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Abstract: The rapid expansion of urban areas is a major driver of deforestation and other associated
damage to the local ecosystem and environment in arid and semi-arid oases, especially in the eastern
region of Saudi Arabia. It is therefore necessary to accurately map and monitor urban areas to
maintain the ecosystem services in these oases. In this study, built-up areas were mapped using a
spectral mixture analysis (SMA) model in the Al-Ahsa Oasis in the eastern region of Saudi Arabia
by analyzing Landsat images, including Thematic Mapper (TM), Enhanced Thematic Mapper Plus
(ETM+), Operational Land Imager (OLI), and Sentinel-2A images, acquired between 1990 and 2020.
Principle component analysis (PCA) was used to build and select endmembers, and then SMA was
applied to each image to extract urban/built-up fractions. In addition, this study also discusses the
possible driving forces of the urban dynamics. SMA classification performance was assessed using
fraction error maps and a confusion matrix. The results show that the Al-Ahsa Oasis’ urban area
had been rapidly expanding during 2010–2020 with an expansion rate of nearly 9%. The results also
indicated that the SMA model provides high precisions (overall accuracy = ~95% to 100%) for an
oasis urban mapping in an arid and semi-arid region that is disturbed by the mixed-pixel problem,
such as the Al-Ahsa Oasis in eastern Saudi Arabia.
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1. Introduction

Rapid urbanization has become a central issue in urban studies and policy decision-
making processes, and as a result a lot of research in recent years has concentrated on its
consequences and impact as well as its mapping. It has several impacts on the economy,
society, and the environment. For example, urbanization has raised sea levels, degraded
land for agricultural use, increased urban heat intensity, and accelerated the rate of defor-
estation [1]. Moreover, precise information about land use/cover features such as urban
structures is considered one of the most critical elements for development worldwide [2].
The increase in population and rapid sprawl of cities is a severe environmental problem,
mainly in arid and semi-arid environments where information about these issues is inade-
quate. Thus, recently, many researchers have focused on mapping and extracting urban or
built-up areas from remotely sensed images.

In the Al-Ahsa Oasis—one of the most important date palm regions in the Kingdom of
Saudi Arabia, which is located in the eastern part of Saudi Arabia (see Figure 1)—the accel-
erated economic development has led to increased urbanization, expanding both built-up
and impervious surfaces. In this oasis, urban growth is a serious problem that threatens sus-
tainable agriculture [3–5]. It is considered one of the oldest date palm (Phoenix dactylifera L.)
sources worldwide that guarantees reasonable and sustainable revenue for the government
and local farmers [4]. Nevertheless, the date palm plantations and their productivity in
this oasis have been harmfully impacted by environmental factors such as soil salinity.
During the recent decades, the rapid urbanization process significantly modified the oasis,
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specifically since the discovery of oil on 3 March 1938. For instance, human-induced factors
resulting from activities such as urban development have also been affecting this ecosystem.
Mapping and monitoring urban development by utilizing reliable approaches can reliably
reduce these negative impacts of urbanization. Therefore, the development of methods
to accurately map urban areas and monitor their growth is strongly required to provide
accurate and up-to-date data regarding urban areas. Remote sensing data and techniques
are among the rapid mapping methods that can be used for this purpose.
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commonly used for mapping and assessing land use/cover changes [6], can be used for 
mapping urban areas. For example, Bouzekri et al. [7] established a new spectral index to 
extract urban areas of Djelfa city, South Algeria from Landsat-8 (OLI). They concluded 
that the newly established index yielded satisfactory results compared with four previ-
ously used spectral indices, including the normalized built-up index (NDBI). The nor-
malized difference built-up index (NDBI) and the built-up area extraction method 
(BAEM) were utilized in Lahore, Pakistan to extract information about built-up areas by 
analyzing Landsat-8 (OLI) images; the results indicated that the BAEM was superior, 
with omission and commission accuracies of more than 75% [8]. However, the study 

Figure 1. Location of the study area. (a) The study area location in the eastern region of Saudi Arabia
highlighted with a red rectangle. (b) The green color is the date palm farm oasis. Landsat 2020 (bands 5-4-3)
shown in the background presenting the other dominant land cover/use of the Al-Ahsa Oasis.

The availability of sophisticated techniques for spatially mapping urban areas has
become one of the most challenging tasks due to several reasons, including a mixture of
objects in one pixel [6] and the low resolution of the data available (e.g., Landsat satellite
images). One way to map urban areas is to use remote sensing data and techniques and
there has been considerable investigation regarding the mapping of urban areas from
remote sensing imagery. Among many remote sensing techniques that are commonly
used in the literature, spectral index [7] and spectral mixture analysis (SMA), which are
commonly used for mapping and assessing land use/cover changes [6], can be used for
mapping urban areas. For example, Bouzekri et al. [7] established a new spectral index to
extract urban areas of Djelfa city, South Algeria from Landsat-8 (OLI). They concluded that
the newly established index yielded satisfactory results compared with four previously
used spectral indices, including the normalized built-up index (NDBI). The normalized
difference built-up index (NDBI) and the built-up area extraction method (BAEM) were
utilized in Lahore, Pakistan to extract information about built-up areas by analyzing
Landsat-8 (OLI) images; the results indicated that the BAEM was superior, with omission
and commission accuracies of more than 75% [8]. However, the study concluded that the
accuracy of the examined methods declined with the use of Landsat-8 (OLI) data compared
with Landsat (TM) images.

In 2020, Deliry et al. [9] evaluated the normalized difference built-up index (NDBI)
and the normalized difference impervious index (NDII) with other classification algorithms,
including a supervised object-based nearest neighbor (NN) classifier, supervised pixel-
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based spectral angle mapper (SAM), and the maximum likelihood classifier (MLC) to
delineate and map impervious surfaces. They found that the NN classifier obtained
satisfactory results compared to the other methods by achieving an overall classification
accuracy of ~90%. Nevertheless, they demonstrated that accurate results could not be
obtained using these methods without more training samples. The new automated built-up
extraction index (ABEI) improved the accuracy in areas dominated by bright features such
as bare lands, where high errors of classification are expected [10]; however, its accuracy
can be affected by deep water bodies and in areas covered with dense vegetation canopies.
Moreover, such techniques would not be suitable for extracting urban or built-up areas
within a mixed cover.

On the contrary, SMA has been seen as an influential model applied for evaluating land
use/cover changes in arid and semi-arid areas (e.g., [6,11–13]). For example, it produces
extraordinary accuracies when applied to oasis vegetation mapping, particularly in arid
and semi-arid areas, and substantially reduces mixed-pixel problems [11]. Furthermore,
the results obtained from the SMA showed accurate and consistent outcomes regarding
vegetation cover and soil surfaces, demonstrating the powerful effects of such technique in
land cover/use mapping [14]. A subsequent study documented the usefulness of using
what is known as “multiple endmember spectral mixture analysis (MESMA)” for vege-
tation mapping and assessment in urban areas by utilizing medium-resolution satellite
imagery [15]. Another study, using a spectral unmixing-based method and statistical deci-
sion trees, found that vegetation–dark mixing line, tree, mixed grass, and vegetation ground
cover fractions could be accurately separated with accuracies ranging from 80% to more
than 94% [16]. These investigations together indicate that SMA can have positive effects on
mapping and assessing land cover features such as urban from medium-resolution satellite
images. Even though there is ample scientific literature addressing the mapping of urban
areas from medium spatial resolution data using different spectral indices and classification
techniques, the literature regarding the mapping of urban fractions using the SMA model
has been largely neglected.

Furthermore, although significant progress was made in mapping and assessing
land use/cover, including urban areas, from remotely sensed data with medium spatial
resolution, there are few pieces of scientific literature in the popular databases that have
used such a technique for mapping urban or built-up fractions in oasis environments [17,18].
However, to date, no research has mapped urban fractions in the Al-Ahsa Oasis based on
the SMA model. Tooke et al. [16] noted the potential of the technique for investigating and
mapping urban areas as long as 12 years ago following the use of endmember fractions in a
study of extracting urban vegetation characteristics. Consequently, this study investigated
the use of the SMA model to test its applicability to map urban fractions from Landsat
and Sentinel-2A satellite images over an oasis environment. In addition, the study also
examined the driving factors that stimulate urban growth against the dominant date palm
surface cover of Al-Ahsa Oasis, eastern province of Saudi Arabia, by analyzing population
data for the period between 1992 and 2016. The study hypothesized that SMA, with its
ability to resolve the complexity of the mixed-pixel feature problem, would capture more
urban fractions when applied in arid and semi-arid oases characterized by mixed land
use/cover features from medium spatial resolution satellite images such as Landsat and
Sentinel, and it would give results with high accuracy. The results represent an important
step toward understanding how urban expansion can be accurately mapped.

This study is structured as follows. Section 2 provides a description of the study area.
Section 3 explains the materials and methods used to apply the SMA model. The results
are described and discussed in Section 4. Finally, the conclusions are given in Section 5.

2. Description of the Study Site

The selected site is situated in the Al-Ahsa Oasis, eastern part of Saudi Arabia (between
the latitudes of 25◦20′ and 25◦32′ N, and the longitudes of 49◦30′ and 49◦45′ E) (Figure 1).
This oasis is classified as the biggest date palm region in the kingdom and worldwide—it



Land 2023, 12, 1842 4 of 17

covers around 8000 ha (i.e., 92%) of the land [19]. It is located 45 km inland of the Arabian
Gulf coast and 320 km east of the Riyadh capital city. The topography is very gentle and
features some prominent hills and ridges. The climate is dry and semi-arid, with annual
rainfall of less than 46 mm, and the temperature varies between 40 and 45 ◦C in summer
and 2 and 15 ◦C in winter. The elevation ranges from 130 to 160 m a.s.l. from the west to
the east [20].

Two main cities, namely Hofuf and Al-Mubarraz, feature all kinds of human activities
and nature of land use/cover with a population number of 660,788 [21]. The Al-Ahsa
Oasis is truly classified among the most treasured agronomic sources in the Kingdom
of Saudi Arabia, where 92% of its area is occupied by 40 distinct cultivars of date palm
trees [22,23]. The economic importance of the oasis is robustly linked to food production,
so that comprehensive agro-activities are experienced, including varied agro-products.
The alteration in agricultural activity concepts has converted the oasis’ agricultural nature
into a cultural as well as natural heritage form of landscape, which has led to a severe
infringement of new surface cover features against the date palm trees. Such new surface
cover features, set up in terms of the components of urban sprawl, have been progressing
throughout the evolving phase between 1973 and 1994 correlating with fast growth in the
region’s population [5]. It was notable that in order to meet the intensifying traditional and
social needs, the oasis’ population started establishing leisure residences inside/underneath
the canopies of the date palm trees. Ultimately, these activities have diversified the oasis’
sole surface cover into compound features, initiating some kind of inadaptability for
medium-resolution satellites to accurately distinguish the built-up from the cultivated
areas [24].

3. Materials and Methods
3.1. Datasets
3.1.1. Landsat Images

The methodology relies on four Landsat and two Sentinel-2A Level 1C images.
The Landsat images were freely downloaded from the United States Geological Survey
(USGS) Earth Explorer open-access platform (http://earthexplorer.usgs.gov/, accessed
on 12 December 2022). The images were acquired with different sensors, including (TM,
ETM+, and OLI), for the years 1990, 2000, 2010, and 2020. All the images were cloud-
cover-free and mostly obtained between June and August. Moreover, all four images were
obtained as level 1 products; their characteristics are displayed in Table 1.

Table 1. Description of datasets used in this study.

Sensor-ID Spacecraft-ID Acquired Date No. of Bands Resolution (m)

TM Landsat-5 15 July 1990 6 (optical),
1 (thermal)

30 m (optical),
120 m (thermal)

ETM+ Landsat-7 2 July 2000
14 July 2010

6 (optical),
2 (thermal)

30 m (optical),
120 m (thermal)

OLI and TIRS Landsat-8 17 July 2020 8 (optical),
2 (thermal)

30 m (optical),
100 m (thermal)

MSI Sentinel-2 10 July 2015
19 July 2020

1 (coastal aerosol),
3 (red edge), and

7 (optical)
10–60 m

3.1.2. Sentinel-2A Images

Two Sentinel-2A images with minimum cloud coverage, provided by the European
Space Agency (ESA), for the years 2015 and 2020 were selected and downloaded from
the Copernicus Open Access Hub website (https://scihub.copernicus.eu/, accessed on
9 December 2022). The 2015 image was obtained as a Level 1C product, while the image
from 2020 was obtained as a Level 2A product (bottom-of-atmosphere reflectance), which
is a ready data product for analysis, as no additional preprocessing is required. The spatial

http://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
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resolution of the obtained images ranges from 10 to 60 m, depending on the band. Table 1
provides the characteristics of the acquired images.

3.1.3. Population Data

Population data were obtained for the period from 1992 to 2016 from the Saudi General
Authority for Statistics [21]. These data were used as part of the driving forces of urban
development at the site, and to show to what extent the growth in inhabitants can accelerate
the growth of oases’ urban structures as well as the growth in cities.

3.2. Methodology

The aim of this study is to use the SMA model, Landsat, and Sentinel-2A images for
mapping and assessing the fraction of pixels related to urban/built-up in the Al-Ahsa
Oasis. The methodology had four main parts: The first part concerned the collection
of the images; the second part included the preprocessing of the satellite images, which
included radiometric and atmospheric calibration to ensure spatial and spectral consistency
between the multi-date images. The third part included image transformation using
principle component analysis (PCA) and endmember selection. The last part included the
extraction and mapping of urban fractions from the Landsat and Sentinel-2A images by
using linear spectral mixture analysis. Figure 2 presents an overview of the methodology.
All Landsat images were preprocessed and analyzed using QGIS version 3.18, and ENVI
version 5.1 softwares, while the Sentinel-2A images were preprocessed using SNAP version
9.0 software.
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3.2.1. Preprocessing of Images

The Landsat images were calibrated using a Semi-Automatic Classification Plugin
(SCP) [25] based on the QGIS software environment, where the sensor’s digital numbers
(DN) were converted into at-surface spectral reflectance. On the other hand, the Sentinel-2A
image of the year 2015 was converted from a Level 1C top-of-atmosphere (TOA) image to a
Level 2A bottom-of-atmosphere (BOA) image using the Sen2Cor tool version 2.11 in SNAP



Land 2023, 12, 1842 6 of 17

software, version 9.0. All the datasets were georeferenced to the Universal Transverse
Mercator (WGIS-84) zone 38 north projection. For the purpose of this study, all spectral
bands with a resolution of 10–20 m were chosen, and by using SNAP software, the 20 m
resolution bands of Sentinel-2A images were resampled to 10 m spatial resolution.

A sub-scene depicting the study site, shown in Figure 1, was selected and cropped from
the Landsat and Sentinel-2A images; next, a false-color band composite was constructed.

3.2.2. The Oasis’ Urban Area Extraction Using SMA

As remotely sensed images depicting arid and semi-arid surface features are available
at medium or coarse spatial resolution, one pixel contains mixed spectral information. To
solve this problem, the SMA model was used as it has proven to be a powerful method
of image classification [26]. It is a sub-pixel classification method used by remote sensing
experts to address the mixed-features problem by un-mixing them into fraction abun-
dance. It is therefore useful for identifying ingredients that cover superior areas such as
urban/built-up, vegetation, or both, that are always mixed with other materials, especially
in arid and semi-arid environments, which may make its classification harder.

The SMA transforms the image’s content from reference into limited endmember
fractions [26]. These fractions characterize the mixing quantities of these endmembers [27].
For detailed information about SMA, previously published studies are strongly highlighted
(i.e., [13,14]).

3.2.3. Endmember Selection

In a remote sensing image, when a pixel contains a reflectance of one land cover/use
feature then that pixel contains a pure pixel and is therefore referred to as an endmem-
ber. Hence, endmembers are prerequisites to utilize the SMA model [11]. Here, image
endmember extraction was used to identify the specific endmembers of multiple surface
components by utilizing the transformed PCA images. The PCA was applied to the Landsat
and Sentinel-2A data by utilizing ENVI software. The PCA transform tool was used to
reduce the image dimensionality. Other image transformation is also practical such as
minimum noise fraction (MNF) [11,28]. In this study, orthogonal linear plots were created
using the first, second, and third PC bands, as described previously [12–14,29], in which
the apexes of the plots were chosen as pure endmembers based on the original images’
visualization. Using the obtained pure endmembers, the SMA was applied in the ENVI
software environment for generating the urban fractions with a “sum to unity constraint”
where the summation of the endmember fractions for every pixel equals 1.

3.2.4. Accuracy Assessment Methods

The SMA’s accuracy can be assessed by comparing field ground points with image
fractions of land cover in linear plot correlations [12]. In the present study, however, owing
to limited financial resources and lack of field devices (such as spectroradiometers, which
can be utilized to quantitatively assess the correctness of the SMA results), a confusion
(error) matrix as an effective approach to measure urban fraction classification accuracies
based on remote sensing images was applied using a stratified random sampling approach.
An image from Google Earth Image Pro, taken on 9 May 2023, was used for sampling.
For this purpose, 100 points were randomly collected from urban and non-urban areas
(i.e., vegetation or bare soil). Previously, several studies have recommended the use of
“quantity disagreement and allocation disagreement” to assess the accuracy of image
classification [30–32]. Nevertheless, in the current study, and according to the method
described by Congalton and Green [33], the overall accuracy, producer accuracy (PA), and
user accuracy (UA) were calculated, in addition to errors of omission and commission, as
described previously [30] to assess the SMA model’s classification accuracy.
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3.2.5. Driving Forces of Urban Fraction Dynamics

The focus of this section is to discuss the key driving causes behind the urban ex-
pansion in the area of study during the study period. For this purpose, population data
ranging from 1992 to 2016, provided by the Saudi General Authority for Statistics [21],
were collected and analyzed. The population data were analyzed using Excel software
version 2010.

4. Results and Discussion
4.1. Endmember Spectra and SMA

In all images, the first three PCs (principal components) explained about 99% of the
total disproportion in the study site. Hence, three endmembers were manually selected
from each Landsat and Sentinel-2A image based on the PCA 2D scatter plot (also called
feature space). The selected endmembers included vegetation, urban structures (built-up),
and sand features (Figures 3 and 4); however, the analysis only focused on urban feature
extraction. The reflectance of urban feature spectra was found higher at bands 4 and 5 in
all images, suggesting very low reflectance of urban fractions in other spectral bands in
both Landsat and Sentinel-2A sensors.

4.2. Urban Fractions

The SMA was applied to accurately map urban fractions in the Al-Ahsa Oasis over
different periods from two types of sensors namely, Landsat and Sentinel-2A. The fractions
of urban endmembers for these two sensors are presented in Figures 5 and 6, respectively.
The urban fractions are represented by brighter pixels (high fraction), while other darker
pixels (low fraction) represent other cover fractions (i.e., vegetation, sand dunes/sheets, and
water bodies). The resulting fraction images (Figure 7), supported with visual interpretation,
indicated that the urban fraction has increased in the study site during the period from
1990 to 2020. This increase in urban areas likely may mainly be attributed to population
increases due to many factors, including oil discovery. The increase in urban fractions is
mainly concentrated in the northern and southern parts of the study area as the other parts
are either covered by date palm plantations or sand dunes/sheets. The percentage of the
urban fractions analyzed from the Landsat sensor was 0.29 for the year 1990; 0.38 for the
year 2000; 0.38 for the year 2010; and 0.59 for the year 2020, while for the Sentinel-2A sensor
it was 0.58 for the year 2015; and 0.74 for the year 2020. These results indicate that urban
growth was rapidly taking place in the study area at an increasing rate (0.09) during the
years 1990, 2015, and 2020 (see Figure 7 and Table 2). The information given in Figure 7
shows that the urban areas increased significantly between 1990 and 2020. These results
show the capabilities of the SMA model in calculating the abundance proportion of urban
fractions in an oasis environment dominated by mixed features such as date palms, sand
dunes/sheets, built-up, and water bodies. Moreover, these results are in agreement with
a study conducted by Alqahtany [34] who demonstrated an increase in the settlement
in the Al-Ahsa Oasis, where the urban area has significantly increased from 199 km2 to
approximately 276 km2 between 1992 and 2022. The same study predicted an increase in
the area covered by settlements to approximately 27% in the year 2032. Furthermore, these
findings extend those of Allbed et al., confirming that an increase in the urban areas might
be explained by a decrease in the vegetation cover where, according to their study, the
vegetated areas decreased by approximately 3% between 1985 and 2000 [35].
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Figure 4. PC1 versus PC2 linear plot for Sentinel-2A of the years: (a) 2015 and (b) 2020 along with
their spectral reflectances of selected endmembers used in the investigation. The six bands on the
x-axis are the Sentinel images’ spectral bands (2–8). The colors in the figures on the left side show the
position of the selected endmembers as follows: The red represents urban pixels, the green represents
vegetation pixels and the blue represents sand pixels.

Table 2. RMS residual errors of the endmember fractions. The word “NA” in the second and third
columns means that the Sentinel images are missing or unavailable. For Landsat images, the time
interval is ten years, so the 2015 image is not included in the analysis.

Years RMS Residual Value of Landsat RMS Residual Value of Sentinel-2A

1990 0.013 NA
2000 0.010 NA
2010 0.011 NA
2015 NA 0.006
2020 0.012 0.008

Moreover, a research study carried out by Rebecca et al. [36], in which a multiple
endmember spectral mixture analysis (MESMA) was utilized to map the apparent compo-
nents of urban areas in Manaus city in Brazil, made use of ETM+ imagery. The achieved
fraction models were used to produce continuous per-pixel abundance maps for each gen-
eralized land-cover component. This study demonstrated the high potential of moderate-
resolution multispectral images for mapping and monitoring the evolution of a physical
urban environment.

Another study by Dengsheng and Weng [37] also confirmed that the SMA was an
efficient technique for depicting the patterns of urban landscapes, as the SMA involved
crucial techniques for image processing and providing an appropriate model to deconstruct
the spectral mixtures of coarse resolution data. Their work indicates that the SMA method
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was appropriate for solving the problem of mixtures within the low-resolution data, and
produced enhanced classification outcomes for the urban environments compared to
traditional pixel-based maximum likelihood classifier or the spectral indices. As a result,
the SMA “fraction images” might likely have a very good classification level improvement
once jointed with other factors, such as temperature, in addition to other GIS auxiliary
information and other socio-economic parameters.

The RMS error of the SMA fraction images ranged from 0.006 to 0.013 (Table 2).
This RMS error was calculated for each pixel of the analyzed Landsat and Sentinel-2A
images. A low RMS residual error suggests a high performance of the SMA model for
urban classification, especially in arid and semi-arid environments, where a smaller RMS
indicates pure endmembers and accurate fractions.

Land 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 
Figure 5. Urban fraction of Landsat images in long-term monitoring: (a) 1990; (b) 2000; (c) 2010; and 
(d) 2020. White pixels show a significant (high) fraction of urban features in the study site. 

Figure 5. Urban fraction of Landsat images in long-term monitoring: (a) 1990; (b) 2000; (c) 2010; and
(d) 2020. White pixels show a significant (high) fraction of urban features in the study site.



Land 2023, 12, 1842 11 of 17Land 2023, 12, x FOR PEER REVIEW 12 of 18 
 

 
Figure 6. Urban fraction of Sentinel-2 images in long-term monitoring: (a) 2015 and (b) 2020. White 
pixels depict a significant (high) fraction of urban features in the study area. 

 
Figure 7. Urban fraction assessment during the selected period 1990–2020. 

The RMS error of the SMA fraction images ranged from 0.006 to 0.013 (Table 2). This 
RMS error was calculated for each pixel of the analyzed Landsat and Sentinel-2A images. 
A low RMS residual error suggests a high performance of the SMA model for urban 

Figure 6. Urban fraction of Sentinel-2 images in long-term monitoring: (a) 2015 and (b) 2020. White
pixels depict a significant (high) fraction of urban features in the study area.

Land 2023, 12, x FOR PEER REVIEW 12 of 18 
 

 
Figure 6. Urban fraction of Sentinel-2 images in long-term monitoring: (a) 2015 and (b) 2020. White 
pixels depict a significant (high) fraction of urban features in the study area. 

 
Figure 7. Urban fraction assessment during the selected period 1990–2020. 

The RMS error of the SMA fraction images ranged from 0.006 to 0.013 (Table 2). This 
RMS error was calculated for each pixel of the analyzed Landsat and Sentinel-2A images. 
A low RMS residual error suggests a high performance of the SMA model for urban 

Figure 7. Urban fraction assessment during the selected period 1990–2020.

Figure 8 depicts an instance of the areas in the study site that are dominated by a
high and low error of urban classification. By making use of the visual interpretation, it
can be seen that the areas with high error are covered by urban structures surrounded by



Land 2023, 12, 1842 12 of 17

date palm plantations. The urban fractions within these plantations are characterized by
significant bright textures as they have different spectral reflectances or different signatures.
Therefore, to obtain more accurate urban fraction images with the SMA model, the water
regions and bright pixels should be masked out before mapping urban fractions.
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An increase in urban areas in the Al-Ahsa Oasis was also reported by many previous
studies. For example, Almadini and Hassaballa [4] found that the urban area had expanded
by approximately 3200 ha during 1999 and by nearly 1270 ha in 2017. These increases took
place upon barren lands and the oasis’ vegetation cover (mainly date palm plantations). A
substantial decrease in the vegetation cover and barren soil besides an increase in the urban
area was detected between 1990 and 2020, because of the growth of the population all over
the study site, which is possibly due to oil industry production as previously reported [19].
A reduction in vegetated cover by nearly 17% because of the rapid increase in urban
development (more than 17% in 1990 to approximately 46% in 2020) was also reported in
the same study. A close relationship was found between development of transportation
and urbanization; in addition, road expansion and its directions may have affected the
morphological shape of the cities in the study site [38,39]. Furthermore, urban growth was
not just a result of population increase; it was also a result of sustainable development [38].
For example, the road network in the study area—as one of the sustainable development
options—covered about 36 km2 in 1996 within the study area, while currently it covers
about 48 km2 [38].

4.3. Accuracy Assessment

Tables 3 and 4 present the confusion matrices obtained after applying the SMA model
to map the urban feature fractions. The overall accuracy of the final urban fraction maps
varied from 95% to 100%, and the user’s and producer’s accuracy ranged from 91% to
100%. The values of the omission and commission errors ranged from a min. value of 0 for
all fractions to max. values of 9.1 and 10, respectively (Tables 3 and 4). By and large, these
results demonstrate a significant correlation between urban fractions and the reference
points, demonstrating the advantage of using the SMA model for urban analysis, mapping,
and assessment, especially in an oasis environment where mixed features are dominant.
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According to this accuracy, no pixel was misclassified; this may have two explanations.
Firstly, SMA is a highly sensitive model for extracting and mapping land cover, such as
urban fractions, by using pure endmembers collected at the sub-pixel level with spatial
and spectral variability. Finally, however, this can illustrate the drawbacks of the methods
used to check the accuracy of the SMA model, the confusion (error) matrix, as previously
mentioned by several scholars (e.g., [30–32]), where they recommended using “quantity
disagreement and allocation disagreement” to evaluate image classification accuracy.

Table 3. Results of the SMA verification of urban fraction classification from Landsat images: pro-
ducer’s accuracy (PA), user’s accuracy (UA), omission error (OE), commission error (CE), and overall
accuracy (OA).

Fraction
1990 2000 2010 2020

UA% PA% OE CE UA% PA% OE CE UA% PA% OE CE UA% PA% OE CE

Urban fraction 86 100 0 14 90 100 0 10 96 100 100 4 100 100 0 0
Non-urban

fraction 100 88 12.3 0 100 91 9.1 0 100 96 96 0 100 100 0 0

Overall
accuracy (OA) 93 98 100 100

Table 4. Results of the SMA of urban fraction classification from Sentinel-2 images: producer’s
accuracy (PA), user’s accuracy (UA), omission error (OE), commission error (CE), and overall
accuracy (OA).

Fraction
2015 2020

UA% PA% OE CE UA% PA% OE CE

Urban fraction 100 100 0 0 100 100 0 0
Non-urban fraction 100 100 0 0 100 100 0 0

Overall accuracy (OA) 100 100

4.4. Driving Forces and Consequences of Urban Fraction Changes

The major driving forces of urban changes in the study area must have been due to
human activity and population increases, since oil discovery on 3 March 1938. Figure 9
shows areas that were covered by agricultural lands in 1990 and transformed for urban use
in 2020. A rapid shrinkage of agricultural lands and vegetation cover in general, which
is mainly dominated by seasonal crops and date palm plantations, was noted after 1990.
However, the visual analysis of urban fraction images indicated that major changes in the
urban fraction generally implied its increase from 1990 and 2010 to 2020. In particular, an
increase in urban areas was found in the year 2020, and this increase almost concentrated
in two directions: north and south. The reasons behind this concentration, according to the
images’ visual interpretation, are that in the east direction, the area is surrounded by sand
dunes/sheets, while in the west direction the area is dominated by date palm plantations.
Therefore, most of the built-up expansion was found toward the northern and the southern
parts where the area is dominated by bare soil, crops, or both. Eventually, an increase
in the urban fraction because of high agricultural practices was observed between 2010
and 2020 in a large southern part of the study site. This claim was supported by the
recent study of Almadini and Hassaballa [4], (cf. Figures 4 and 5 in their study). They
reported that “between 2013 and 2017, approximately 1270 ha of the vegetated area in the
Al-Ahsa Oasis was replaced by urban uses”. By contrast, an increase in other land cover
classes, such as bare lands, was observed and concentrated in the eastern and western
parts of the study site. Mohammed and Elhadary [38] offered another reason for urban
expansion by demonstrating that the increase in urban cover over the Al-Ahsa Oasis may
have resulted from oil and gas exploration since 3 March 1938 and other industries, such as
road network development.
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Figure 9. Urban fraction comparison between: (a) 1990 and (b) 2020. An increase in urban fractions
from 1990 to 2020 is obvious (indicated by bright pixels), and this increase may be at the expense of
other land cover types, for example vegetation and crop areas.

Moreover, the information given in Figure 10 shows that the population in the study
area increased significantly during the period from 1990 to 2020, and according to Abdelatti
et al. [24], the population of the Al-Ahsa Oasis (see Figure 10) has apparently doubled since
the oil discovery, and this increase in population might have contributed to the current
urban growth as a main driving force. They concluded that the increase in urban areas
might increase what is known as dark surfaces, and consequently, it may increase land
surface temperatures and urban heat islands as documented recently by Hassablla and
Salih [19].
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5. Conclusions

This study used the SMA model, Landsat, and Sentinel-2 images to map urban/built-
up fraction covers in the Al-Ahsa Oasis, eastern Saudi Arabia. The SMA classification
error was evaluated using error fraction images and a confusion matrix. The SMA is a
helpful model for extracting an oasis’ urban fraction by using pure endmembers which
are extracted from transformed PC images. The overall accuracy, producer’s and user’s
accuracies, and omission and commission errors of the SMA model vary from 93 to 100,
86 to 100, 100, 0 to 100, and 0 to 14, respectively. The results indicated that urban areas
increased rapidly between 1990 and 2020 at the expense of agricultural lands. The analysis
procedure used to collect the training datasets (i.e., endmembers) to train the SMA model
is what makes this model suitable for urban mapping compared to other classification
methods and spectral indices (e.g., maximum likelihood classifier and built-up spectral
indices). It provides pure signatures (i.e., endmembers) for different land cover types. By
utilizing these endmembers, the SMA model has the ability to map land cover features
(fractions) such as urban/built-up fractions with high accuracy especially in arid and
semi-arid areas in which images with mixed-pixel problems are dominant. Although a
straightforward analysis procedure was presented, which enables the accurate mapping of
urban fractions, the present study shows that urban areas surrounded by other types of land
cover can increase the mapping error. Future investigation efforts will require an enhanced
understanding of elements that control urban expansion. In particular, these efforts could
be oriented to seek the area in which the urban growth can progress. Comparisons of SMA
with other classification approaches are needed to determine its drawbacks and improve
its accuracy in areas surrounding other types of land cover. However, the results obtained
from this study can be considered as base data and a guide for decision-makers to control
urban expansion and for future sustainable development of urban areas in the study site.
Potential applications of recent advances in remote sensing, such as high-resolution imaging
spectrometry and unmanned aerial vehicles (UAVs) to quantify urban conditions in arid
and semi-arid oases, should receive careful consideration. The results of the proposed
method can provide an initial assessment and valuable insight for a more detailed urban
expansion assessment. Incorporating models such as the one described in this study would
help provide the community with more contemporary information regarding urbanization
compared to other conventional methods.
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