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Abstract: In the past 20 years, the global economy has undergone tremendous changes with rapid
industrialization and urbanization. Cultivated land is an important spatial carrier for human produc-
tion and life, and its use pattern also changes with socioeconomic development. Natural, economic,
social, and policy factors jointly drive the cultivated land use transition (CLUT). However, the spa-
tiotemporal pattern and evolution characteristics of the CLUT at the national scale have not yet
been clarified in China. Factors that play a leading role in the transition are also unclear. To this
end, this paper explores the spatiotemporal evolution characteristics of the CLUT at a national scale
and analyzes the main drivers and spatial differentiation rules of the transition based on relevant
data from 31 provincial units on the Chinese mainland from 2000 to 2019. The results show that:
(1) The CLUT in China from 2000 to 2019 had obvious stage characteristics. (2) The coordination
degree of the CLUT was enhanced overall. Areas with a higher degree of coordination presented
a spatial distribution pattern of small agglomeration and large dispersion, while low-level areas
were distributed in spots. (3) Different drivers had various effects on the CLUT. The topography
played an inhibitory role in the transition, and its influence showed obvious differences between
the east and west regions. The effect of the construction land demand index shifted from inhibition
to promotion, while the effects of the gross agricultural economic output and the total power of
agricultural machinery in the transition were insignificant.

Keywords: cultivated land use transition; spatiotemporal differentiation; coupling and coordination;
geographically weighted regression model

1. Introduction

Cultivated land is an important cornerstone of agricultural production. In the 21st
century, global cities continue to expand rapidly [1]. Excess urban expansion of the city
causes the mass loss of high-quality farmland, directly threatening global food security.
Especially in economically underdeveloped areas such as Asia and Africa, grain pressure
and shortages of cultivated land become unavoidable practical problems. In addition, a
modern economy and rapid development lead to a rigid growth in global grain demand
[2,3]. Meanwhile, the competition for cultivated land resources in industry, agriculture,
and other fields is increasingly fierce, which further aggravates the human-land conflict.
Poor cultivation and management also cause prominent problems, including overuse,
abuse, soil degradation, environmental pollution, and so on. These problems hinder the
realization of sustainable development goals (SDGs) [4]. Moreover, the world is currently
in the post-epidemic era. Combined with the impacts of sudden events such as extreme
climate change and geopolitical conflicts [5], the stability of the global grain system is
being severely challenged. Thus, the CLUT is not only the core issue of land use and cover
change (LUCC), but also an urgent need to respond to the increasingly complex situation
of cultivated land protection in the world.
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The concept of land use transition (LUT) was first proposed by British scholars when
studying forest cover changes in underdeveloped countries [6]. LUT refers to the trend
variations or transitions of land use morphology driven by socioeconomic transition and
innovation during the corresponding period [7,8]. Early studies mainly focused on the for-
est land use transition and gradually expanded to the transition of other types of land with
the deepening of the research [9–12]. Since cultivated land is the most basic agricultural
resource, research on the CLUT has continued to receive high attention from academic
circles. Some scholars conducted relevant studies on the CLUT based on different regional
scales and perspectives. Guan et al. [13] analyzed the spatial transition of farmland use in
Kyushu, Japan, from the perspective of spatial morphology, mainly focusing on changes in
the quantity and spatial pattern of cultivated land. Song et al. [14] and Zhang et al. [15]
have constructed a theoretical analysis framework for the multifunctional transition of
farmland use and proposed an optimization path for the multifunctional use of farmland.
Zhang et al. [16] explored the spatiotemporal pattern and trend variations of the CLUT
in different regions of Africa and found that the CLUT had obvious spatiotemporal dif-
ferentiation characteristics. Ketema et al. [17] assumed that economy, technology, system,
and location were the potential drivers of the CLUT in Europe, but the impact of labor
force change and social culture were easily overlooked. Ke et al. [18] constructed a research
framework for the green transition of farmland use and conducted an empirical analysis
on the example of Hubei Province, China. Moreover, in the context of rapid urbanization,
several studies have also explored the coupling relationships among CLUT, economic
development [19], rural construction [20], and grain output [21]. However, most of the
existing studies focused on a single perspective, such as spatial transition and functional
transition, lacking innovative and multiple perspectives. Meanwhile, existing research
has given greater consideration to the process, characteristics, and driving factors of the
CLUT, while insufficient regard has been given to the effect and optimization regulation
of the transition. At present, it can be inferred that the field of CLUT still exists with an
enormous development space in the aspects of empirical evaluation, method innovation,
impact exploration, etc. Therefore, it is particularly important to promote the development
of transition research to a higher and deeper level.

China has the largest population in the world, as well as the largest food production
and consumption. Over the past 20 years, with the rapid advancement of industrialization
and urbanization in China, occupying a large amount of farmland for non-agricultural
construction has become a common phenomenon in developed regions [22]. At the same
time, integrated urban-rural development and the flow of geographical factors have also
caused prominent issues such as non-agriculturalization [23], non-grain [24], marginal-
ization, and fragmentation of cultivated land [25,26], which seriously threaten the grain
security of China. In the context of the severe situation, the academic community called
for a reconsideration of the use of cultivated land resources. At the beginning of the 21st
century, Long [27] introduced relevant theories of LUT into China and improved them
according to the current situation of land use management in China. Related research re-
sults were significant for the sustainable use of cultivated land resources and national food
security. Moreover, intensive study on the CLUT was also conducive to coordinating the
protection of cultivated land resources, high-quality economic development, and ecological
civilization construction, which attracted wide attention from society and government.

Due to the late start of research on the LUT in China, there were few direct studies on
the topic of CLUT, whereas the relevant researche mainly focused on themes of driving
mechanisms and morphology transition. As everyone knows, China has a vast territory
with diverse natural, economic, and social elements. Thus, although previous studies of
driving mechanisms have involved many scales, such as provinces, cities, counties, and
river basins, it is still crucial to clarify the transition process and its spatial heterogeneity
at the national scale. In addition, cultivated land use is a complex system composed of
multiple elements that interact and influence each other. These elements are interwoven
according to certain rules and principles. They together constitute the overall function
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and structure of cultivated land use. However, few scholars have studied the coupling
and coordination relationships between different elements. Since human-land conflict is
prominent in China, the analysis of the CLUT is inseparable from the in-depth analysis of
the coupling influence of the changes in various cultivated land use elements within the
human-land system. Based on this, this study took the perspective of cultivated land use
morphology as the starting point. Then, the coupling coordination degree model was used
to explore the spatiotemporal pattern of the CLUT in China from 2000 to 2019, and the
coupling coordination types were further divided. Finally, by identifying the main driving
factors of the utilization transition and their spatial differentiation, the study proposed some
corresponding policy recommendations, aiming to provide decision-making references for
the protection and optimal utilization of cultivated land.

2. Materials and Methods
2.1. Research Framework

The diagnosis of cultivated land use morphological change is the basis for under-
standing the CLUT and is also the key to investigating the spatiotemporal pattern of the
CLUT [28], which requires profound and intensive research. At present, there are two main
classifications of cultivated land use morphologies. One classification is dominant and
recessive morphologies [29–31]. The dominant morphology corresponds to the quantity,
usage structure, and spatial layout of cultivated land, while the recessive morphology
refers to the socio-economic utilization attributes under the interaction between people
and land, including quality, ownership, management style, input-output, and function.
The other classification is spatial, functional, and model morphologies [32–35]. The spatial
morphology mainly reflects the quantitative change and structural transition, and the
functional morphology characterizes the production, living, and ecological effects of culti-
vated land use, while the model morphology includes the inherent input and management
style of cultivated land. Generally speaking, both dominant and spatial morphologies
emphasize the spatiotemporal changes in the quantity or structure of the cultivated land,
with similar connotations [19]. However, the recessive, functional, and model morpholo-
gies have slightly different emphasis. The recessive morphology has a richer connotation,
emphasizing not only the multifunctional expression and management model but also the
quality and ownership changes of cultivated land [36]. Nevertheless, there are certain blind
spots in the quantitative research on recessive morphological change caused by the discon-
tinuity of quality monitoring time and a lack of ownership information [37]. Obviously, the
dominant and recessive forms are more suitable for the mechanism research of CLUT and
are not suitable for the empirical analysis. In view of this, this study conducts empirical
research on CLUT in China from the perspectives of spatial morphology transformation,
multifunctional morphology transformation, and model morphology transformation.

Driving factors of cultivated land use morphology change mainly include natural and
socio-economic drivers [38,39] (Figure 1). Regional disparity could lead to major factors
of differentiation in different regions [40]. Natural factors, such as topography, climate,
and hydrology, are the foundation of the cultivated land use morphology change [41],
and they show a significant impact on the macroscale or mesoscale research area with
less disturbance by human activities [42]. Socio-economic factors are the core driving
force. Several studies have shown that, under the influence of institutions and policies, the
response of individuals or groups to the economy is the deep-seated driving factor of the
cultivated land use morphology change [43,44]. Therefore, based on previous literature
and considering geographical location factors, this article constructs an analysis framework
for the driving factors of CLUT from four aspects: nature, economy, society, and institution.
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Figure 1. Analysis framework of the CLUT.

2.2. Index System and Data Sources
2.2.1. Index System

The Delphi method is a subjective and qualitative method that can gather diverse
perspectives and reach consensus on complex themes or issues [45]. It has been widely
applied in agriculture [46], the economy [47], and the environment [48]. This method
involves conducting multiple rounds of surveys on the opinions of experts on the questions
raised in the questionnaire, repeatedly soliciting, summarizing, and modifying. Finally, they
are summarized into a consensus among experts, which serves as the predicted result [49].
In the process of collecting and analyzing expert feedback, quantitative statistical analysis
methods are used to statistically process the data, and the obtained results present stability
and reliability [50]. Therefore, this paper adopted the Delphi method to establish an
evaluation index system. In this study, 15 professors and associate professors from Chinese
universities engaged in research on farmland protection and agricultural policy were
selected for consultation. They have more than 10 years of teaching experience and field
practice experience.

Under the analysis framework proposed above, three target layers and seven factor
layers were first identified. Target layers included spatial transformation, multifunctional
transformation, and model transformation. Factor layers included quantity, structure,
production function, living function, ecological function, resource conservation, and spatial
intensification. Then, based on this, evaluation indicators (indicator layer) belonging to
different factor layers were selected, and finally, the evaluation indicator system of CLUT
was formed at three levels: the target layer, the criterion layer, and the indicator layer.

According to the results of the first round of consultation (Table 1), grain sown
area and grain economy ratio were merged into the proportion of non-grain sown area.
Additionally, the average scores of the importance of cultivated land per capita, proportion
of paddy fields, crop output per hectare, ratio of agricultural output to GDP, labor force per
hectare, and organic fertilizer use were <4, which were deleted. Meanwhile, the average
scores of the operability of landscape fragmentation, agricultural technicians per hectare,
and agricultural plastic film use were <4, and they were also deleted.
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Table 1. Results of the first round of expert consultation.

Index Layer
Importance Operability

x ± s CV x ± s CV

Cultivated land area 4.467 ± 0.516 11.561% 5.000 ± 0.000 0.000%
Cultivated land per capita 3.717 ± 1.059 28.496% 4.667 ± 0.516 11.066%

Multiple crop index 4.450 ± 0.809 18.187% 4.667 ± 1.506 18.060%
Grain-sown area 4.367 ± 1.388 11.229% 4.000 ± 0.894 22.361%

Grain economy ratio 4.217 ± 1.114 18.450% 4.583 ± 1.429 19.875%
Landscape fragmentation 4.000 ± 0.894 29.814% 1.750 ± 0.880 50.305%
Proportion of paddy fields 2.750 ± 1.084 39.417% 4.000 ± 0.894 22.361%
Grain output per hectare 4.600 ± 0.800 17.391% 4.167 ± 0.753 18.067%
Crop output per hectare 3.633 ± 0.753 20.719% 4.333 ± 0.816 18.842%

Agricultural economic output per hectare 4.000 ± 0.632 15.811% 4.667 ± 0.816 22.268%
Ratio of agricultural output to GDP 3.167 ± 0.753 23.772% 4.250 ± 1.255 29.529%

Per capita share of grain 4.242 ± 0.755 17.806% 4.083 ± 1.357 14.013%
Proportion of agricultural employees 4.375 ± 0.802 18.339% 4.150 ± 0.418 11.155%

Labor force per hectare 2.983 ± 0.873 29.254% 2.667 ± 1.033 38.730%
Agricultural technicians per hectare 4.000 ± 0.787 23.861% 1.750 ± 0.880 50.305%

Chemical fertilizer pollution per hectare 4.067 ± 1.061 24.759% 4.217 ± 1.021 22.233%
Agricultural plastic film use 4.150 ± 0.731 29.855% 1.750 ± 0.758 43.331%

Unit irrigation level 4.167 ± 1.098 20.163% 4.083 ± 0.917 24.754%
Proportion of water-saving irrigation area 4.067 ± 1.108 17.235% 4.033 ± 1.329 16.912%

Total power of agricultural machinery per hectare 4.250 ± 0.758 17.842% 4.667 ± 1.862 19.821%
Energy consumption per hectare 4.350 ± 1.173 19.457% 4.083 ± 0.665 21.900%

Organic fertilizer use 2.817 ± 1.150 40.816% 2.017 ± 0.895 44.398%
Proportion of facility agricultural land 4.217 ± 1.167 24.674% 4.033 ± 0.753 19.638%

Based on the results of the first round of consultation, the second round of consultation
questionnaires were sorted out to conduct expert consultation. The final results showed
that the importance and operability scores of all three-level indicators were >4, and the
coefficient of variation was <0.25. After completing two rounds of the Delphi method,
this study identified 3 first-level indicators, 7 second-level indicators, and 13 third-level
indicators for the comprehensive evaluation of CLUT (Table 2).

Table 2. Comprehensive evaluation index system of the CLUT.

Target Layer Rule Layer Index Layer Index Interpretation Attribute Weight

Spatial
transition

Quantity Cultivated land area / + 0.1395

Structure
Multiple crop index Crop-sown area/cultivated land area + 0.0592

Proportion of non-grain-sown area Non-grain sown area/total crop sown area − 0.0484

Multifunctional
transition

Production
function

Grain output per hectare Total grain output/grain sown area + 0.0683
Agricultural economic output per

hectare
Total crop economic output/cultivated

land area + 0.0908

Living function
Per capita share of grain Total grain output/total population + 0.0547

Proportion of agricultural employees Agricultural population/total population
of the labor force + 0.0725

Ecological
function

Chemical fertilizer pollution per
hectare

Total amount of chemical fertilizer
application/cultivated land area − 0.1029

Unit irrigation level Effective irrigated area/grain output + 0.0863

Model
transition

Resource
saving

Proportion of water-saving irrigation
area

Water-saving irrigation area/cultivated
land area + 0.0698

Total power of agricultural machinery
per hectare

Total power of agricultural
machinery/cultivated land area + 0.0679

Energy consumption per hectare Total agricultural energy
consumption/cultivated land area − 0.0971

Spatial
intensification Proportion of facility agricultural land Facility agricultural land area/cultivated

land area + 0.0425

Note: “+”, positive indicators; “−”, negative indicators.
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2.2.2. Data Sources and Processing

The time series of the database in this study were the years 2000–2019. The land
use data came from the China land and resources statistical yearbook published by
the Ministry of Natural Resources of China. The terrain data was provided by the Re-
source and Environmental Science and Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/, accessed on 25 May 2023). ArcGIS 10.2 was used for spatial
analysis and processing. The socioeconomic data was obtained from statistical yearbooks
of various provinces and cities in China, statistical communiqués of national economic and
social development, and relevant government portals. Considering the unavailability of
data, the Taiwan Province of China, HKSAR, and Macao SAR were not included in the
scope of this study. In addition, the maps in this study were based on the standard map
with the figure number GS(2019)1719, which was downloaded from the standard map
service website of the Ministry of Natural Resources of China (http://bzdt.ch.mnr.gov.cn/,
accessed on 12 May 2023).

2.3. Study Methods
2.3.1. Indicator Weight Calculation

The analytic Hierarchy Process (AHP) method is a reliable, rigorous, and robust
method widely used for determining indicator weights [56–58]. The hybrid approach
used by combining AHP with common weighting methods requires less expert judgment
than the AHP method, providing more accurate rankings and weighting [59]. This paper
combined AHP and the entropy weight method. During the hierarchical analysis, the study
once again invited the 15 Delphi experts mentioned earlier to form an AHP expert group to
jointly complete the ranking of the importance of each indicator.

The weights calculated can be corrected through the combined empowerment method,
which can overcome the shortcomings of the single method of subjective weighting or
objective weighting to the greatest extent [60]. The final result can not only demonstrate
subjective human intervention but also highlight the objective indicator weight so as to
make the indicator weight more scientific. The calculation formula is as follows:

Wj =

√
αjωj

∑n
j=1
√

αjωj
(1)

where Wj is the weight value of the indicator after combination weighting; αj represents
the weight value of the indicator calculated using AHP; and ωj represents the weight value
of the indicator calculated using the entropy weight method.

2.3.2. Evaluation of Comprehensive Measurement and Coupling Coordination Degree of
the CLUT

1. Comprehensive degree of the transition

The transition index of the subsystem was calculated by adding the product of the
indicator layer weight and the standardized value of each indicator. The comprehensive
degree of the transition can be obtained by summing the transition indexes of subsystems
according to the target layer weight. The calculation formulas are as follows:

ST(s) =
m

∑
i=1

(αi · si) (2)

MFT(x) =
m

∑
j=1

(
β j · xj

)
(3)

MT(g) =
m

∑
k=1

(λk · gk) (4)

https://www.resdc.cn/
http://bzdt.ch.mnr.gov.cn/
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T = α× ST(s) + β×MFT(x) + λ×MT(g) (5)

where ST(s), MFT(x), and MT(g) are respectively spatial transition index, multifunctional
transition index, and model transition index; T is the comprehensive degree of the CLUT;
αi, βj, and λk represent the index layer weight; si, xj, and gk are indicators that represent the
characteristics of spatial transition, multifunctional transition, and model transition after
using range normalization; α, β, and λ represent the target layer weight.

2. Coupling degree of the transition

During the transition process, there will be interactions and impacts of different
intensities among the three subsystems. This study used the methods of studying coupling
system models in physics to construct an evaluation model for the coupling degree of the
CLUT [61]. The coupling function is as follows:

C =
3× {ST(s)×MFT(x)×MT(g)}1/3

ST(s) + MFT(x) + MT(g)
(6)

where C is the coupling degree of the transition.

3. Coordination degree of the transition

This study focused on both the interaction degree among the three subsystems and
the coordination status of the three. Therefore, the study introduced a coordination model
to effectively measure the interaction and development status of the three subsystems [62].
The specific calculation formula is as follows:

D =
√

C× T (7)

where D is the coordination degree of the transition, C is the coupling degree of the
transition, and T is the comprehensive degree of the transition.

Given the complexity of the comprehensive degree, coupling degree, and coordination
degree of the CLUT, this study referred to the previous research results [18] and used
the manual breakpoint method to classify the indexes in order to better understand the
coordinated development status of the transition in different regions. The classification
criteria are as shown in Table 3.

Table 3. Grade classification of indexes.

Transition Index Index Level Criteria

Comprehensive degree of the transition
Primary stage [0.00, 0.41)

Intermediate stage [0.41, 0.47)
Advanced stage [0.47, 1.00]

Coupling degree of the transition
Low level [0.00, 0.93)

Medium level [0.93, 0.96)
High level [0.96, 1.00]

Coordination degree of the transition
Low level [0.00, 0.62)

Medium level [0.62, 0.67)
High level [0.67, 1.00]

2.3.3. Construction of a Minimum Data Set (MDS) Based on the Principal Component
Analysis (PCA)

PCA is widely used in identifying the main drivers of cultivated land use change.
This method can reduce data redundancy, but it only considers the factor loading of a
variable on a principal component (PC). Reducing the number of evaluation indicators
can also result in the loss of partial cultivated land use change information contained in
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the indicators. To avoid this defect, this study introduced the norm value as an important
reference for constructing MDS [63]. The norm value is calculated as follows:

Nik =

√
∑k

i=1

(
U2

ikλk
)

(8)

where Nik is the combined loading value of the i-th variable on the first k PCs with eigen-
value ≥ 1, Uik is the factor loading value of the i-th variable on the k-th PC, and λk is the
eigenvalue of the k-th PC.

2.3.4. Geographic Weighted Regression (GWR) Analysis

GWR introduces the spatial relationship on the basis of traditional global regression,
which can reflect the relationship between variables changing and the spatial position by
establishing the local regression variance at each point in the spatial range [64]. Therefore,
in this study, GWR was chosen to explore the spatial differentiation characteristics of drivers
in different regions. The model is constructed as follows:

yi = β0(ui, vi) + ∑p
k=1 βk(ui, vi)xik + εi (9)

where (ui, vi) is the spatial coordinate of the i-th observation point; βk (ui, vi) is the k-th
regression parameter on the i-th observation point; β0 is the regression constant of the i-th
observation point.

3. Results
3.1. Classification of Cultivated Land Use Stages in China from 2000 to 2019

Based on the weight calculation in Table 1, the comprehensive score trend chart of
cultivated land use in China from 2000 to 2019 was drawn by weighting and summing the
index values of each indicator (Figure 2). It can be seen that the comprehensive score had
obvious stage characteristics. During 2000–2006, the comprehensive score of cultivated
land use showed a trend of rapid decline, and its average score was 0.43. During 2006–2013,
the comprehensive score began to fluctuate upwards, with an average score of 0.48. During
2013–2019, the curve fluctuation was relatively small, and the average score was 0.57. To
sum up, the change in cultivated land use in China from 2000 to 2019 can be roughly
divided into three periods: 2000–2006, 2006–2013, and 2013–2019.

Figure 2. Comprehensive score of the CLUT in China from 2000 to 2019. The orange diamonds
represent the minimum (2006) and maximum (2013) comprehensive scores of cultivated land use in
China from 2000 to 2019, respectively.

3.2. Characteristics and Trends of the CLUT in China from 2000 to 2019

Figure 3 shows that the spatial transition index experienced drastic changes over
the whole period 2000–2019, showing a tendency toward “slow decrease–rapid increase–
relative stability”. The mean value increased from 0.323 to 0.819 in the first stage. The
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multifunctional transition index went through a process of decreasing first and then increas-
ing, with a decreasing trend from 2000 to 2006 and an increasing trend from 2006 to 2019. Its
mean value decreased from 0.466 to 0.435. From the perspective of individual functions, the
production function transition index rose rapidly, and its mean value increased from 0.033
to 0.275 in the first stage. However, the living function transition index declined to varying
degrees in three stages, with the mean value decreasing from 0.160 to 0.126. The ecological
function transition index experienced a process of decreasing first and then increasing, with
a decreasing trend from 2000 to 2013 and an increasing trend from 2013 to 2019. Its mean
value decreased from 0.274 to 0.034. The above results show that the production function
of cultivated land use was gradually enhanced, while the living function was weakened
little by little. Meanwhile, ecological function was in a slow recovery stage. In addition, the
model transition index presented a variation trend of “slow decrease–rapid increase–slow
decrease”, but it achieved overall growth. The mean value increased from 0.367 to 0.621.

Figure 3. Stage characteristics of the CLUT in China from 2000 to 2019. ST, spatial transition; MFT,
multifunctional transition; MT, model transition; PF, production function; LF, living function; EF,
ecological function.
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3.3. Evaluation of Comprehensive Measurement and Coupling Coordination of the CLUT in China

During 2000–2006, the comprehensive degree of the transition showed a feature of
low in the south and high in the north. Eight units were in the advanced stage, with a
mean of 0.492. The distribution pattern of small agglomeration and large dispersion in
intermediate-level regions across the country accounting for 45.2%, and its mean was 0.442.
Areas that were in the primary stage were distributed in spots, with a mean of 0.394. The
coupling degree results of the three subsystems were relatively high, with a mean of 0.965,
indicating that the overall interaction was strong. 67.7% of units were at the high level,
with a mean of 0.975. The coordination degree of the three subsystems was at a medium
level, with an average value of 0.650.

During 2006–2013, the comprehensive degree of the transition was improved com-
pared with the previous stage, and their average value rose to 0.462. 45.2% of the units
were at the advanced stage, showing a spatial pattern of small agglomeration and large
dispersion. Areas in the primary stage accounted for 12.9%, generally developing from dis-
persion to aggregation. The coupling degree of the transition presented an enhanced trend,
with an average value of 0.974. 87.1% of the units were at the high level, and its average
value was 0.979. The coordination degree of the transition also showed an enhanced trend,
with the average value rising to 0.670.

During 2013–2019, the comprehensive degree of the transition began to slow down,
and its average value dropped to 0.450. Areas that were in the advanced stage were mainly
distributed in a strip pattern in the whole region, gathering in “Jiangsu–Shanghai–Zhejiang–
Fujian–Guangdong”. The average value of the regions that were in the intermediate stage
increased compared with the previous stage, and the areas in the primary stage were
characterized by punctate distribution. The coupling degree of the transition showed a
further enhanced trend. Except for Xinjiang and Beijing, 29 provincial units were all at the
high level. The coordination degree of the transition declined, and its average value fell to
0.661% (Figure 4)

3.4. Drivers of the CLUT and Their Spatial Differentiation
3.4.1. Construction of MDS Based on PCA

From the four aspects of the natural environment, economic construction, social
development, and agricultural policy, eight indicators were preliminarily selected (Table 4).
Based on the PCA, the eigenvalues of 8 indicators were determined, and there were three
principal component eigenvalues≥ 1, with a cumulative contribution rate of 71.17%. Firstly,
all the indicators were grouped according to the factor loading, and then the indicators
with an absolute value of the factor loading less than 0.55 in the three principal components
were excluded. According to the norm value and correlation between the indicators, four
evaluation indicators of topography, gross agricultural economic output, total power of
agricultural machinery, and construction land demand index were finally selected.

3.4.2. Spatial Autocorrelation Test of Dependent Variables

Analyzing whether the dependent variable has spatial autocorrelation is the basis for
constructing the GWR model. The study used ArcGIS 12.0 to calculate the Global Moran’s
I to test whether there is a significant spatial autocorrelation of the coordination degree
of the CLUT in the three stages. The results are shown in Table 5. Through analysis, the
Z-scores of the three stages were all greater than 2.04, and the p-values were all less than
0.1, indicating a confidence level of over 90% between the results of spatial autocorrelation
and the actual situation. Meanwhile, all the results of Global Moran’s I were close to 1,
showing that the dependent variable was spatially clustered and the spatial autocorrelation
was positive.
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Figure 4. Spatial distribution of the comprehensive evaluation results of the CLUT in China from
2000 to 2019. (a) Phase 1, 2000–2006; (b) Phase 2, 2006–2013; (c) Phase 3, 2013–2019.

Table 4. Factor loading matrix, common factor variance, and norm value.

Indicator Group PC1 PC2 PC3 Norm Value

Slope 1 −0.741 −0.317 −0.027 4.133
Topography 1 −0.825 −0.082 −0.028 4.271

Construction land demand index 1 −0.688 −0.016 0.558 4.325
Gross agricultural economic value 2 0.085 0.87 −0.147 4.414

Per capita GDP 2 0.239 0.789 0.331 4.381
Urbanization rate 2 −0.466 0.564 −0.364 4.038

Disposable income of the rural household 3 0.246 0.35 0.757 3.995
Total power of agricultural machinery 3 0.243 0.370 0.790 4.157

Eigenvalue 2.824 2.216 1.366
Variance contribution rate/% 31.372 24.620 15.178

Cumulative contribution rate of the principal
components/% 31.372 55.993 71.710
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Table 5. Results of the spatial autocorrelation test for the dependent variable.

Period 2000–2006 2006–2013 2013–2019

Global Moran’s I 0.2876 0.2853 0.2875
Z-score 2.1341 2.0418 2.1681
p-value 0.0328 0.0412 0.0353

3.4.3. GWR Model Test

Before constructing the GWR model, it is necessary to verify whether the combination
of multiple independent variables is redundant. If there is a serious collinearity problem
between independent variables, the model may be unstable and unreliable. This study
used SPSS 22.0 to conduct correlation tests on evaluation indicators, and the test results
are shown in Table 6. It can be seen that the correlation coefficients between independent
variables at different stages were all less than 0.722, indicating that there was no serious
collinearity problem among independent variables.

Table 6. Correlation coefficient table of the evaluation indexes.

2000–2006 Topography Gross Agricultural
Economic Output

Total Power of
Agricultural
Machinery

Construction Land
Demand Index

Topography 1.000
Gross agricultural economic output −0.286 1.000

Total power of agricultural machinery −0.237 0.715 1.000
Construction land demand index −0.554 −0.182 −0.301 1.000

2006–2013 Topography Gross agricultural
economic output

Total power of
agricultural
machinery

Construction land
demand index

Topography 1.000
Gross agricultural economic output −0.250 1.000

Total power of agricultural machinery −0.193 0.721 1.000
Construction land demand index −0.553 −0.092 −0.208 1.000

2013–2019 Topography Gross agricultural
economic output

Total power of
agricultural
machinery

Construction land
demand index

Topography 1.000
Gross agricultural economic output 0.283 1.000

Total power of agricultural machinery 0.056 0.278 1.000
Construction land demand index −0.537 −0.272 0.075 1.000

If the regression model lacks key explanatory variables, it can lead to misspecification
of the regression model. Therefore, this study needs to conduct a spatial autocorrelation test
on the residuals of the regression results to determine whether the residuals are randomly
distributed. If the residuals are clustered, it indicates that the construction of GWR model
parameters is problematic and explanatory variables need to be increased or decreased. The
Moran’s I, Z-score, and p-value calculated by ArcGIS 12.0 are shown in Table 7. It can be seen
that the spatial distribution of residuals in each stage showed a certain degree of randomness.

Table 7. Spatial autocorrelation test results of residuals.

Period 2000–2006 2006–2013 2013–2019

Moran’s I 0.1296 0.0668 −0.1215
Z-score 1.4938 0.9164 −0.8219
p-value 0.1352 0.3594 0.4111



Land 2023, 12, 1839 13 of 20

The Akaike information criterion (AIC) was used to evaluate the fitting effect of the
GWR model in this study. The fitting coefficients R2 and R2 adjusted can be used to
measure the fitting degree of the model. The larger the R2, the better the fitting effect of the
model. As can be seen from Table 8, the goodness of fit of the constructed GWR model in
three stages was 57%, 58%, and 53%, respectively, all exceeding 52%.

Table 8. GWR model goodness of fit test results.

Period 2000–2006 2006–2013 2013–2019

R2 0.57 0.58 0.53
R2 Adjusted 0.48 0.48 0.41

3.4.4. Analysis of Driving Factors for CLUT

1. Topography

The topography mainly played an inhibitory role in the CLUT. During 2000–2006, the
impact of the topography on the CLUT in different regions was various, and the promoting
impact mainly occurred in the central and eastern regions, while the inhibiting impact
occurred in the western regions. The main reason might be that the topography in western
China is complex and diverse, and the topography has relatively great restrictions on
agriculture. During 2006–2013, the spatial distribution pattern of regression coefficients
changed greatly. Coefficient in the whole domain were all negative, and the influenc-
ing degree gradually increased from west to east. The main reason might be the rapid
development of the social economy and the further increase in land development inten-
sity. Meanwhile, with the lack of standardized guidance for people’s land development
and utilization activities, a large amount of cultivated land has been converted into non-
agricultural construction land, while the quality of the cultivated land has also declined.
The increasingly fragile ecological environment led to a further increase in the constraints
of natural environmental conditions on the CLUT. During 2013–2019, the regression coeffi-
cients of the topography in the whole region began to be both positive and negative again.
Compared with the spatial distribution of the regression coefficients from 2000 to 2006, the
coefficient distribution pattern of the two stages was basically the same (Figure 5).

Figure 5. Spatial distribution of topography regression coefficients from 2000 to 2019. (a) Phase 1,
2000–2006; (b) Phase 2, 2006–2013; (c) Phase 3, 2013–2019.
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2. Gross agricultural economic output

The gross agricultural economic output had a certain inhibitory effect on the transition,
but it was indistinctive. During 2000–2006, the degree of the positive effect gradually
increased from the northwest end to the internal region, and the degree of the negative
effect gradually increased from the internal region to the southeast end. The reason for
this spatial distribution pattern might be the difference in regional economic development.
Richer areas had low enthusiasm for agricultural development, which hampered the CLUT
to some extent, while poorer areas were mainly dominated by traditional agriculture, and
the cultivated land has always been given a crucial role. During 2006–2013, the negative
effect became weaker than that in the previous period and showed a significant north-south
difference. During 2013–2019, the negative effect of the gross agricultural economic output
also existed, and the effect continued to weaken. The spatial distribution characteristics
gradually changed from the north-south difference to the east-west difference (Figure 6).

Figure 6. Spatial distribution of gross agricultural economic output regression coefficients from 2000
to 2019. (a) Phase 1, 2000–2006; (b) Phase 2, 2006–2013; (c) Phase 3, 2013–2019.

3. Total power of agricultural machinery

The total power of agricultural machinery promoted the CLUT, but the effect was
inapparent. During 2000–2006, the regression coefficients showed a development trend
of high in the south and low in the north. The reason might be that the small land area
and high degree of dispersion in southern China led to the backward development of
large and medium-sized agricultural machinery, while the development of agricultural
mechanization in the northern plains of China was at the leading level nationwide, relying
on the advantages of geographical conditions and planting scale. Thus, the development
of agricultural mechanization had a stronger impact on the CLUT in southern China.
During 2006–2013, the total power of agricultural machinery played a positive role in
87% of the areas. One of the main reasons for this kind of spatial distribution pattern
was the comprehensive promotion and substantial investment of the central government
in agricultural mechanization. During 2013–2019, regression coefficients in the whole
region were all positive, but the average value of coefficients decreased compared with the
previous stage, indicating that the force of the total power of agricultural machinery on the
transition weakened in this stage (Figure 7).
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Figure 7. Spatial distribution of total power of agricultural machinery regression coefficients from
2000 to 2019. (a) Phase 1, 2000–2006; (b) Phase 2, 2006–2013; (c) Phase 3, 2013–2019.

4. Construction land demand index

The overall effect of the construction land demand index on the transition changed
from inhibition to promotion, and its influencing degree was the most significant among the
four factors. The growth of the construction land demand index was generally consistent
with the regional economic development pattern. During 2000–2006, there was an intense
negative correlation between the construction land demand index and the CLUT. Regres-
sion coefficients in the whole region were all negative, and the influencing degree gradually
increased from southeast to northwest. The main reasons for this spatial difference might
be the continuous implementation of the western development strategy and the slow
urbanization in parts of eastern China. During 2006–2013, the positive coefficients were
mainly concentrated in the northwest, and the reason might be that the increased invest-
ment in land consolidation and reclamation funds as well as comprehensive agricultural
development funds in western areas alleviated the conflict between economic construction
and farmland protection. The negative coefficients were mainly concentrated in Central
China, South China, and East China, and the negative influence in southeast coastal areas
was deeper than that in inland areas, probably because of the less cultivated land resources
in coastal areas as well as the extension and expansion of urban and rural construction in
the process of economic development. During 2013–2019, the construction land demand
index showed a strong effect on promoting the transition, and its effect gradually weakened
from east to west, which might benefit from the amelioration of the farmland protection
policy system at this stage (Figure 8).
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Figure 8. Spatial distribution of construction land demand index regression coefficients from 2000 to
2019. (a) Phase 1, 2000–2006; (b) Phase 2, 2006–2013; (c) Phase 3, 2013–2019.

4. Discussion

The spatiotemporal evolution pattern and driving mechanism of CLUT are the hot
topics in the field of cultivated land use research in China. The research results indicate
that the spatial structure, functional intensity, and management model of cultivated land
use are closely related to the cultivated land use morphology, which has strong explanatory
significance for the CLUT. The change in cultivated land use morphology is the result
of socio-economic development and the transformation of cultivated land use modes in
China’s modernization process. On one hand, China’s industrialization and urbanization
development have led to changes in the traditional elements of cultivated land use. In
order to meet major development needs, such as food security, high-quality agricultural
development, and rural revitalization, cultivated land utilization is shifting towards a
more efficient direction, and spatial differences are also narrowing. On the other hand, the
spatial distribution and coupling coordination of CLUT constantly evolve and change over
time. The impact of natural conditions, socio-economic factors, and land policies on the
CLUT varies greatly over different periods. Analyzing the spatiotemporal differences in
the impact of different factors on the CLUT can provide a basis for scientific management
and control of cultivated land resources. Research also suggests that China should start
with the following aspects to promote efficient transformation of cultivated land use and
achieve agricultural modernization in the future:

(1) Take multiple measures to promote comprehensive land remediation across the entire
region. Resource endowment is the foundation of the CLUT. At present, the negative
effect of the topography is more intense in western China, mainly due to the complex
terrain, fragile ecological environment, relatively poor cultivated land resources, and
high degree of cultivated land fragmentation. Comprehensive land consolidation is of
great significance for the improvement of terrain constraints and large-scale operations.
It has become an important level for high-quality agricultural development and rural
revitalization in China. However, the following two points should be paid attention to:
Firstly, it is necessary to fully utilize advanced scientific technology and management
methods. On one hand, we can use advanced technologies such as mechanical
deep planting, buried drip irrigation, soil testing, fertilizer distribution, or drone
spraying to control plant diseases and insect pests and standardize the planting. On
the other hand, equipment such as aerial drones and ground sensors can be used to
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establish remote control and three-dimensional monitoring systems. Secondly, we
need to strengthen the dominant position of farmers in the consolidation process. We
should fully respect the wishes of farmers, understand their practical demands, and
encourage them to actively learn the skills of modern agricultural production, which
can provide an internal driving force for the transition.

(2) Actively support and guide the cross-regional operation of agricultural machinery.
The total power of agricultural machinery played a role in promoting the CLUT, but
its effect continued to weaken with time, and problems of regional and structural
imbalance were prominent due to the inefficient allocation of agricultural machin-
ery resources. Since the implementation of agricultural preference policies such as
agricultural machinery purchase subsidies, the number of agricultural machines in
China has continued to expand. Agricultural machinery is abundant in some areas,
but as far as the country is concerned, there are still many areas lagging behind.
Therefore, actively guiding the cross-regional operation of agricultural machinery
can effectively promote the allocation of agricultural machinery resources. In recent
years, the income from the cross-regional operation of agricultural machinery has
decreased. In order to effectively reduce the burden on farmers, we should increase
targeted subsidies for agricultural machinery oil and further innovate value-added
services such as green channels for agricultural machinery refueling, agricultural
preference commodity counters, convenient service desks for agricultural machinery,
etc. In addition, the operation link should be appropriately widened to promote the
transition from traditional harvest to whole-process management, specialization, and
one-stop service.

(3) Implement the responsibility of cultivated land protection and form a joint cultivated
land protection system. The construction land demand index played a certain role in
promoting the CLUT, mainly thanks to the strict cultivated land protection system.
Although the central government has issued the strictest policies and systems around
the control, construction, and incentives of cultivated land, there is a lack of a strong
incentive mechanism for the triple protection of cultivated land. To this end, we
should refine the trinity protection scope of cultivated land, divide the evaluation
threshold based on the characteristics the resource background and create an intelli-
gent, dynamic supervision platform to provide support for farmland improvement
and differentiated management. Meanwhile, elements related to farmland protection
should be included in the scope of supervision, such as strict supervision of chemical
fertilizers, pesticides, and other inputs, as well as farmland ecosystem and biodiver-
sity protection. Moreover, it is necessary to explore the establishment of a horizontal
and vertical linkage compensation mechanism for farmland protection to reduce the
risk of environmental damage caused by cross-regional supplementary farmland and
stimulate the spiritual and material effects of the subjects responsible for farmland
protection [65].

Although this study can comprehensively reflect the level and characteristics of the
CLUT, which is significant for empirical research, the cultivated land use system is a
complex giant system with open characteristics, and the indicator system for structure,
function, and model transformation still needs to be improved. Especially as the tasks
and goals of China’s cultivated land protection will change over time, it is necessary to
continuously adjust the evaluation indicator system to adapt to the changes in China’s food
security situation. In addition, the analysis of the spatiotemporal evolution characteristics
of CLUT is only a preliminary result. Based on the significant differences between regions,
in-depth analysis of the regional suitability and applicability of CLUT should be the content
that needs further deepening research in the future.

5. Conclusions

The cultivated land use in China has great potential for transition, but there are still
great development obstacles. From the perspective of time, although the average indices of
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multifunctional transition and model transition of cultivated land use in China increased
continuously, they were much lower than the average index of spatial transition. Therefore,
more attention should be paid to the multifunctional transition and model transition of the
cultivated land. The spatial distribution characteristics of CLUT in China gradually changed
from north-south differences to east-west differences, and the low-value areas were distributed
in spots, while the high-value areas mainly showed strip-like distribution. In addition, the
coupling degree of the three subsystems of spatial transition, multifunction transition, and
model transition was high, indicating that the overall interaction was strong, but the imbalance
phenomenon was increasingly prominent. Therefore, the future regulatory strategy of CLUT
should fully consider regional differences and link the internal elements of the cultivated
land use system with the external environment. Finally, it is also necessary to coordinate the
development relationship among the three subsystems to promote the scientific transition of
cultivated land use and the efficient development of agriculture.
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