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Abstract: In order to grasp the development laws of carbon efficiency and help China to achieve the
dual-carbon goal as soon as possible, we used the super-efficiency EBM model to calculate the total
factor carbon efficiency of cities, based on panel data for 283 prefecture-level cities in China from 2004
to 2019. The spatiotemporal variations in carbon efficiency were analyzed using the Dagum Gini
coefficient, LISA aggregation and standard deviational ellipse. The dynamic evolution trends were
analyzed using kernel density estimation and the spatial Markov chain. The results showed that the
overall difference in total factor carbon efficiency between the 283 cities decreased, and the difference
within the three regions was greater than that between regions. The total factor carbon efficiency of the
cities had a significant spatial correlation, and the spatial distribution patterns showed a centripetal
aggregation from northeast to southwest. The dynamic evolution characteristics of the carbon
emission intensity in different regions were quite different and the polarization of eastern and central
cities was more obvious. There was a significant path dependence effect on the transition probability
of total factor carbon efficiency between cities, and the carbon efficiency level of neighboring cities
could affect the transition probability of the carbon efficiency of the cities. Based on the above
conclusions, we also put forward relevant policy recommendations for technological changes on the
energy supply side, innovative development patterns and the governance of regional policies.

Keywords: total factor carbon efficiency; spatiotemporal differentiation; dynamic evolution

1. Introduction

Across the world, in recent years, extreme climate events have occurred frequently,
and global warming has been increasing. Ecological and environmental issues have become
severe challenges to be addressed by all countries and countries are facing the increasingly
urgent task of emission reduction. According to the Global Risks Report released by the
Global Economic Forum in Davos in 2022, the top three risks are environmental issues. Of
these, “poor climate action” was identified as the biggest risk facing the world over the
next 10 years. In recent years, China has faced a number of development problems, such as
insufficient energy and resource supplies, low energy use efficiency and the continuous
deterioration of the ecological environment. The insufficient resource and environmental
carrying capacity has become a bottleneck restricting China’s high-quality economic devel-
opment. As the current largest energy consumer and greenhouse gas emitter, China has
adopted the attitude of a responsible major country in global climate negotiations and has
promised to implement more favorable policies and measures for environmental gover-
nance, strive to peak carbon emissions by 2030 and endeavor to achieve carbon neutrality
by 2060. Nevertheless, even as the second largest economy in the world, China is still the
largest developing country. Therefore, at this stage, the primary task is still to develop the
economy. Coordinating the relationship between economic development and emission
reduction has become a dilemma that every large developing country must face [1]. Im-
proving carbon emission efficiency to minimize resource and environmental constraints,
reducing energy dependence on fossil fuels and high-carbon industries and promoting
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green and low-carbon transformations are important strategies for achieving the dual-
carbon goal. These strategies are also key to boosting high-quality economic development.
China has a vast territory and there are huge differences in factor endowments, energy
structures and technology levels between the regions, which leads to large differences in
total factor carbon efficiency (TFCE) between the regions. In this context, the scientific
and objective evaluation of TFCE and the analysis of its spatiotemporal differentiation
and dynamic evolution trends could not only provide a systematic and comprehensive
understanding of the development of China’s carbon efficiency level but also enable the
central and local governments to grasp the development trends of TFCE in various regions
in a timely manner. In turn, this could facilitate the formulation of various policies and
measures related to carbon reduction and the reasonable allocation of energy-saving tasks
so as to achieve the coordinated and overall development of regional carbon emission
efficiency and lay solid foundations for the realization of the dual-carbon goal.

This work is arranged as follows: the second part is the literature review, sorting
out the existing related literature, and then concluding the gaps in the existing literature
and the innovation of this paper; the third part discusses the measurement method and
variable selection of urban TFCE; the fourth part analyzes the spatiotemporal differentiation
characteristics of TFCE; the fifth part studies the dynamic evolution trend of urban TFCE;
and the last section summarizes the research conclusions and provides relevant policy
suggestions accordingly.

2. Literature Review
2.1. Carbon Efficiency and Its Measurement Method

Driven by the dual-carbon goal, research on carbon emission efficiency has become an
increasingly hot topic in academic circles. The origins of carbon emission efficiency can
be traced back to the concept of carbon productivity, which was proposed by Kaya and
Yokobori [2]. Nevertheless, carbon productivity does not consider the interactions between
production input factors and cannot reflect the multidimensional characteristics of carbon
emission efficiency in terms of economic production. The essence of carbon emission rates
is to consider the technical production efficiency of carbon emissions [3]. therefore, carbon
emission rates can be understood as obtaining more outputs with the same or fewer carbon
emissions by considering the interactions between various input factors, such as capital
and labor [4]. As a key part of China’s carbon peak and neutrality goals, the scientific
and comprehensive measurement of carbon efficiency plays a crucial role in subsequent
related research.

In terms of the measurement and evaluation of carbon efficiency indicators, existing
studies have mainly involved single factor efficiency and total factor efficiency, among
which the measurement of single factors refers to carbon emissions and the proportions of
certain input factors; for example, the ratio of carbon emissions to GDP is used to measure
carbon efficiency [5]. The measurement of total factor carbon efficiency usually involves
the stochastic frontier analysis (SFA) method and the data envelopment analysis (DEA)
method. Herrala et al. used the SFA method to measure the carbon efficiency of 170 pairs
of countries in the world and found that there are huge differences in carbon efficiency
levels and efficiency changes between the countries [6]. Du and Zou [7] and Chen and
Huang [8] used the SFA method to calculate China’s provincial carbon efficiency. Because
the SFA method needs specific settings on functional forms and has very strict assumptions,
Charnes et al. proposed a non-parametric analysis method, namely the DEA method, which
can not only take into account various input and output indicators, such as the economy
and the environment, but can also effectively avoid the problem of subjective parameter
weighting without setting specific function forms [9]. The International Energy Agency
(IEA) measures carbon emission efficiency in different countries at the industrial level using
the DEA method [10]. Ramanathan used the DEA model to calculate carbon emission
efficiency at the national level and explored the factors affecting carbon emissions [11].
Nonetheless, the early DEA model required the input and output variables to be reduced
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in the same proportion, which is inconsistent with actual economic development and the
radial model cannot measure non-radial relaxation variables [12]. Based on the above
deficiencies, Tone introduced slack input and output variables into the objective function
and constructed the non-radial SBM (slack-based measure) model [12], which effectively
avoids the strict assumption that the factor inputs and outputs are reduced in the same
proportion and can also incorporate undesirable outputs into the efficiency measurement
process. Therefore, this method has become widely used in the measurement of carbon
emission efficiency. Sun et al. used the SBM-DEA model to measure carbon efficiency
levels [13]. Some scholars have also used the super-efficiency DEA model to measure and
analyze inter-provincial carbon efficiency [14,15], industrial carbon emission efficiency [16],
the carbon emission trading pilot market [17] and the carbon efficiency of the Yangtze and
Yellow River basins in China [18].

2.2. Regional Differences in Carbon Emissions and Carbon Efficiency

Some Chinese scholars have analyzed the dynamic evolution characteristics of carbon
efficiency and carbon intensity from the perspectives of regional differences and conver-
gence. Zhou and Song measured the industrial carbon efficiency of China and concluded
that industrial carbon efficiency has been increasing and that there are significant regional
differences [19]. Lin et al. studied the spatiotemporal evolution characteristics of industrial
carbon efficiency in the Beijing–Tianjin–Hebei region using kernel density estimation. Their
empirical tests showed that there are large differences in carbon efficiency between indus-
tries and small differences between cities [16]. Jiang et al. analyzed the spatiotemporal
evolution characteristics of carbon efficiency in the Yangtze River and Yellow River basins
and concluded that carbon efficiency in this region shows the distribution characteristics
of high in the middle and low at both ends and that the regions with high values form
clusters [18]. Wang et al. and Han et al. used Theil Index to analyze the regional differences
of China’s provincial carbon emissions and carbon productivity, respectively. The former
study concluded that the gap of China’s provincial carbon emissions was expanding year
by year [20], while the latter concluded that the regional differences of provincial carbon
productivity were large [21]. Zhang et al. analyzed China’s carbon emission intensity
using kernel density estimation and concluded that carbon intensity shows a distribution
pattern of “low in the south and high in the north”, with significant differences in dynamic
evolution between different regions. Significant β convergence was observed in the carbon
intensity of the whole country and major strategic regions [22].

2.3. The Gaps in the Existing Literature and the Innovation of This Paper

In general, the existing research on the connotations, extension and quantitative mea-
surement of carbon efficiency has achieved certain results, which have laid the foundations
for subsequent related research. However, there are also some shortcomings. Firstly, the
existing research on carbon efficiency has mainly focused on the macro level, such as na-
tional, provincial and industrial levels. Due to the limitations of data acquisition, relevant
research on TFCE at the urban level in China is still lacking. Secondly, research on the
spatial distribution of carbon efficiency is still in its infancy and the overall research is still
relatively rough. There have been few studies on the spatiotemporal differentiation and
dynamic evolution of urban TFCE, which is not conducive to the overall improvement of
China’s carbon efficiency and coordinated development between regions. Thirdly, in terms
of the measurement and evaluation of carbon efficiency, most of the existing studies have
used the super-efficiency SBM-DEA model for their calculations; however, the SBM model
cannot provide the ratio information between the actual value of the input (output) index
and the target value [23], which can lead to deviations in measurement results. Fourth, most
of the existing studies have used Theil index and the kernel density estimation method to
reveal the regional differences and dynamic evolution characteristics of the research objects,
and few have used the Dagum Gini coefficient and standard deviational ellipse method
to analyze carbon efficiency. The standard deviational ellipse and the center of gravity
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transfer analysis can intuitively reveal the various spatial characteristics of TFCE. They can
also complement the Dagum Gini coefficient decomposition method and kernel density
estimation method. Fifth, the existing research has paid attention to the spatial distribution
of carbon emissions and carbon efficiency but has not analyzed the spatiotemporal transfer
probability of carbon efficiency. Additionally, there have been even fewer relevant studies
on urban TFCE.

The innovations of this paper are as follows. In terms of research object, this study
focused on the city level, took panel data for 283 prefecture-level cities in China as samples
and calculated urban carbon emissions by combining the energy consumption generated by
major carbon emission sources (i.e., the consumption of electricity, liquefied gas, liquefied
petroleum gas and thermal energy in the whole society) with their respective carbon
emission coefficients. Then, the super-efficiency EBM model with radial mixing parameters
was combined with the GML index to calculate TFCE at the city level. In terms of the
research method, the Dagum Gini coefficient, Moran’s I index, a LISA aggregation map
and the standard deviational ellipse method were used to comprehensively analyze the
regional differences in the distribution and spatiotemporal differentiation characteristics of
TFCE. Then, kernel density estimation and the spatial Markov chain method were used to
analyze the development status and spatiotemporal evolution characteristics of TFCE at
the city level. The obtained conclusions are not only conducive to a comprehensive and
systematic understanding of the development of TFCE at the city level in China but could
also provide useful references for local governments to help them to formulate relevant
strategies for the coordinated development of regional carbon efficiency.

3. Measurement of Urban TFCE
3.1. Method of Measurement
3.1.1. Super-Efficiency EBM Model

In order to effectively make up for the shortcomings in efficiency measurement using
the CER and SBM models, Tone et al. constructed a model that includes both radial and
SBM distance functions, namely the epsilon-based measure (EBM) model [24]. The super-
efficiency EBM model relaxes the assumption regarding the proportion between the target
value and the actual value of the input and can also calculate the difference between the
target value and the actual value by solving the non-radial values of the input and output
variables. Therefore, the efficiency value of the obtained decision-making unit (DMU) is
more accurate [25]. In this study, we selected the super-efficiency EBM model to define
the directional distance function (DDF), which was set as the global super-efficiency, non-
orientation and variable returns to scale to measure TFCE at the city level in China [26].
The global super-efficiency EBM model was constructed as follows:

γ∗ = min
θ − εx

m
∑

i=1

ω−i s−i
xi0

η + εy
k
∑

r=1

ω+
r s+r
yr0

+ εu
h
∑

p=1

ωu−
p su−

p
up0

(1)

s.t.
n
∑

j=1
xijλj + s−i = θXi0 (i = 1, 2, . . . , m)

n
∑

j=1
yrjλj − s+r = ηyr0 (r = 1, 2, . . . , k)

h
∑

p=1
upjλj + su−

p = ηup0 (p = 1, 2, . . . , h)

λj ≥ 0, S−i , S+
r , Su−

p ≥ 0

(2)
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In the above formula, γ* is the TFCE value; n is the number of DMUs j; x is the input
factor; y is the desirable output; u is the undesirable output; m, k and h represent the
quantities of input factors, desirable outputs and undesired outputs, respectively; θ is the
planning parameter of the radial part; η is the output expansion ratio; ε is the parameter
referring to the importance of the non-radial part, where 0 ≤ εx ≤ 1; ω−i ,ω+

r and ωu−
p are

the weights of the i-th input, r-th expected output and p-th unexpected output, respectively;
and S−i , S+

r and Su−
p are the relaxation variables of the i-th input, r-th desirable output and

p-th undesirable output, respectively.

3.1.2. Global Malmquist Index

In 1953, the Swedish economist Malmquist proposed the Malmquist (ML) index [27],
which can measure the dynamic rate of change of DMUs using the distance function.
However, this index does not have circularity, nor can it analyze the rate of change of the
efficiency of technical progress over set periods [28]. Additionally, the ML index may have
the problem of no linear solutions in the calculation process. The Global Malmquist (GML)
index calculates global production possibility sets based on data from all sample periods,
which can effectively solve these problems of non-transmission and no linear solutions.
The GML index can be decomposed into the rate of change of technical progress (GETC)
and the rate of change of technical efficiency (GEFC) [29]. Since the super-efficiency EBM
model adopted in this study could only provide static efficiency values, it was necessary to
measure and decompose China’s city-level TFCE dynamically using the GML index. The
expression of the GML index is as follows:

GML
t+1

t (xt, yt, ut, xt+1, yt+1, ut+1) =
1 + DG(xt, yt, ut)

1 + DG(xt+1, yt+1, ut+1)
(3)

In Formula (3), xt, yt and ut and xt+1, yt+1 and ut+1 represent the input, desirable output
and undesirable output of DMUs in the t and t+1 periods, respectively, and DG(xt, yt, ut) is
the mixed distance function of the EBM model. The calculation method of this function is
shown in Formula (1).

3.2. Index Selection and Data Processing

The input indicators of TFCE at the city level were defined as follows: human capital,
measured by the number of employees in the selected three industries in each city; capital
stock, for which the fixed capital investment flow data were deflated by the fixed asset
price index after eliminating the price factor and subtracting the accumulated depreciation
and the actual fixed capital stock was calculated using the perpetual inventory method;
energy consumption, measured by the total energy consumption of each city. The output
indicators of TFCE at the city level were defined as follows: the desirable output was
measured by the actual GDP of each city; the undesirable output was the CO2 emissions
of each city. The measurement of carbon emissions at the city level in existing studies
has mainly involved carbon emissions from electricity production, natural gas, liquefied
petroleum gas (LPG), urban heating and transportation [30], among which the carbon
emissions generated by power production account for nearly half of China’s total carbon
emissions [31] while urban heating, natural gas and LPG generate the next highest amounts
of carbon emissions. Furthermore, the carbon emissions generated by transportation
account for a small proportion of the total carbon emissions of each city [32] and the
transportation carbon emission data at the city level are incomplete, so this indicator was
removed from our measurement. Therefore, we referred to the method of Wu and Guo [33]
for the measurement of carbon emissions in prefecture-level cities and selected four types
of energy consumption for calculation: electricity consumption, liquefied gas consumption,
LPG consumption and thermal energy consumption. The formula for the measurement of
carbon emissions at the city level is as follows:

CO2 = Cm + Cn + Cp + Cq = γEm + λEn ++τEp + ϕ
(
η × Eq

)
(4)
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In Formula (4), Cm, Cn and Cp represent the carbon emissions generated by liquefied
gas, LPG and urban heating, respectively; Em, En and Ep represent natural gas consumption,
LPG consumption and urban heating consumption, respectively; γ, λ and τ are the carbon
emission coefficients of the three energy types1; Cq represents the carbon emissions gener-
ated by urban electricity use, where Cq = ϕ(η × Eq), according to the research of Glaeser and
Kahn [34]. The power grid in China is divided into six regions: South China, East China,
Central China, North China, Northeast China and Northwest China. Each region has an
emission factor and ϕ is the emission factor generated by electric energy consumption in
each region, η represents the ratio of coal power generation to total power generation and
Eq represents the electricity consumption of the whole society.

In this study, we selected panel data for 283 cities in China from 2004 to 2019 and used
MAX-DEA software to calculate the TFCE. The data used for the variables came from the
China Statistical Yearbook, China Urban Statistical Yearbook, China Power Yearbook, China Labor
Statistical Yearbook, WIND database, CEIC database, etc.

4. The Spatiotemporal Differentiation Characteristics of Urban TFCE
4.1. Research Methods
4.1.1. Dagum Gini Coefficient and Decomposition Method

We used the Dagum Gini coefficient (G) and its decomposition method to explore
the relative spatial differences in TFCE at the city level. Dagum decomposed the Gini
coefficient into three components: within-group differential contribution (Gw), between-
group differential contribution (Gnb) and hypervariable density contribution (Gt) [35]. The
relationship between the Gini coefficient and its decomposition term is G = Gw + Gnb + Gt.
In this paper, Gw represents the difference in TFCE value added between cities in different
regions of China, Gnb represents the difference in TFCE value added between cities in the
eastern, central and western regions of China and Gt is the remainder of the cross-influence
of the Gini coefficient between the three regions. A smaller within-group Gini coefficient
(between-group) indicates a smaller TFCE difference between within-group cities (between-
group) and larger coefficients indicate larger differences. The Dagum Gini coefficient is
calculated as follows:

G = 1/2µn2(
k

∑
j=1

k

∑
h=1

nj

∑
i=1

nh

∑
r=1

∣∣yji − yhr
∣∣) (5)

In Formula (5), k represents the number of regions; j and h represent different regions;
n represents the number of cities; i and r represent different cities; nj(nh) represents the
number of cities in region j(h); yji (yhr) represents the TFCE of city i(r) in region j(h); µ
is the mean growth of TFCE in all cities in the four regions; Gjj is the Gini coefficient
of region j; Gjh is the Gini coefficient between region j and h; Gw is the within-group
difference contribution; Gnb is the between-group difference contribution; and Gt is the
hypervariable density contribution after Dagum Gini coefficient decomposition. These
terms are calculated as follows:

Gjj = 1/2yjn2
j

nj

∑
i=1

nh

∑
r=1

∣∣yji − yhr
∣∣ (6)

Gjh =

nj

∑
i=1

nh

∑
r=1

∣∣yji − yhr
∣∣/njnh(yj + yh) (7)

Gw =
k

∑
j=1

Gjj pjqj (8)

Gnb =
k

∑
j=2

j−1

∑
h=1

Gjh
(

pjqh + phqj
)

Djh (9)
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Gt =
k

∑
j=2

j−1

∑
h=1

Gjh
(

pjqh + phqj
)(

1− Djh

)
(10)

djh =
∫ ∞

0
dFj(y)

∫ y

0
(y− x)dFh(x) (11)

pjh =
∫ ∞

0
dFh(y)

∫ y

0
(y− x)dFj(x) (12)

Djh =
(

djh − pjh

)
/
(

djh + pjh

)
(13)

In the above formulae, pj = nj/n, qj = njyj/ny and Djh represents the interaction
effect of TFCE between regions j and h. The calculation method for the difference is shown
in Equation (13). Additionally, djh is the difference in TFCE between regions, representing
the mathematical expectation of all yji − yhr > 0 in regions j and h; pjh is the hypervariable
first-order matrix, representing the mathematical expectation of all yhr − yji > 0 in regions j
and h; and Fj(Fh) is the cumulative density distribution function of region j (h).

4.1.2. Global Spatial Correlation Test

In order to investigate whether there was spatial dependence in the data, it was
necessary to conduct a spatial correlation test on the urban TFCE. The Moran’s I index was
used to test the global spatial correlation of TFCE at the city level and the selected spatial
weight matrix was the geographical distance weight matrix. The formula for the global
spatial autocorrelation is as follows:

Moran′s I = (1/ ∑n
i=1 ∑n

j=1 wij)× {∑n
i=1 ∑n

j=1 wi
(
Yi −Y

)(
Yj −Y

)
/
[
∑n

i=1 ∑n
j=1

(
Yi −Y

)2
/n
]
} (14)

In the above formula, i and j represent different cities, n represents the number of

cities, Y represents the TFCE of the city, Y = 1
n

n
∑

i=1
Yi represents the mean TFCE value of

the city and Wij represents the spatial weight matrix. A Moran’s I∈[−1, 1] value greater
than 0 represents positive autocorrelation, a Moran’s I∈[−1, 1] value less than 0 represents
negative autocorrelation and a Moran’s I∈[−1, 1] value equal to 0 represents no correlation.

4.1.3. Local Spatial Autocorrelation

The local spatial autocorrelation mainly uses the local Moran index to observe the
type of spatial agglomeration to which the spatial unit belongs [36]. In this study, the
local spatial correlation index (LISA aggregation) was used to measure the local spatial
correlation of urban TFCE. LISA aggregation maps can visually show the significance of
the local spatial aggregation of urban TFCE in the form of graphs, as well as reflecting the
specific spatial correlation forms of research elements in the aggregation maps at the same
time. Our LISA aggregate graphs were generated based on the local Moran’s I index and
the specific calculation formula was as follows:

Moran′s Iit= [(Yi −Y
) n

∑
j=1

wij(Yj −Y)]/S2 (15)

In Formula (15), Moran’s Iit is the local Moran index and S2 is the variance. The other
parameters were set to be the same as those in Formula (14). Similar to the global Moran
index, the local Moran’s Iit ∈ [− 1, 1]. The LISA aggregation maps were generated by
combining the scatter maps obtained using the Moran index with the significance of the
LISA aggregation.

4.1.4. Standard Deviational Ellipse

The standard deviational ellipse method is a classical method that is used to analyze
spatial distribution characteristics [37]. A standard deviational ellipse is composed of the
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center of a circle, the azimuth angle, the major axis, the minor axis and the ellipse area [38].
The center of a standard deviational ellipse represents the center of gravity for the spatial
distribution of the elements and the azimuth angle represents the main spatial distribution
trends of the research elements. The major and minor axes reflect the dispersion degree
of the spatial layout of the research elements in the primary and secondary directions,
respectively, while the area of the standard deviational ellipse reflects the aggregation and
dispersion degree of the spatial distribution forms of the research elements. The calculation
formulae for the standard deviational ellipse and its components are as follows:

Xw =

√
∑n

i=1 wixi

w2
i

(16)

Yw =

√
∑n

i=1 wiyi

w2
i

(17)

tan θ =

(
∑n

i=1 w2
i
x̃2

i −∑n
i=1 w2

i
ỹ2

i

)
+

√(
∑n

i=1 w2
i
x̃2

i −∑n
i=1 w2

i
ỹ2

i

)2
+ 4 ∑n

i=1 w2
i
x̃2

i ỹ2
i

2 ∑n
i=1 w2

i
x̃i ỹi

(18)

σx =
√

∑n
i=1 [(wi x̃i cos θ − wi ỹi sin θ)2]/∑n

i=1 w2
i (19)

σx =
√

∑n
i=1 [(wi x̃i sin θ + wi ỹi cos θ)2]/∑n

i=1 w2
i (20)

In Formulae (16)–(20), X and Y represent the weighted average center of the ellipse,
xi and yi are the spatial coordinates of each feature point, x̃i and ỹi are the deviations
of different feature points from the average center coordinates, wi is the weight, θ is the
azimuth angle, σx and σy represent the standard deviations along the x and y axes of the
ellipse, respectively.

4.2. Empirical Analysis
4.2.1. Analysis of the Dagum Gini Coefficient Results

Table 1 presents the Dagum Gini coefficients of TFCE at the city level and the decom-
position results for the three regions. The results showed that the mean of the overall Gini
coefficient in China was 0.0537 and that the change in the overall difference had an inverted
“N” shape, i.e., During the sample period, the overall difference in TFCE between the cities
tended to decline in the fluctuation. Specifically, the overall relative difference in urban
TFCE during 2007–2015 was lower than the average level and decreased continuously,
while the difference in urban TFCE during 2016–2019 first decreased and then increased.
From the perspective of differences in change trends, the Gini coefficient decreased from
0.1025 in 2005 to 0.0538 in 2019, with a decrease rate of 47.51%, which meant that the
difference in TFCE between cities in China as a whole decreased.

Additionally, from the perspective of intra-regional differences, among the three
selected regions, the mean urban TFCE Gini coefficients in the eastern and western regions
were lower than the national average, while the Gini coefficient in the central region was
higher than the national average, which indicated that the intra-regional differences in
urban TFCE were very significant. Specifically, the Gini coefficient in the eastern region
showed an inverted “N”-shaped feature and the TFCE variation trends in the central and
western cities were basically the same. During 2005–2015, the TFCE variation trend had a
“W”-shaped pattern, with alternating decreases and increases. The variation trend during
2016–2019 had an “N”-shaped pattern, but the Gini coefficient in the central region was
higher than those in the eastern and western regions as a whole. This indicated that the
TFCE changes in the central and western cities were unstable, while the Gini coefficients in
the eastern region showed stable changes in the early stages and significant fluctuations in
the later stages.
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Table 1. The Dagum Gini coefficients of total factor carbon efficiency in China and the three selected regions.

Year
Gini Co-
efficient

Inner-Regional Difference Inter-Regional Difference Contribution Rate
(%) Inner-

Regional
Differ-
ence

Inter-
Regional

Difference
Hypervaria-
ble DensityEast Central West East-

Central EastWest Central-
West Gw Gnb Gt

2005 0.1025 0.0886 0.1232 0.0888 0.1078 0.0908 0.1106 32.98 6.41 60.61 0.0338 0.0066 0.0621
2006 0.0624 0.0575 0.0896 0.0299 0.075 0.048 0.064 32.95 21.28 45.77 0.0206 0.0133 0.0286
2007 0.0489 0.0409 0.0563 0.0487 0.0492 0.0452 0.0529 33.29 8.57 58.14 0.0163 0.0042 0.0284
2008 0.0404 0.0308 0.0493 0.0405 0.0405 0.0362 0.0451 33.29 7.27 59.44 0.0135 0.0029 0.024
2009 0.047 0.0356 0.0556 0.0477 0.0468 0.0433 0.0525 32.91 12.5 54.6 0.0155 0.0059 0.0256
2010 0.0363 0.0338 0.0364 0.0377 0.0356 0.0368 0.0376 33.09 2.6 64.31 0.012 0.0009 0.0233
2011 0.0419 0.0362 0.0527 0.029 0.0452 0.0355 0.0462 32.61 20.27 47.12 0.0137 0.0085 0.0197
2012 0.0449 0.0343 0.0613 0.0351 0.0494 0.035 0.0499 33.39 20.17 46.44 0.015 0.0091 0.0209
2013 0.0444 0.0431 0.0354 0.0519 0.043 0.0487 0.045 32.17 3.27 64.56 0.0143 0.0015 0.0287
2014 0.0424 0.0387 0.0418 0.0453 0.0414 0.0424 0.0452 32.84 8.63 58.53 0.0139 0.0037 0.0248
2015 0.0367 0.0368 0.0284 0.0346 0.0343 0.0401 0.0414 30.38 14.56 55.06 0.0111 0.0053 0.0202
2016 0.0731 1003 0.0635 0.0413 0.0835 0.0784 0.0555 33.37 11.38 55.25 0.0244 0.0083 0.0404
2017 0.0799 0.0675 0.0856 0.0865 0.0774 0.0783 0.0863 33.17 3.39 63.44 0.0265 0.0027 0.0507
2018 0.0502 0.551 0.0507 0.0411 0.0538 0.0496 0.0471 33.3 2.3 64.4 0.0167 0.0012 0.0323
2019 0.0538 0.045 0.0621 0.0525 0.0547 0.0795 0.058 32.86 6.33 60.81 0.0177 0.0034 0.0327
Mean 0.0537 0.0496 0.0594 0.0474 0.0559 0.0505 0.0558 32.84 9.93 57.23 0.0177 0.0052 0.0308

Moreover, from the perspective of inter-regional differences, the variation trends in the
relative differences between the three regions first decreased and then increased. The mean
of the relative difference coefficient between the central, eastern and western regions was
lower than the national average level, while the Gini coefficients between the eastern and
central regions and the central and western regions were higher than the national average.
Specifically, the relative difference between the eastern and central regions was the largest,
followed by the difference between the central and western regions. The relative difference
between the eastern and western regions was the smallest. In terms of stability trends, the
relative difference coefficients between the three regions changed stably from 2007 to 2015
but fluctuated significantly after 2016.

From the perspective of contribution rates and the sources of differences, the contri-
bution rate of regional differences in TFCE between 2005 and 2019 ranged from 30.38% to
33.39% and the contribution rate only changed slightly over time. The contribution rate of
inter-regional differences had a large variation range, but its value was significantly smaller
than the contribution rate within the regions, indicating that there were huge differences in
total factor carbon efficiency between Chinese cities within the three regions and that the
differences between regions were small. These differences led to significant differences in
TFCE within the overall region of China, which means that in order to improve the overall
TFCE level of Chinese cities, we should focus on the development gaps in each region. The
contribution rate of hypervariable density showed a fluctuating trend from 2005 to 2019,
during which time its value ranged between 45.77% and 64.56%. Under the influence of
contribution rate, the intra-regional differences to the overall national difference ranged
between 0.0111 and 0.0338 and decreased slightly over time. The inter-regional differences
ranged between 0.0009 and 0.0133 and the change trend had an inverted “N” shape, with al-
ternating decreases and increases. The interaction effect of intra-regional and inter-regional
differences decreased slightly from 0.0621 at the beginning of the period to 0.0308 at the
end of the period, with a decrease rate of 50.40%. In general, the intra-regional differences
were higher than inter-regional differences and the hypervariable density was significantly
higher than the intra-regional and inter-regional difference values, which meant that the
interaction levels between intra-regional and inter-regional relative differences contributed
the most to differences in urban TFCE, followed by intra-regional differences.

4.2.2. Global Spatial Correlation Test

The results of the urban TFCE global spatial correlation test are shown in Table 2. The
Moran ‘I index values for urban TFCE were all greater than 0 and were all significant at the
level of at least 1%, which confirmed that there was a significant positive spatial correlation
between the TFCE of Chinese cities. This meant that the TFCE of each city was not
completely independent or randomly distributed in space. This is because there is a cluster
effect in economic production activities, through which the flow of production, technology
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and other factors make economic activities in neighboring cities converge, resulting in the
spatial spillover effect of TFCE between cities. In addition, carbon emissions are inherently
spatially dispersed, especially in geographically concentrated areas, which leads to the
existence of spatial aggregation in urban TFCE.

Table 2. The global Moran’s I index of spatial correlation.

Year I E(I) sd(I) Z P Year I E(I) sd(I) Z P

2005 0.1973 −0.0035 0.0005 9.3941 0.000 2013 0.0834 −0.0035 0.0005 4.0757 0.001
2006 0.2094 −0.0035 0.0005 9.9597 0.000 2014 0.1236 −0.0035 0.0005 5.9676 0.000
2007 0.1094 −0.0035 0.0005 5.2953 0.000 2015 0.0627 −0.0035 0.0004 3.1753 0.000
2008 0.0506 −0.0035 0.0005 2.5651 0.008 2016 0.1685 −0.0035 0.0005 8.0759 0.000
2009 0.0273 −0.0035 0.0002 2.0413 0.041 2017 0.0416 −0.0035 0.0002 3.0631 0.002
2010 0.1068 −0.0035 0.0005 5.2334 0.000 2018 0.1660 −0.0035 0.0005 7.9190 0.000
2011 0.1055 −0.0035 0.0004 5.2119 0.000 2019 0.2224 −0.0035 0.0005 10.6588 0.000
2012 0.0925 −0.0035 0.0004 4.6347 0.000 - - - - - -

4.2.3. LISA Aggregation Graphs

In order to show the spatial correlation effect of urban TFCE, ArcGIS software was
used in this study to combine the local Moran index and the LISA significance level. Then,
LISA aggregation maps were drawn for 2005, 2013 and 2019 as the representative years,
as shown in Figure 12. LISA aggregation maps divide local spatial correlation into four
types, namely, high–high (H-H) aggregation, high–low (H-L) aggregation, low–high (L-H)
aggregation and low–low (L-L) aggregation. Among them, H-H aggregation and L-L
aggregation indicate that there is a positive spatial correlation between the TFCE of a given
city and the TFCE of other cities in the same agglomeration area. H-L aggregation and
L-H aggregation indicate that there is a negative spatial correlation between the TFCE of a
given city and the TFCE of other cities in the same agglomeration area.

Figure 1. The LISA aggregation maps of urban TFCE in (a) 2005, (b) 2013 and (c) 2019.

As shown by the transfer trends of TFCE local spatial aggregation in Figure 1a–c, the
H-H and L-L aggregation areas formed in the spatial correlation of urban TFCE changed
greatly over time. Some cities located in H-H aggregation areas in 2005 were transformed
into L-L aggregation areas in 2013 and then transformed back into H-H aggregation areas
again in 2019, such as Yulin City and Luliang City. Some cities located in L-L aggregation
areas in 2005 were transformed into spatially insignificant areas over time, such as Hegang,
Jiamusi and Shuangyashan, while other cities located in L-L aggregation areas in 2013
were transformed into H-H aggregation areas in 2019, such as Jiuquan and Jiayuguan. In
2005 and 2013, fewer cities were located in H-L and L-H aggregation areas and the TFCE
of these cities was negatively correlated with neighboring areas. For example, Zhangye
and Tianshui, which were located in a H-L aggregation area, had high efficiency levels but
inhibited the efficiency levels of their neighboring cities. However, other cities, such as
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Datong and Zhangjiakou, were located in L-H agglomeration areas, which indicated that
the low efficiency levels of these cities did not inhibit TFCE in the surrounding areas but
instead promoted it.

In general, compared to 2005 and 2013, the number of cities located in H-H and L-L
aggregation areas increased in 2019 and these two areas formed a significant north–south
differentiation feature in space. The high aggregation areas were mainly distributed in the
northeast, northwest and north of China, such as Shenyang, Beijing, Tangshan and Jiuquan.
These cities not only had higher TFCE levels but also had positive spillover effects on the
carbon efficiency levels of surrounding cities through the positive diffusion effect. The
L-L aggregation areas were mainly located to the south of the Qinling Mountains and the
Huaihe River, such as Lishui, Nanchang and Lincang. The TFCE levels of these cities were
low, which further inhibited TFCE improvements in surrounding cities and showed the
agglomeration effect of inefficient cities in space.

The L-H agglomeration areas were mainly concentrated in the northeastern and
northwestern regions, while the number of cities in H-L agglomeration areas was the
lowest, indicating that there was a negative correlation between the TFCE of these cities
and their neighboring regions and that the low (high) TFCE of one city could promote
(inhibit) the TFCE of neighboring cities.

4.2.4. Standard Deviational Ellipse

Figure 2 shows a directional distribution map of urban TFCE based on the standard
deviational ellipse, which was drawn using ArcGIS software. The obtained parameters
are shown in Table 3. It can be seen from Figure 2 that the TFCE of Chinese cities was
centered around Zhumadian City and that the dominant distribution direction extended
from northeast to southwest. The barycentric coordinates of the ellipse presented in Table 3
were located between longitude 113◦54′–113◦93′ E and latitude 32◦85′–33◦14′ N and were
slightly to the southeast of Lanzhou, which is the geographic and geometric center of China
(longitude 103◦40′ E and latitude 36◦03′ N). From the perspective of the shifting trajectory
of the center of gravity, the center of gravity of urban TFCE did not change significantly
from 2005 to 2019, which meant that the TFCE in eastern and southern China was higher
on average than that in other regions. This was consistent with the reality that China’s
economic development is higher in the east than in the west. During the sample period,
the azimuth angle of the ellipse ranged between 22◦ and 24◦ and increased slightly in 2019
compared to 2005, indicating that the divergence direction of the TFCE of Chinese cities
was also relatively stable. The ratio of the minor axis to the major axis gradually decreased
over time. The oblateness of the ellipse was the smallest in 2005 and the largest in 2019,
i.e., the centripetal force of urban TFCE had an increasing trend from 2005 to 2019. In 2019,
the directionality of the urban TFCE distribution was the most significant. As shown in
Table 3, the ellipse area showed a fluctuating upward trend and the ellipse area in 2019
decreased by 4.61% compared to the area in 2005, indicating that the spatial aggregation
degree of the TFCE of Chinese cities improved slightly. However, in general, this spatial
aggregation characteristic was relatively stable during the sample period.

Table 3. Standard deviational ellipse parameters.

Year Center
(Longitude)

Center
(Latitude)

Azimuth
Angle

Minor
Axis/Major

Axis
Area (km2)

2005 113.5349 33.1368 22.7495 0.7239 2,644,508.1170
2010 113.9322 33.0856 22.5042 0.6713 2,747,709.3789
2015 113.7475 32.8490 23.2948 0.6766 2,646,924.5017
2019 113.8674 33.0367 24.0191 0.6579 2,766,434.0552
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Figure 2. The direction distribution of urban total factor carbon efficiency.

5. Dynamic Evolution Trend Analysis of Urban Total Factor Carbon Efficiency
5.1. Research Method
5.1.1. Kernel Density Estimation

Kernel density estimation is a non-parametric estimation method, which can de-
scribe the distribution characteristics of estimation variables well. This method has a low
dependence on the model and has a strong robustness, so it is widely used in spatial dise-
quilibrium analysis [39]. Therefore, in order to further explore the distribution differences
and evolution rules of China’s urban TFCE at the national and regional levels, the kernel
density estimation method was adopted to describe the distribution forms of TFCE at the
city level using continuous changing curves so as to show the distribution location, form
and characteristics of urban TFCE more comprehensively. Let f (z) be the density function
of urban TFCE, then

f (z) = 1/mv−
m

∑
i=1

K[(δi − δ)/v] (21)

In Formula (21), m is the number of observations, v is the bandwidth, K(·) is the kernel
density function, δi is the independently distributed observation value and δ is the mean of
the observation values. In this study, the Gaussian kernel density function was selected to
estimate the dynamic distribution of TFCE at the national and regional levels. Its formula
is as follows:

K(z) = 1/
√

2π exp(−z2/2) (22)

Since there is no exact function expression for non-parametric estimation, it is neces-
sary to observe distribution characteristics by means of graphical comparisons as graphs
obtained by kernel density estimation can provide information about different dimensions,
such as distribution position and shape and the ductility of the variables.

5.1.2. Spatial Markov Chain Method

Although kernel density curves can better describe the distribution characteristics
and convergence degrees of variables, they offer limited internal dynamic information
regarding variable distributions and fail to show the relative location change characteristics
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and future occurrence possibility of TFCE at the city level. The Markov chain method
considers random variables as discrete variables, which can make up for these shortcomings.
Therefore, we used the Markov chain method to describe the state transition of TFCE in each
city, as well as the possibility of transition. A Markov chain is a stochastic process, namely
{Xt, t∈T}, which describes the internal change probability of variables by constructing a
Markov transition probability matrix [40]. Markov chains assume that the probability of
state j, in which the variable X is in period t, is determined by the state in period t-1 and is
independent of the other periods, i.e.:

P{X(t) = j|Xt−1 = it−1, Xt−2 = it−2, ..., X0 = i0} = P{X(t) = j|Xt−1 = it−1} = pij (23)

In Equation (23), Pij is the transition probability matrix of TFCE in a given city from
year t to year t+1. Based on a traditional Markov chain, the concept of “spatial lag” is
introduced to obtain a spatial Markov chain. By introducing a spatial weight matrix (Wij),
the transition probability matrix of N × N is decomposed into N × N × N so that Pij can
reveal the evolution process of the spatial lag effect on urban TFCE. The spatial weight
matrix Wij in this study was represented by a spatial adjacency matrix. The formula was
as follows:

wij =
{

1 city i & j areadjacent
0 else (24)

5.2. Analysis of the Urban TFCE Spatiotemporal Evolution Results
5.2.1. Analysis of Kernel Density Results

In order to systematically analyze the absolute distribution differences and dynamic
evolution laws of urban TFCE, the Gaussian kernel function was selected to depict the
distribution laws of TFCE and kernel density curves were drawn using Python 3.8 software.
Figure 3 and Table 4 show the distribution dynamics and evolution trends of TFCE in the
whole country and the three selected regions.

In terms of the whole country, the main peak position of urban TFCE showed a trend
of right–left alternating movement during the investigation period. From 2018, the main
peak gradually moved to the right, indicating that the overall TFCE of the whole country
effectively improved during this period. This was mainly due to the influence of multiple
factors, such as China’s green energy transformation and upgrade policies, green scientific
and technological innovations and the continuous enhancement of the carbon absorption
capacity of terrestrial ecosystems over recent years. In terms of the distribution pattern
of the main peak, the height of the main peak first increased and then decreased, while
the width of the main peak gradually decreased. As shown in Figure 3a, the height of the
main peak in 2019 was higher than that in 2005 and the width narrowed, indicating that the
absolute difference in domestic TFCE and the dispersion degree of the distribution both
decreased. From the perspective of distribution ductility, the national TFCE distribution
curve dragged to the right and showed the characteristics of extended convergence. The
higher carbon efficiency levels of some cities led to a right-trailing distribution curve,
while the convergence trend indicated that the difference between cities with high carbon
efficiency levels and the average level across the country gradually decreased. From the
perspective of the polarization trend, the overall TFCE of the country showed a trend
of multipolar differentiation, i.e., there as a multipeak phenomenon in addition to the
main peak. This was because although the TFCE of some cities showed overall growing
trends, they were restricted by various factors, such as differences in energy and resource
endowment, economic development and technological level. Therefore, the absolute
differences between cities with higher TFCE levels and those with lower TFCE levels were
characterized by fluctuating short-term changes.
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Figure 3. Urban TFCE kernel density in the whole country (Nationwide) and the three regions (East;
Central; West).

Table 4. The dynamic evolution characteristics of urban total factor carbon efficiency distributions.

Region Distribution Position Distribution Main Peak Form Distribution Ductility Differentiation Trend

Overall Moved left and right
alternatively

The peak value first increased
and then decreased and the

width decreased

Right-trailing,
convergent extension Bipolar differentiation

AEast Moved left and right
alternatively

The peak value first increased
and then decreased and the

width decreased

Right-trailing,
convergent extension

Multipolar
differentiation

Central Moved left and right
alternatively

The peak value first increased
and then decreased and the

width first decreased and then
increased

Right-trailing,
convergent extension

Multipolar
differentiation

West Moved right The peak increased and the
width decreased

Right-trailing,
convergent extension Bipolar differentiation

In terms of the distribution locations and forms of the three selected regions, the
positions of the main peaks of TFCE in the eastern and central regions alternated between
shifting to the left and right while the position of the main peak in the western region
gradually moved to the right, indicating that the TFCE levels in the eastern and central
regions fluctuated and changed over time (and even decreased in some years) while the
TFCE level in the western region gradually improved. The height of the main peak in
the eastern region first increased and then decreased and the width gradually decreased,
indicating that the dispersion of its distribution decreased and the absolute difference
decreased further. The height of the main peak in the central region also first increased
and then decreased and the width increased at the end of the period, which indicated
that the dispersion degree and the absolute difference in the TFCE of the central region
showed “V” shape patterns. The height of the main peak in the western region increased
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over time, indicating that the dispersion degree of the TFCE distribution decreased. The
peak width also gradually decreased during the sample period, indicating that the absolute
TFCE differences within the western region decreased.

From the perspective of distribution extensibility and polarization trends, the TFCE
distribution curves for the three regions all trailed to the right and showed extended
convergence, indicating that the difference between the cities with high TFCE levels and the
average levels in the eastern, central and western regions gradually decreased. There were
multiple main peaks in the distribution curves for the eastern and central regions, which
showed that the multipolar differentiation in the TFCE levels of cities in the two regions
was very significant, thereby confirming that there was also a significant differentiation
between cities in the eastern and central regions. The western region showed a polarization
trend, with a main peak and a left-hand peak in the early stages and the side peak gradually
merging into the main peak in the middle stages, which evolved into a main peak and
the polarization phenomenon gradually disappeared. A right-hand peak formed in the
later stages.

5.2.2. Analysis of Spatial Markov Chain Results

In order to explore the dynamic evolution trends of urban TFCE levels in China, we
used a traditional Markov chain (Table 5) and spatial Markov chain (Table 6) to analyze
the transition probability distribution of urban TFCE. In this study, the quartiles were
selected to divide TFCE into four types: low level, medium–low level, medium–high
level and high level (which are labeled as type I, II, III and IV in the table, respectively).
The diagonal elements of the transition probability matrices in the tables represent the
probability that TFCE type did not change in the t + 1 year, which is also called smooth
transition probability. The non-diagonal elements represent the probability of TFCE type
changing in the t + 1 year, i.e., the probability of a transition up or to the next type. From
the traditional Markov chain transfer results presented in Table 3, it can be seen that the
probability values of the diagonal elements were significantly greater than those of the
non-diagonal elements, which meant that the urban TFCE had strong stationarity. Among
these values, the probability of types I, II, III and IV maintaining their original states was
48.90%, 38.10%, 35.60% and 56.30%, respectively, indicating that urban TFCE had a strong
path-dependent effect. The probability of the low, medium–low and medium–high levels
transitioning to the next level was 21.90%, 27.90% and 25.90%, respectively, indicating that
the probability of TFCE level transitioning from the medium–low level to the medium–
high level was the highest and the probability of transitioning from the low level to the
medium–low level was the lowest. The probability of type I and type II demonstrating a
cross-level upward transition was 15.6% and 10.0%, respectively, which was significantly
lower than the probability of level-wise upward transition, indicating that the evolution of
urban TFCE changed step by step from low to high.

Table 5. The traditional Markov transition probability matrix.

t/t + 1 I II III IV

I 0.4890 0.2190 0.1560 0.1360
II 0.2400 0.3810 0.2790 0.1000
III 0.0970 0.2880 0.3560 0.2590
IV 0.0450 0.1270 0.2650 0.5630

Considering the spatial correlation of TFCE between cities, a spatial lag term was
introduced into the traditional Markov chain matrix to establish a spatial Markov transition
probability matrix. The results are shown in Table 6. It can be seen that after the spatial lag
term was added, the results of the four transition probability matrices presented in Table 6
changed, which meant that there was a certain correlation between the probability of TFCE
transitions between neighboring cities within a given geographical space. First of all, when
a city had a low or medium–low level of TFCE and its neighboring cities had higher TFCE
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levels, the probability of the upward transition of that city was greater. As shown in Table 6,
when the TFCE of a city was type I and those of the neighboring cities were types II, III
or IV, the probability of the upward transition of that city was 24.80%, 20.30% and 27.20%,
respectively, which was higher than the transition probability when the neighboring city
was type I (19.8%). When the TFCE of a city was type II and the neighboring cities were
type III or IV, the probability of the upward transition of that city was 27.60% and 29.20%,
respectively, both of which were higher than the probability when the neighboring city
was type II. It can also be seen that neighboring cities with higher TFCE levels had better
promotion effects on cities with low and medium–low TFCE levels. Secondly, when a
city was type II and the neighboring city was type IV, the probability of the downward
transition of that city was the smallest. When a city had a medium–high level of TFCE and
its neighboring cities were types I, II or III, the probability of the downward transition of
that city decreased in turn. To sum up, under the given conditions, the higher the TFCE
levels in neighboring cities, the higher the probability of the upward transition of the given
city and the lower the probability of downward transition.

Table 6. The spatial Markov transition probability matrix.

Spatial Lag t/t + 1 I II III IV

I

I 0.4490 0.1980 0.1700 0.1830
II 0.2230 0.3500 0.3160 0.1120
III 0.0920 0.2860 0.3280 0.2940
IV 0.1050 0.1740 0.2330 0.4880

II

I 0.5860 0.2480 0.0950 0.0710
II 0.2350 0.4050 0.2350 0.1250
III 0.0950 0.2770 0.3800 0.2480
IV 0.0620 0.0970 0.2480 0.5930

III

I 0.5270 0.2030 0.1830 0.1080
II 0.2940 0.3500 0.2760 0.0800
III 0.1130 0.2580 0.3760 0.2540
IV 0.0400 0.1340 0.2810 0.5450

IV

I 0.3580 0.2720 0.2220 0.1480
II 0.2080 0.4310 0.2920 0.0690
III 0.0840 0.3270 0.3360 0.2520
IV 0.0260 0.1180 0.2700 0.5860

6. Conclusions and Policy Implications
6.1. Conclusions

The purpose of this paper was to measure and evaluate TFCE at the city level in
China as objectively and accurately as possible and comprehensively analyze the regional
differences, spatial distribution patterns and dynamic evolution characteristics of urban
TFCE. To achieve this, we used a combination of the super-efficiency EBM model and the
GML index to measure the TFCE of 283 prefecture-level cities in China from 2004 to 2019.
In terms of research methods, the Dagum Gini coefficient, Moran’s I index, LISA aggre-
gation and standard deviational ellipse models were used to analyze the spatiotemporal
differentiation characteristics of urban TFCE and the kernel density estimation and spatial
Markov chain methods were used to analyze the dynamic evolution of urban TFCE. The
research conclusions were as follows.

Firstly, the differences in TFCE between Chinese cities decreased, although within
the regional differences still constituted the main sources of differences in TFCE across
the four regions. Secondly, the TFCE of Chinese cities had significant spatial correlations,
the local spatial distributions showed high–high and low–low aggregation and TFCE had
obvious directionality and field aggregation. Thirdly, the difference between the cities with
the highest TFCE levels and the national average gradually decreased during the sample
period and the polarization trends across the whole country and the eastern and central
regions showed multipolar polarization. Fourthly, there was a significant path dependence
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effect of urban TFCE in the transfer process and the probability of TFCE transition between
neighboring cities was correlated according to geographical space. The higher the TFCE of
a city, the higher the probability of the upward transition of its neighboring cities.

The above research conclusions are not only conducive to comprehensively grasp-
ing the development status of the TFCE of Chinese cities but could also provide useful
references for local governments to help them to formulate relevant strategies for the coordi-
nated development of regional carbon efficiency. Based on the above research conclusions,
the following policy implications are proposed.

6.2. Policy Implications

(i) Technological changes on the energy supply side offer the main technical strategy
to achieve carbon neutrality and the development of energy-saving and emission
reduction technologies is crucial to improving carbon efficiency. Therefore, firstly,
industrial energy consumption and electricity consumption should be reduced and
the development of green technologies, such as replacing coal with gas and the
carbon neutrality of electric energy, should be vigorously promoted. secondly, the
development of clean energy should be accelerated to replace fossil fuels and the total
amounts of coal and electricity should be strictly controlled. We need to enhance clean
energy power generation and reduce the use of fossil fuels at the source.

(ii) Micro-entities should be encouraged to actively participate in green scientific and
technological innovation and support for new energy enterprises should be increased,
such as preferential tax policies, tax rebates, financial subsidies, etc. At the same
time, local governments should increase support for innovation policies and improve
the coordination mechanisms of ecological innovation policies. We need to promote
the establishment of an eco-innovation system (i.e., a system that integrates science
and technology, the environment, energy, industries, construction, transportation and
other fields), strengthen the construction of supporting infrastructures, actively guide
the regional exchange of knowledge and technology and create sound patterns of
innovation and development for science and technology.

(iii) In view of the significant regional differences and the north–south differentiation of
China’s urban TFCE, the design of carbon efficiency policies should follow the princi-
ples of regional policies to avoid further increasing the difference between regions.
According to the different resource endowment conditions of the different regions,
differentiated policy support should be provided to increase transfer payments for
the construction of green innovation resources in underdeveloped regions.

(iv) Considering the positive spatial spillover effect of TFCE to neighboring cities and the
spatial correlation of transition probability, each region should pay attention to the
exchange and cooperation of carbon emission reduction technologies among different
cities while improving its own carbon efficiency level, give full play to regions with
high carbon efficiency levels and improve the positive spillover effect of TFCE. It is
also necessary to strengthen coordination and interaction between neighboring cities,
actively build green, low-carbon and innovative regional collaborative platforms,
break through regional boundaries, ensure smooth cross-regional circulation channels
for innovative elements and resources and achieve coordinated improvements in
regional carbon efficiency levels.
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Notes
1 According to the IPCC guidelines, the carbon emission coefficients of natural gas, liquefied petroleum gas and urban heating

consumption are 1622 kgCO2/m3, 3.1013 kgCO2/kg and 2.53 kgCO2/kg, respectively.
2 Due to the limited to space, only the LISA aggregation maps for 2005, 2013 and 2019 are listed here and the remaining maps are

retained for retrieval.
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