outstanding, but the intra-
annual distribution is significant in late winter and early spring (up to 30-50% of the
annual precipitation), which may result in the appearance of IEW due to the poor infiltration
coefficient of the soils. The area is within the T34TDT tile of the Sentinel-2 satellite. Sentinel-2
is a constellation of two equal multispectral imaging satellites that provide optical data
collected in thirteen spectral bands ranging from visible to shortwave infrared at different
spatial resolutions from 10 m to 60 m [54]. In this research, 10 bands with a spatial resolution
of 10 and 20 m were used. Data are collected from the study area at an average interval
of three days. In our comparison, cloud-free images were acquired during the 2021 IEW
period on 23 February 2021 and 7 March 2021, while a cloudy image was acquired on
20 March 2021.

Hungary
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Figure 1. The Sentinel-2 false-color composite (B11, B8, B2) of 23.02.2021, showing the 34TDT tile and
the location of the study area.

2.2. Methodology

A complex methodology has been developed to derive temporary water bodies from
Sentinel-2 multispectral high-resolution satellite data (Figure 2). Before applying the
methods for the delineation of temporary water bodies, a preprocessing workflow was
executed on each satellite image. All spectral bands were converted to a common resolution,
resulting in a composite image with a spatial resolution of 10 m. In addition, the Scene
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Classification Layer (SCL), which is created by the data provider and is included with the
image, was used to filter out most of the atmospheric disturbances. The SCL map was used
to exclude areas covered by clouds and cloud shadows (classes 3, 8, 9, and 10). Permanent
water surfaces, like fishponds, fishing lakes, spas, and thermal baths were also excluded
from the study area by visual interpretation and digitizing (Figure 3).

Validation
data
Classification Classification
result

) G (2] o e Y i
1
Parameter x
Pre-processed
Sentinel-2 o
data Classification "+ Reclassificati assification
{ } -{ } result
Classification
result

Figure 2. Workflow for the evaluation of the optimal methodology for water delineation.
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Figure 3. Sentinel-2 false-color composite of the study area with permanent water bodies and cloud
masks at three dates (23 February 2021 (upper left); 7 March 2021 (lower left); and 20 March 2021
(lower right)).
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For each acquisition date, NDVI, NDWI, and MNDWI images were calculated using
the following equations:

NIR — Red
DVl = ——M— 1
N NIR + Red @
Green — NIR
NDWI = Green + NIR @)
Green — SWIR
MNDWI = Green + SWIR ®)

where Green, Red, NIR, and SWIR are, respectively, bands 3, 4, 8, and 11 of Sentinel-2.

The spatial resolution of the SWIR bands is 20 m, which requires a solution for the
discrepancy between the resolution of the green and SWIR bands. One possibility would
be to produce a 20 m resolution MNDWI by simply aggregating the green band from 10 m
to 20 m, but for the sake of uniformity and more accurate delineation of water bodies, we
decided to produce a 10 m resolution MNDWI by downscaling the SWIR band from 20 m
to 10 m.

Threshold-based segmentation of NDVI, NDWI, and MNDWI was used to create
binary (water-no water) maps. A threshold specifies the boundary between water and no
water within the specific image. The water thresholds were determined visually on the
first image (23 February 2021); NDVI: below 0.17; NDWI: above —0.31; MNDWTI: above
—0.36. To ensure minimum user intervention, for each acquisition date, the same threshold
was used.

ML, RE, and SVM classification methods were used to create thematic maps with
nine classes. The classes included the desired water class and other land cover classes.
Some classes had a light and dark version when they were covered by cloud shadows.
This “dark” class approach aims to improve the classification result. The thematic maps
were reclassified to binary water maps to make them comparable with the index-based
results. Geoinformatics software ArcGIS Pro 2.9.1 was used to classify the images using
ML. The standard parameters were used to run the tool, meaning that all classes had the
same a priori probability, and the reject fraction was set to 0, resulting in the classification
of all pixels.

The sklearn python package [55] was used to apply the RF and SVM machine learning
methods (available as Supplementary Materials Codes S1 and S2). For each method, the
data was split into a training (80%) and a validation set (20%). Then the data was stan-
dardized by removing the mean and scaling to unit variance. For each of the classification
methods, multiple parameters were tested using the grid search function of sklearn with
10-fold cross-validation. For the random forest classifier, the optimal result was reached
with 200 trees and a maximum depth of 20. The Radial Basis Function was used for the
Support Vector Machine method.

The third group of algorithms that we applied to extract shallow water bodies is the
artificial neural network-based models. Two approaches were evaluated. The first approach
was a fully connected artificial neural network that was fed with the same training set as
was used with ML, RE, and SVM. The artificial neural network is a TensorFlow deep network
implementation with 3 dense layers, with resp 16, 12, and 9 neurons, and 20% dropout layers
after the first two dense layers (available as Supplementary Material Code S3). The first two
layers use ReLu activation, while the last layer uses a softmax activation function. The
learning rate of the Adam optimizer was set to 0.004. Also, for the ANN, we used grid
search to optimize the hyperparameters. The optimum batch size was 32 with 30 epochs.
The ANN resulted in a thematic map with nine classes that were reclassified to a binary
water map. The second approach is a convolution neural network that was trained with a
large number of examples of known permanent water bodies (Figure 4).
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Figure 4. CNN Model training data with the original Sentinel-2 color composite (upper right) and
the digitized permanent water polygons (left).

The polygons were digitized based on visual inspection of the satellite image of the
first acquisition date. The trained model was used to classify the images of each date to
a binary water map. The deep learning functionality of ArcGIS Pro was used to classify
the images with a convolutional neural network. ArcGIS Pro provides a user-friendly
interface to deep-learning python libraries like Keras, TensorFlow [56,57], PyTorch [58], and
Fastai [59]. The interface enables the specification of most but not all hyperparameters that
are available in the libraries. The samples of the IEW patches were used to create 4794 chips
of 32 x 32 pixels with an overlap of 16 pixels. Data augmentation was not applied. The
labels had two categories: water and no water. The training data was used to train a U-net
model [60] with the PyTorch implementation. We used a variable learning rate ranging
from 6.3 x 107° to 6.3 x 1075, and the number of epochs was maximized to 30 with a
batch size of 4. Resnet-34 was applied as a backbone model, where only the weights of the
fully connected tail of the model were retrained. After 23 epochs, the training reached its
optimum. Experiments with many other combinations of hyperparameters were carried
out, but they did not give better training results.

2.3. Validation

The validation of the classification methods was based on independent validation data
sets that were manually digitized from the satellite images of the three acquisition date,
and they did not overlap with the training samples (Figure 5). The reference polygons were
converted to pixels with the same resolution as the model results, and error matrices were
produced for each method and acquisition date. The validation metrics are overall user
and producer accuracy, Kappa, and QADI [61].
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Figure 5. Manually digitized validation water polygons on the satellite images of the three dates
(23 February 2021 (upper left); 7 March 2021 (lower left); 20 March 2021 (lower right)).

3. Results

Eight different methods were applied to classify Sentinel-2 images of three different
dates. For each method, an accuracy matrix was calculated, and metrics were derived to
assess the quality of the classification. The classifications are shown on the result maps
(Figures 6-16) and tables (Tables 1-4) using the following categories:

e TN (True Negative-dark green): areas where no water was identified on the reference
map and the model-generated map;

e TP (True Positive—dark blue): where water has been identified on the reference map
and by the model;

e  FP (False Positive-yellow): where no water was identified in the reference map, but
the model identified water:

o FN (False Negative-light blue): where water was identified in the reference map but
not by the model.
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23.02.2021
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Figure 6. Results of the different classifications on 23 February 2021.
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Figure 7. Results of the different classifications on 7 March 2021.
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Figure 8. Results of the different classification on 20 March 2021.

A 23.02.2021 B 07.03.2021 C 20.03.2021

N DVI ; 05 0 ; ) - True Negative (TN) - False Negative (FN)W .
1k False Positive (FP) [l True Positive (TP) %

Figure 9. Examples of classification errors of the NDVI model on different dates, including
(A) runway of the airport 23 February 2021; (B) scattered buildings and roads. The white areas
are the masked-out permanent water bodies 7 March 2021; and (C) errors due to cloud /shadow mask,
20 March 2021.
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A 23022021 B 07.03.2021 ~cC 20.03.2021

N DWI : 0s o , ) - True Negative (TN) - False Negative (FN)W .
1k False Positive (FP) [l True Positive (TP) %

S

-

Figure 10. Examples of NDWI model classification errors at different times. (A) scattered buildings
and roads 23 February 2021; (B) bare soils adjacent to roads 7 March 2021; and (C) strong errors near
the cloud and shadow mask 20 March 2021.

B 07.03.2021 c 20.03.2021

, ) - True Negative (TN) - False Negative (FN)W Ns .

 km False Positive (FP) - True Positive (TP)

Figure 11. Examples of MNDWI model classification errors at different times, including (A) Omission
in reference map 23 February 2021; (B) shallow water 7 March 2021; and (C) errors near the cloud
and shadow mask 20 March 2021.

B 07.03.2021 C 20.03.2021

P True Negative (TN) [ False Negative FN) A
. False Positive (FP) [l True Positive (TP) $

S

Figure 12. Examples of maximum likelihood model classification errors at different times, including
(A) Omission in reference map 23 February 2021; (B) shallow water 7 March 2021; and (C) cloud and
shadow mask and shallow water 20 March 2021.
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Figure 13. Examples of random forest model classification errors at different times, including
(A) Relatively small omissions 23 February 2021; (B) extreme overclassification in general 20 March 2021;
and (C) Extreme overclassification around the cloud and shadow mask 20 March 2021.

B 20.03.2021 - C 20.03.2021

| 1 , [ True Negative (TN) [ False Negative (FN
km [ | False Positive (FP) [l True Positive (TP)

N
W+E
S

Figure 14. Examples of support-vector machine model classification errors at different times, includ-

ing (A) Relatively small omissions 23 February 2021; (B) extreme overclassification 20 March 2021;
(C) extreme overclassification 20 March 2021.

B 07.03.2021 c 20.03.2021

i e ;
- True Negative (TN) - False Negative (FN)W .
Km |:| False Positive (FP) - True Positive (TP) 4

Figure 15. Examples of artificial neural network model classification errors at different times, includ-
ing (A) Relatively small omissions 23 February 2021; (B) some overclassification 20 March 2021; and
(C) some overclassification due to atmospheric disturbances 20 March 2021.
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A 23.02.2021 B 07.03.2021 C 20.03.2021

CN N , 0s o ; ) - True Negative (TN) - False Negative (FN)W .
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Figure 16. Examples of convolutional neural network model classification errors at different times,
including (A) Omissions of water detection 23 February 2021; (B) some overclassification 7 March 2021;
and (C) some overclassification and minor omissions 20 March 2021.

Table 1. Statistical comparison of methods for the first acquisition date.

23 February 2021
NDVI NDWI MNDWI ML RF SVM ANN CNN
TN 734,684 726,729 742,485 755,355 726,584 738,619 740,276 758,902
FP 25,519 33,471 17,715 4845 33,616 21,581 19,924 1298
FN 27,607 24,131 15,278 28,099 11,965 15,262 13,359 30,437
P 24,921 28,397 37,250 24,429 40,563 37,266 39,169 22,091
OA 0.93 0.93 0.96 0.96 0.94 0.95 0.96 0.96
Sensitivity 0.47 0.54 0.71 0.47 0.77 0.71 0.75 0.42
Precision 0.49 0.46 0.68 0.83 0.55 0.63 0.66 0.94
Kappa 0.45 0.46 0.67 0.58 0.61 0.64 0.68 0.56
QADI 0.063 0.060 0.038 0.031 0.040 0.038 0.034 0.036

Table 2. Statistical comparison of methods for the second date.

7 March 2021
NDVI NDWI MNDWI ML RF SVM ANN CNN
TN 779,223 759,835 780,620 784,139 785,293 658,481 777,756 785,208
FP 7317 26,705 5920 2401 1247 127,059 8784 1332
FN 6882 8788 8380 14,655 12,412 4316 7682 12,653
TP 19,174 17,268 17,676 11,401 13,644 21,740 18,374 13,403
OA 0.98 0.96 0.98 0.98 0.98 0.84 0.98 0.98
Sensitivity 0.74 0.66 0.68 0.44 0.52 0.83 0.71 0.51
Precision 0.72 0.39 0.75 0.83 0.92 0.15 0.68 091
Kappa 0.72 0.47 0.70 0.56 0.66 0.21 0.68 0.65

QADI 0.023 0.031 0.015 0.016 0.014 0.152 0.019 0.014
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Table 3. Statistical comparison of methods for the third acquisition dates.
20 March 2021
NDVI NDWI MNDWI ML RF SVM ANN CNN
TN 774,311 741,398 781,403 787,527 595,276 682,714 779,740 787,458
FP 14,637 47,550 7545 1421 193,672 106,234 9208 1490
EN 2556 4368 7080 11,576 3920 4498 7972 9289
TP 15,802 13,990 11,278 6782 14,438 13,860 10,386 9069
OA 0.98 0.94 0.98 0.98 0.76 0.86 0.98 0.99
Sensitivity 0.86 0.76 0.61 0.37 0.79 0.75 0.57 0.49
Precision 0.52 0.23 0.60 0.83 0.07 0.12 0.53 0.86
Kappa 0.64 0.33 0.60 0.50 0.09 0.17 0.54 0.62
QADI 0.016 0.055 0.018 0.013 0.235 0.127 0.020 0.010
Table 4. Aggregated results of the accuracy assessment.
NDVI NDWI MNDWI ML RF SVM ANN CNN
OA average 0.97 0.94 0.97 0.97 0.89 0.89 0.97 0.98
Kappa average 0.60 0.42 0.66 0.55 0.45 0.34 0.63 0.61
Precision average 0.58 0.36 0.68 0.83 0.51 0.30 0.62 0.90
QADI average 0.032 0.049 0.023 0.020 0.096 0.105 0.024 0.020

We will first present the results of each classification method per acquisition date,
followed by a detailed analysis of the problematic areas per method.

3.1. Results of the Total Study Area

Figure 6 shows the result water maps of the first acquisition date. The first row shows
the approaches based on the segmentation of index maps using thresholds. As expected,
NDVI presented a mixed result since the thresholds were selected based on the index
values of the first date. It is clear that the deeper water patches in the validation area are
well-defined. These are the true positives. The shallower water patches are not always
correctly delineated, and therefore, the number of false negative values (FN, light blue)
is nearly equal to the correctly extracted water pixels. The NDWI classification is very
similar to the NDVI classification. The properly classified water and non-water pixels are
almost the same for the two methods. However, the NDWI method is more sensitive to the
built-up environment, with bare soils appearing as false positives. Among the index-based
methods, the MNDWTI index performed best, especially on the first acquisition date. The
number of true positives is much higher than false negatives, which means that shallower
water surfaces are better delineated. The second row shows the results of the traditional
machine learning models. The ML classification shows good agreement with the validation
data. There are quite a lot of missing waterbodies though. Presumably the classification
has not been able to perfectly delineate shallow inundations. The RF method detects the
water patches quite well, but with some overclassification of water in the northern part
of the area. The SVM performed similarly to RF. The hyperplane classification performed
relatively well, with well-defined water pixel values and false positives appearing in close
proximity to IEW. The third row gives the results of the deep learning models. For the
ANN network, we used the same sample set as for the traditional machine learning models
(ML, RF, SVM). In general, this model does not misclassify many water bodies, also not in
built-in areas, as has been shown in the other methods. The false negative rate is almost the
lowest here compared to the other models. The CNN model result for the first date shows
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that the water bodies are correctly classified but that quite a few inundations are omitted,
resulting in a high number of false negatives.

On the second date, MNDWTI also performs better than the other two indices (NDVI,
NDWI), but the built-up environment (roads, buildings) continues to be misclassified as
water surfaces (Figure 7). The ML model still performs well, and the RF model worked
surprisingly well compared to the first date. The delineation of water surfaces has improved
greatly as both FN and FP almost completely disappeared. The SVM model became
completely unstable, and as with the NDVI and NDWI indices, the built-up environment
(road, buildings) was identified as a water surface. The deep learning models achieved
similarly good results as on the first date.

In the third image, large atmospheric disturbances (clouds, cloud shadows) occur, so
it is important to investigate how the models respond to cloud masking and atmospheric
interference (Figure 8). The indices performed poorly compared to the first two dates, espe-
cially NDWI, where misidentified water surfaces appear abundantly, especially around the
cloud masks and on bare soil. For the traditional machine learning models, the RF and SVM
classifications have become completely unstable, and many misidentified water surfaces
appear in the study area. ML performed well with hardly any false positives. Among deep
learning models, ANN is only minimally sensitive to atmospheric disturbances. CNN is
not at all sensitive.

3.2. Detailed Analyis of Classiciation Methods

On the first date (23 February 2021), it is clearly visible that the NDVI approach
properly delineated the deeper water patches in the validation area. These are the true
positives in Figure 9A. The shallower water patches are often omitted, and therefore, the
number of false negative values is nearly equal to the correctly extracted water pixels. The
sensitivity of the index to low pixel values is shown by the incorrect identification of the
runway of the former Kunmadaras airport in the north-western area as water (Figure 9A),
as well as the misclassification of other linear facilities (roads) and built-up areas (Figure 9B).
Note that the white areas are masked-out permanent water bodies. Increasing the threshold
value to include more IEW patches was not possible because this also increased the number
of false positive pixels, as can be seen on the first acquisition date. The pixels misidentified
as water surfaces also occur next to the cloud mask, which shows the sensitivity of the
index to atmospheric disturbances (Figure 9C).

The results for the NDWI classification are very similar to the NDVI classification on
the first date (Figure 6). The properly classified water and non-water pixels are almost the
same for the two methods. However, the NDWI method is more sensitive to the built-up
environment, with bare soils appearing as false positives. They are noticeable near water
spots and linear features (Figure 10A). On the second date, besides the increase of properly
delineated (deep) water pixels, a lot of pixels were incorrectly identified: built-up areas and
bare soils have often been classified as water (Figure 10B). On the date with atmospheric
disturbances, extreme overestimation of the water bodies occurred in areas with bare soils
and around the masked-out clouds (Figure 10C).

Among the index-based methods, for the total validation area, the MNDWI index
performed best, especially on the first acquisition date (Figure 6). A larger misclassified
patch is visible in the northern area (Figure 11A), which may be due to errors in the reference
map or an imperfectly chosen threshold. On the second date, some minor overclassification
of water happened in the immediate vicinity of the water surfaces, which can also be
attributed to the aforementioned causes (Figure 11B). The number of true positives is high,
and the number of false negatives value is low. This confirms the accuracy of the chosen
threshold. On the third date, overall, the results improved further with a small number of
false negatives due to missed shallow water. False positives appear in places other than for
NDVI and NDWI, for example, near the cloud mask (Figure 11C).

The detailed analysis of the ML classification of the first date shows good agreement
with the validation data, although there are quite some shallow inundations missed. There
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are some false positives only in the northern areas (Figure 12A). On the second date, there
are more properly classified water pixels, while only some linear patches in the north,
which may have been omitted from the validation data set. False negatives occur around
disappearing IEW patches (Figure 12B). Similarly, the third image shows a good match
for the water patches but lacks detection of shallower water around the deeper patches.
Contrary to the index-based methods, the areas around clouds are not misclassified as
water by maximum likelihood (Figure 12C). Considering that the training sample set is
constructed based on the first acquisition date, the model performs consistently well on all
three dates and is not at all sensitive to the built-up environment, as were the indexes.

The RF method detects the water patches quite well on the first two dates but with
extreme overclassification of water on the last date. On the first date, the method detects
almost all water, although it can be noted that the delineation of shallow inundation was
not perfect during the training (Figure 13A). On the second date, RF performed very well,
with almost no false positives. Figure 13B shows that on the last date, the model became
completely unstable. The number of false positives is very high, and they are found almost
everywhere in the image, as surfaces such as the built-up environment (roads, dirt roads,
buildings) and bare soils. Areas around the cloud mask are also misclassified as water
(Figure 13C).

The detailed analysis of the SVM shows the same behavior as for RE. On the first
date, SVM shows well-defined water pixel values and false positives appearing in close
proximity to inland excess water (Figure 14A). On the second and third dates, the proximity
of the classes interfered with the positive delineation of the water surfaces, resulting in a
very high number of false positives. Similar to the result of the RF model for the image with
atmospheric disturbances, built-up areas (Figure 14B) and almost the entire road network
were classified as water surfaces (Figure 14C).

On the first date, most of the water was properly identified by the ANN model, al-
though this method shows some false negatives for shallow inundations adjacent to deeper
water (Figure 15A). On the second date, a small number of false negatives appeared next to
a large number of properly detected water pixels. The model shows good performance,
although some misclassification occurred in the northern areas (Figure 15B). In the third
image, water pixels continue to be detected well, but due to atmospheric disturbances, thin
clouds or cloud shadows were mixed up as water in patches in the central part of the image
(Figure 15C).

As with the other methods, the CNN model has difficulties with delineating shallow
inundation resulting in scattered false negatives distributed equally over the total validation
area. However, the number of false positives is limited to a small section in the northern
area (Figure 16A). On the second date, IEW patches are detected, although the shallow
water at their boundaries is missing in the classification result. Similar to the ANN result, a
large patch in the northern part of the area is wrongly detected, probably due to an error in
the validation data (Figure 16B). On the last date, almost all individual IEW patches are
properly detected, with some omissions along their borders. The model is insensitive to
atmospheric disturbances due to clouds and shadows. Also, their boundaries show only
some minimal anomalies (Figure 16C).

3.3. Validation Results

When comparing the methods, we used several accuracy metrics to select the best
classification approach. In terms of overall accuracy, we found that due to the asymmetrical
class distribution (high number of non-water pixels), each method performs well above 90%
in almost all cases. Consequently, we added other metrics, such as the widely used Kappa
index (K) and the QADI index (QADI), that are less sensitive to class asymmetry [61], and
Sensitivity (S) and Precision (P) [62] (Tables 1-3).

TP + TN

Overall Accuracy = TP + TN + NP + EN @
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TP
SensitiVity = m (5)
TP
Precision = TP+ TP (6)
o I)O - Pe
Kappa - 1— Pe (7)

where:
Py is the relative observed agreement among the classification result and the reference,
and P, is the hypothetical probability of chance agreement.

A 2 Q 2
QADI = \/<N> + <N> (8)
where:

A is the degree of disagreement between the classification result and the reference,
and Q quantifies the difference in the pixel count for each class between the classified map
and reference data. QADI ranges between 0 and 1, where values below 0.1 are considered
good accuracy and values below 0.05 are considered excellent.

Table 1 shows the statistical results of the eight different methods at the first date.
Among the indices, the MNDWI performed the best (K: 0.67; S: 0.71; P: 0.68). The other two
indices (NDVI, NDWI) performed worse by a difference of almost 0.2, except for the QADI
value, where the MNDWI performed 0.03 better.

Regarding the thresholds, it is worth mentioning that the two indices are more sensitive
to built-up areas (linear facilities, buildings). Therefore, the number of false positive pixels
(NDVI: 25519; NDWI: 33471) is much higher than for MNDWI (17,715). Among the
traditional machine learning models (ML, RF, SVM), SVM performed the best in terms of
Kappa index (K: 0.64), but the other two models did not score much lower (ML K:0.58;
RF K:0.61). However, in terms of QADI, the ML model performed better (QADI: 0.031) due
to the order of magnitude lower number of wrongly classified water pixels (FP: 4845). The
Kappa index for the ANN was the highest compared to all other models (K: 0.68). On this
date, except for the precision, all metrics of ANN were the highest. The CNN model ranks
average in terms of overall results, but it has the best precision score (P: 0.94), meaning
that the proportion of correctly identified water pixels among all identified water pixels is
the highest.

Compared to the first acquisition date, the metrics for the second date show varying
results (Table 2). Some of the models, for example, SVM, showed overfitting to the training
data of the first date. Among the indices, the NDVI and MNDWI result improved.

The NDWI results are similar to the first date. ML performed slightly worse and
RF slightly better (e.g., ML K: 0.56; RF K:0.66). ANN produced comparable results, with
fewer misclassified water and no water pixels (FN: 7682; FP: 8784), so its QADI score
improved (QADI: 0.019). On this date, the CNN model performed better compared
to the first date, with an average Kappa value (0.65) and a precision value still above
0.90 (P: 0.91), which shows the stability of the model compared to the other results except
for RF (P: 0.92). Table 3 shows the statistical results of the classifications of the last date.
The image had atmospheric disturbances (cloud, cloud shadow), which were masked out
as much as possible during preprocessing using the SCL layer. The image was deliberately
included in the study because we wanted to know how the applied methods could cope
with lower-quality input data and how they behave when the data is preprocessed with
the standard cloud mask. Regarding the indices, NDWI performed poorly (e.g., K: 0.33).
The NDVI and MNDWTI underperformed for almost all indices compared to the second
date, and false positives appeared around the cloud mask. Among the traditional models,
ML performed even a little worse compared to the second date, but its results were still
acceptable (K: 0.5; P: 0.83; S: 0.37; QADI: 0.013). In contrast, the RF and SVM model results
were far worse. They were not capable of handling atmospheric disturbances because they
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were not part of the training set. Meanwhile, ANN is slightly, and CNN almost completely,
insensitive to the remaining clouds, with the results being just a little weaker compared to
the second date.

Table 4 shows the aggregated results by averaging the accuracy metrics for the acquisi-
tion dates. Amongst the indices, MNDWI performed the best (K: 0.66; P: 0.68; QADI: 0.023).
Between the traditional machine learning models, ML showed the highest scores (K: 0.55;
P: 0.83; QADI: 0.020), and among neural networks, CNN showed the best metrics (K: 0.61;
P:0.9; QADI: 0.020).

4. Discussion

Based on the accuracy assessment, the CNN pixel-based model provided the most
balanced results. It is less sensitive to the cloud boundary effect and performed consistently
with minimal user intervention. The index-based approaches show that even though we
used ground surface reflectance imagery, the variation of the reflectance due to atmospheric
changes requires adaptation of the threshold for each date. One way to reduce the depen-
dency on the accurate determination of thresholds might be to apply an ensemble approach
using multiple water indices for the determination of the thresholds [63]. The traditional
machine learning models also have problems with the clouds/shadows in the last image.
Obviously, an important application of the classification of satellite imagery is to monitor
the development of inland excess water over longer time periods. Therefore, it is essential
that the quality of the classification is consistent between images and that the need for
human intervention in image processing is minimized.

The detailed assessment of the accuracy of the models also showed that even when
deep water was properly identified, a slight deviation between the model result and the
reference data could be observed. The thin boundary around the delineated water surfaces
might appear due to two reasons. First, the reference data is created by visual interpretation
of the water surface on satellite images. The reference polygons may be digitized too
conservatively, meaning that the actual water patches are larger than digitized. The second
reason might be that the model was not able to learn the boundary of thin shallow water,
muddy water, or almost saturated soil from the training data. Mahdianpari [64] also
reported inaccuracies in their CNN classification of deep and shallow water, and different
types of wetlands, and they also found that, compared to RF, the CNN gave a much
higher accuracy.

Obviously, clouds and shadows always cause difficulties in multispectral satellite
imagery-based monitoring. In our research, we used the standard SCL layer to mask differ-
ent types of clouds and shadows. The mask is not perfect, and this was also confirmed by
the results of several classification methods. A possible solution would be to use a different
cloud-shadow detection algorithm [65,66]. IEW occurs in periods when atmospheric dis-
turbances are common. Therefore, to be able to include as many images as possible in the
workflow, it is required to find a solution to reduce the effect of clouds and shadows. Even
though the CNN method is the least sensitive to atmospheric disturbances, improved cloud
and cloud shadow masking could increase the accuracy of the classifications. Another
effect that could impact the classifications is sun glint. Each of the three images was visually
inspected for sun glint, and no large disturbances were found. In small areas, it may have
disturbed the classifications, but since the effects were not obvious, the influence on the
overall results is regarded as small.

The index-based methods are fast and simple to implement but give problems due
to the sensitivity of the threshold to temporal changes in the atmosphere [63]. Other
approaches give better results but are more complicated, slower, and/or need better
hardware. This is especially relevant for neural network-based approaches that require a
large amount of training data and high-end computers for training.

A further improvement of the CNN classification method might be possible by the
inclusion of other data sets like geomorphology, soil characteristics, and the indices that
were used as standalone methods in this research (e.g., MNDWI). As shown by [67], this
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would increase the number of input features and may reduce the number of wrongly
classified water and no water pixels.

In other research on the classification of IEW patches, it is common to include “vegeta-
tion in water” and “saturated soil” classes next to the “water” and “dry soil” classes [68,69].
It was decided not to include these two classes because it was regarded as impossible
to create high-quality training and validation data for the intermediate classes by vi-
sual identification on satellite imagery. Even in the field, it is extremely difficult to de-
termine precisely where the fuzzy boundary between these classes is. Furthermore, a
large set of training data is required, which is difficult and expensive to collect in the
field. In this respect, only drone-based acquisition may be helpful in collecting enough
high-quality data.

5. Conclusions

The goal of our research was to find the most efficient method for inland excess
water classification of Sentinel-2 satellite images with minimal user intervention. The
methodological study carried out on the 34TDT tile of the selected optical satellite has
shown the influence of the training methods, image quality, and type of algorithm. The
most accurate and best results can be obtained by using a convolutional neural network
model, considering the causal relationships that influence the onset and cessation of IEW.
Further improvements of the IEW monitoring approach could include the addition of other
optical satellite imagery (e.g., Landsat 8/9, Planet) or radar data (e.g., Sentinel-1), which
would allow for a higher frequency and more detailed time series analysis. The use of
additional natural factors (topography, soils, hydrometeorology) and the inclusion of other
layers (e.g., MNDWI index) could further refine the results.

Continuous monitoring of IEW using Al may provide the opportunity to predict the
development and persistence of IEW events and support water management. We are
confident that the presented methodology can help in future time series analyses, as well as
in the prevention of inland flooding, mitigation of damage, and indirectly in the sustainable
use of IEW in agriculture and water management.
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