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Abstract: Flood risk assessment at the mesoscale requires data that are spatially and thematically
detailed enough to provide reliable estimates at the catchment level. However, data availability and
suitability are often contradictory: available data are rarely suitable at the required level of detail. To
overcome this problem, numerous disaggregation methods have been proposed in recent decades,
often based on somewhat generalised imperviousness characteristics derived from the available
urban land use/land cover (LULC) nomenclature. To reduce generalisation, we propose a new
disaggregation approach using a spatially distributed imperviousness density (IMD) layer at a very
detailed spatial resolution of 10 m as ancillary data to improve the thematic detail of the urban classes
of the available LULC datasets (Coastal Zones, Natura 2000) and the dasymetric mapping of the
census data. The nomenclature of the urban classes and the impervious density thresholds were taken
from the detailed Urban Atlas dataset. The disaggregation of the census data is then built on the
resulting geometry of thematically improved residential classes. Assuming that IMD values indicate a
built-up density, the proposed weighting scheme is IMD-dependent: it accounts for variability in the
built-up density and, hence, variability in population. The approach was tested in three catchments
in Croatia, each with a different degree of urbanisation. The resulting statistics (mean square error
and percentage error) indicate that residential areas and population density depend on IMD. Using
IMD as additional data therefore greatly improves the assessment of elements that are exposed to
flooding and, consequently, the damage and flood risk assessment.

Keywords: flood risk; mesoscale; land use/land cover; census; flood exposure; disaggregation;
imperviousness density; dasymetric mapping

1. Introduction

Floods affect billions of people, more than any other environmental hazard. Recent
global estimates indicate that 23% of the world’s population is directly exposed to 100-year
floods [1]. These estimates are expected to increase by 2030, especially in countries with
high rates of urbanisation [2–4]. Flood damage causes human suffering and major economic
losses in the form of damaged properties and infrastructure. In 2021 alone, 223 floods
occurred (compared to 163 for the 2001–2020 annual average), causing 29.2 million deaths
and USD 74.4 billion of economic damage [5]. Based on the CATDAT database records,
43% of the total economic losses caused by natural hazards in EU countries between 1980
and 2020 are due to unfavourable hydrological events [6]. The increasing trend in flood
damages over past decades has made flood management even more challenging, requiring
a paradigm shift from traditional flood control to more effective flood risk management [7].
The need for a change in flood policy has led to the adoption of the EU Floods Directive
(2007/60/EC, 2007), which focuses on reducing risks rather than preventing flooding
through structural measures (grey infrastructure).
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Flood risk management requires a complex analysis carried out in several stages
(e.g., [8–11]). In general, the process starts with the derivation of the probability and
intensity of flood events and the preparation of flood hazard maps. To locate assets and
populations that are exposed to flooding, socio-economic data are overlaid with flood
characteristics, and finally, exposure information is related to monetary values, leading to
the estimation of flood damages and the production of flood risk maps. The estimation of
damage caused by floods is a necessary step in flood risk management. It provides relevant
information for the calculation of post-flood compensation (essential information for flood
insurance) and supports decision making regarding risk reduction measures [7,12,13]. The
estimated damages usually refer to direct, tangible damages that can be quantified using
depth–damage curves by relating the water depth to the damages to vulnerable elements
(assets exposed to flooding).

The level of detail of the mapping of elements at risk depends primarily on the spatial
extent of the flood-prone area and the level of detail of the damage assessment. As pointed
out by Messner and Meyer [14], flood damage assessment is usually carried out on three
main scales in relation to the extent of the area at risk and, consequently, the spatial and
thematic level of detail of the data: the macro, meso and micro scales, while de Moel et al [8]
also discuss the fourth supranational scale. The main distinguishing feature between the
scales is the level of spatial and thematic aggregation. The supranational level refers to the
continental-to-global scale and requires a low spatial resolution (1–10 km). At the macro
level, damage assessment is carried out at the level of large spatial units such as countries
or municipalities, while at the meso level, more detail is required, resulting from spatial
aggregation [7], e.g., residential areas or urban green spaces. The spatial resolution required
for flood risk assessment at the macro and meso levels varies between 100–1000 m and
25–100 m, respectively. The most detailed microscale (local) level requires very detailed
spatial (1–25 m) and thematic data, i.e., land use/land cover (LULC) at the object level,
albeit with some degree of thematic generalisation: similar objects are grouped into classes
where all elements are assumed to share the same characteristics (e.g., residential homes,
indoor sports facilities).

At all spatial scales, flood risk assessment is subject to many uncertainties that affect
performance to a greater or lesser extent. These uncertainties may be related to the be-
haviour of the observed system (spatially and temporally) and the acquired knowledge
about the system, including insufficient quality and/or quantity of data in relation to the
scale of investigation. Sources of uncertainty are present at all stages of the assessment, i.e.,
flood hazard mapping, exposure analysis of the elements at risk, estimation of the value
and susceptibility analysis of the elements at risk [15–17].

Flood hazard and flood risk mapping requires large amounts of input data, including
meteorological and hydrological data, as well as various spatial data such as detailed
topographic features and LULC data. Insufficient input data, especially spatial data de-
scribing topography or assets and people affected by flooding, is often the main source
of uncertainty in flood risk. This can be caused by the lack of correspondence between
the level of detail of the spatial data and the scale of investigation, but also by the level of
detail within the different stages of flood risk assessment (flood hazard maps are the result
of a 2D hydrodynamic model based on spatially detailed raster data [18–22], while the
relationship between the extent of damage and the flood depth is available for the specific
LULC categories in the form of depth–damage curves (e.g., [23–27]).

At the macro and meso levels of study, the data needed for the assessment contain
different levels of aggregation. Often, population and LULC data are not spatially and
thematically detailed enough to meet the needs at the meso level. They are collected at an
aggregated level, e.g., at the level of census units (usually settlements or municipalities)
and LULC categories associated with a particular economic sector [28]. The determination
of the potential economic damage caused by a flood is a critical point in the assessment
of flood risk [11] and is based on the assignment of the corresponding depth–damage
curve to the existing land use category. The curves describe the flood damage that would
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occur for a given water depth per asset or per land use category. The global depth–
damage functions issued by the European Commission [29] were developed for six major
land use classes: residential, commercial, industrial, transport, infrastructure—roads and
agricultural (Figure 1).
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The acquisition of high-resolution data requires a great amount of funds and effort.
On the other hand, with Earth observation systems providing continuous and synoptic
surface observations as well as freely available medium- and low-resolution data, LULC
datasets have become widely available, although they are primarily suitable for continental-
and national-scale investigations. The GlobeLand30 dataset, for example, provides detailed
LULC data with a spatial resolution of 30 m worldwide [30,31]. The Copernicus Land Mon-
itoring Services provide LULC data at continental (CORINE Land Cover) and local scales
(Coastal Zones, Natura 2000 and Urban Atlas). Of course, there are large discrepancies
between the different datasets, both spatially and thematically (Appendix A). With the
exception of the urban LULC categories in the Urban Atlas dataset, the level of detail of the
available data needs to be improved to be suitable for the mesoscale approach.

Population data are mostly available at the settlement level, resulting in information
on population density at a very coarse spatial resolution, which is not sufficient to estimate
the people at risk of flooding at the mesoscale. Various disaggregation methods have been
proposed over recent decades. Gallego et al. [32] provide an overview and comparison of
six selected methods applied to 28 EU member states. Most methods use LULC datasets
as the main complementary data source (e.g., CORINE Land Cover) to define the func-
tional relationship between land cover classes and population density (e.g., [33–37]). The
methods generally use the averaged imperviousness density derived from the LULC urban
nomenclature, which is somewhat of a generalisation to begin with. Some researchers
use remote sensing (e.g., [38]) to derive surface imperviousness characteristics and apply
geostatistical methods to account for spatial dependence and interpolate population density
within designated residential areas. Stevens et al. [39] applied the Random Forest algorithm
to determine the weighting scheme in the disaggregation of census data at the national
level, allowing for greater sensitivity to variability in population distribution. Estimates
of population data are available globally from the WorldPop project [40], which provides
data at 100 m and 1 km resolutions on the global population distribution. However, from
the perspective of mesoscale flood risk assessment [37], the data are too coarse to provide
satisfactory estimates for flood risk analysis.

This paper focuses on disaggregating the available LULC information using ancillary
data collected at higher spatial resolutions, namely the imperviousness density (IMD), to
meet the spatial and thematic requirements of the mesoscale level of flood risk assessment.
In this regard, the main objective is to propose an approach to produce reliable LULC
and population density datasets using existing, freely available spatial and statistical data.
Although there have been many attempts to improve the level of detail of population
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density data, the disaggregation of LULC data for flood exposure and ultimately flood
risk assessment is not very common. Several attempts have been made to rescale LULC
data for different applications based on different approaches, most of which have focused
on improving spatial resolution (e.g., [41–44]), while thematic resolution has rarely been
tackled. Flood risk assessment requires not only higher spatial but also high thematic detail
to provide the detailed information that is needed for flood damage assessment. To test
the proposed method, three case study catchments in Croatia were selected: the Gospić
catchment, the Zadar catchment and the Metković catchment.

2. Materials and Methods
2.1. Study Areas

The effects of disaggregation are tested in three catchments in Croatia (Figure 2), each
covered by different LULC datasets: the Gospić catchment (1), Zadar catchment (2) and
Metković catchment (3). The selected catchments are partially urbanised, but with varying
degrees of urbanisation. Furthermore, the predominant land use category also varies
between the catchments.
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Figure 2. Location of the selected catchments.

The Gospić catchment area, with a surface area of 238 km2, stretches from the steep
slopes of the Velebit Mountains in the west to the valley of the Lika River in the east. The
altitudes vary from 550 m a.s.l. to 1500 m a.s.l. The administrative centre of the region,
the town of Gospić with its 11,464 inhabitants [45], is located in the eastern part of the
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catchment. The dominant land use category is natural vegetation, i.e., forests and natural
grasslands. Artificial land covers only small parts of the catchment (no more than 3%).

The Zadar catchment is the most urbanised of all three selected catchments: almost
25% of the catchment is covered with artificial land. It is located in Central Dalmatia and
occupies an area of 118 km2. The largest centre of the catchment is the city of Zadar, which
is located on the coast and has 70,829 inhabitants [45]. The highest altitude reaches 150 m
a.s.l. and the predominant land use category is natural grassland.

The Metković catchment is located in the south of Croatia, on the border with Bosnia
and Herzegovina. It is significantly smaller than the previously described catchments: its
size is 52 km2. The altitude in some parts of the catchment is at sea level, while the highest
altitude reaches 250 m a.s.l. The administrative centre of the region, the town of Metković,
has 15,349 inhabitants [45]. The main economic activity is agriculture, which, together with
wetlands, is also the predominant land use category. Artificial land covers less than 8% of
the catchment area.

2.2. Copernicus LULC Data

The data used for the disaggregation are freely available data produced by the Coper-
nicus Land Monitoring Service. It consists of two pan-European datasets, namely CORINE
Land Cover (CLC) and the high-resolution imperviousness density (IMD) layer, and four
LULC datasets within the local components that aim to provide detailed information for
the specific regions, namely Coastal Zones (CZ), Natura 2000 (N2K), Riparian Zones and
Urban Atlas (UA). The spatial and thematic level of detail varies between the datasets
(Tables 1 and 2).

Table 1. Comparison of spatial characteristics of the available LULC datasets.

LULC Dataset
Minimum Mapping Units (MMU)

Scale
Area (ha) Width (m)

UA 2018 0.25 (urban)
1 (rural) 10 1:5000

CZ 2018 0.5 10 1:5000–1:10,000
N2K 2018 0.5 10 1:5000–1:10,000
CLC 2018 25 100 1:100,000

Table 2. Comparison of thematic characteristics of the available LULC datasets.

LULC Dataset No. of Classes
at the 1st Level

No. of Levels No. of Classes
at the Last Level

Artificial Natural Artificial Natural

UA 2018 5 4 2 16 5
CZ 2018 8 4 3 20 8

N2K 2018 8 3 3 9 8
CLC 2018 5 3 3 11 11

The CLC dataset, which is most commonly used as a source of ancillary data, was not
considered in this study due to its coarse spatial and thematic resolution compared to the
other LULC datasets. Instead, the UA, CZ and N2K datasets were selected depending on
the spatial coverage of the selected catchments.

2.2.1. Coastal Zones (CZ 2018)

The requirements for spatial and thematic dynamics in coastal areas cannot be ade-
quately met by the CLC method. Therefore, a detailed nomenclature based on the Mapping
and Assessment of Ecosystems and their Services (MAES) typology [46] is proposed for the
10 km inland buffer zone and the seaward buffer zone along the coast. The database was
first created for the reference year 2012 and updated in 2018. A hierarchical nomenclature
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similar to CLC is applied, but with greater thematic detail: the first level comprises eight
LULC classes and the number of subsequent levels depends on the thematic unit. The
total number of 71 classes (Figure 3) provides a higher level of detail that is required for
efficient coastal zone management. The spatial accuracy is also greater compared to CLC:
the minimum mapping unit is 0.5 ha and the minimum mapping width is 10 m.
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2.2.2. Urban Atlas (UA 2018)

The Urban Atlas is a collection of high-resolution land use data for urban areas across
Europe for different reference years (2006, 2012, 2018). The first version contained detailed
data for more than 300 functional urban areas (FUAs) of European cities. The latest update
(Figure 4) includes data for more than 800 cities with more than 50,000 inhabitants [47].
The land use information comes from Earth observation systems and is complemented by
additional data such as OpenStreetMap (OSM) or Commercial Off-The-Shelf (COST). The
1st level of nomenclature is taken from the CLC nomenclature, but the thematic level of
detail in subsequent levels varies depending on the type of surface: artificial surfaces have
the highest level of detail. With a minimum mapping unit of 0.25 ha in urban areas and
1 ha in rural areas, and a minimum mapping width of 10 m, it is the most detailed LULC
dataset available for mapped European cities in a spatial context.

2.2.3. Natura 2000 (N2K 2018)

A detailed LULC classification for the sites that are recognised as Natura 2000 pro-
tected areas, including the 2 km buffer zone surrounding them, is provided by the N2K
dataset. It was first created for the reference year 2006 and has since been updated twice,
in 2012 and 2018, focusing specifically on areas with very high biodiversity values or po-
tential [48]. Similar to the CZ nomenclature, the N2K nomenclature is based on the MAES
specification for ecosystem types. At the 1st level, 8 thematic classes have been recognised
and the number of subsequent levels depends on the thematic unit of importance for N2K
differentiation: in total, it consists of 57 classes (Figure 5). The spatial accuracy is defined
with a minimum mapping unit of 0.5 ha and a minimum mapping width of 10 m.
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2.3. Imperviousness Density (IMD 2018) and Imperviousness Built-Up (IBU 2018) Data

Imperviousness density describes the spatial distribution of surface imperviousness in
built-up areas at a high spatial resolution (10 m) [49]. The level of the surface impervious-
ness represents the density of artificial soil sealing, which is based on the Normalised Dif-
ference Vegetation Index (NDVI) classification derived from remote sensing data (Figure 6).
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This dataset is not an LULC map in the strict sense, but provides valuable information that
can be used for the thematic downscaling of urban LULC categories.
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Built-up areas are a subset of the IMD layer and represent only the IMD pixels with
above-ground buildings [49]. Therefore, the attribute values of the layer are binary and
only recognise built-up (value 1) or non-built-up (value 0) areas.

2.4. Census Data

The latest census data (from 2021) are aggregated and provided by the Croatian Bureau
of Statistics at the settlement level [45]. The data used include the number of inhabitants in
the settlements that are wholly or partly within the selected catchment areas (Figure 7).

Land 2023, 12, x FOR PEER REVIEW 9 of 23 
 

 

Figure 6. IMD 2018 classification for Croatia. 

2.4. Census Data 

The latest census data (from 2021) are aggregated and provided by the Croatian Bu-

reau of Statistics at the settlement level [45]. The data used include the number of inhab-

itants in the settlements that are wholly or partly within the selected catchment areas (Fig-

ure 7). 

    

Figure 7. Choropleth maps of the population density in the settlements located in the selected catch-

ments: (a) Gospić catchment; (b) Zadar catchment; (c) Metković catchment. 

2.5. Methodological Framework 

A spatial and thematic disaggregation of the LULC and census data was conducted 

in three phases: (1) data selection and preparation, (2) data disaggregation, (3) validation 

of the results. 

Phase 1: Data selection and preparation 

As described earlier, three Copernicus LULC datasets are considered: CZ 2018, UA 

2018 and N2K 2018. The selection of the appropriate dataset depends primarily on the 

Figure 7. Choropleth maps of the population density in the settlements located in the selected
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2.5. Methodological Framework

A spatial and thematic disaggregation of the LULC and census data was conducted in
three phases: (1) data selection and preparation, (2) data disaggregation, (3) validation of
the results.

Phase 1: Data selection and preparation

As described earlier, three Copernicus LULC datasets are considered: CZ 2018, UA
2018 and N2K 2018. The selection of the appropriate dataset depends primarily on the
spatial coverage of the selected catchments. Datasets that overlap with the catchment
polygons are selected in terms of spatial and thematic characteristics (Tables 1 and 2). The
catchments’ imperviousness density characteristics are adopted from the high-resolution
IMD layer.

Census data provide information on population size at the settlement level (ad-
ministrative boundaries). In order to prepare the data for the population density dis-
aggregation, the census data are mapped to the settlement polygons that are wholly or
partially located in the selected catchments. The analysis of the change in the urban
fabric between the cycle years of the LULC and IMD datasets, which are also available
from the Copernicus Land Monitoring Service, shows that there is very little or no change
in the catchments, so the temporal inconsistency between the LULC/IMD datasets and
the census data is considered negligible.

Phase 2: Data disaggregation

In mapping, disaggregation is the process of regionalising the observed value using
the auxiliary data [7]. Thus, the degree of disaggregation depends solely on the quality and
availability of the auxiliary data. The flood risk assessment focuses primarily on artificial
and agricultural land use categories and separates residential areas from commercial and
industrial areas and transport infrastructure (Figure 1). The classification of the residential
surfaces (urban structure in the LULC nomenclature) varies between the different LULC
datasets and results in one (N2K), three (CZ) or five urban fabric classes (UA). Different
LULC classifications lead to different values for Manning’s surface roughness.

The key parameter in urban structure classification in all LULC datasets is the impervious
surface density, but with different thresholds: CZ uses three (1: IMD < 30%; 2: IMD = 30–80%;
3: IMD≥ 80%), UA uses five (1: S.L. < 10%; 2: S.L. = 10–30%; 3: S.L. = 30–50%; 4: S.L. = 50–80%;
5: S.L. > 80%, where S.L. stands for the IMD sealing layer, i.e., the degree of soil sealing),
while N2K has no threshold (only an aggregated urban fabric class). When the IMD
layer is available, the urban fabric classes of the CZ and N2K datasets can be thematically
disaggregated into five different classes using the UA classification thresholds (Table 3),
which then provide the base geometry for estimating assets and people that are exposed to
flooding at the meso level.

The estimation of the population exposed to flooding at the level of the spatial unit,
delineated using the thematic and spatial disaggregation procedure described earlier, is
based on three basic assumptions:

1. Population density is related to the imperviousness density: IMD values are used as
auxiliary data in estimating populations exposed to flooding;

2. The population resides only in built-up areas [37]: to avoid the dissemination of the
census data to areas occupied by non-residential buildings, built-up areas are removed
from the IBU layer and used to spatially constrain the IMD distribution;

3. The IMD values indicate the density of built-up areas: they consider the variability of
built-up density and, consequently, the variability of a population.

Census data are only available in the aggregated form that can be assigned to settle-
ment polygons (Figure 8). In order to spatially disaggregate the data, i.e., to delineate the
areas within settlements that can be populated, the IMD level, which is restricted to IBU
areas only, is intersected with the urban fabric classes of the available LULC dataset. Finally,
it is intersected with the settlement polygons that were previously assigned with the census
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data, i.e., the total number of inhabitants per settlement polygon. In this way, polygons
that do not show settlement classes are excluded from further analysis and the population
data are only assigned to areas that are exclusively occupied by residential buildings.

Table 3. Urban classes of the available LULC nomenclatures (UA, CZ, N2K) and the result of thematic
disaggregation (flood risk classification: FR).

LULC
Level 1 UA CZ N2K Proposed FR *

Urban fabrics

Continuous urban fabric
(S.L. > 80%)

Continuous urban
fabric (IMD > 80%)

Urban fabric
(predominantly public

and private units)

Continuous urban fabric
(IMD > 80%)

Discontinuous dense urban
fabric (S.L. 50–80%) Dense urban fabric

(IMD 30–80%)
data

Discontinuous dense urban
fabric (IMD 50–80%)

Discontinuous
medium-density

(S.L. 30–50%)

Discontinuous
medium-density
(IMD 30–50%)

Discontinuous low-density
urban fabric (S.L. 10–30%) Low-density fabric

(IMD < 30%)
data

Discontinuous low-density
urban fabric (IMD 10–30%)

Discontinuous
very-low-density urban

fabric (S.L. < 10%)

Discontinuous
very-low-density urban

fabric (IMD < 10%)

* Urban fabrics classification adjusted to the flood risk (FR) assessment.
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The process of estimating population density for each disaggregated polygon is itera-
tive. Each impervious populated polygon (target area) is assigned the initial number of
inhabitants, which is calculated as a fraction of the total population count per settlement.
The applied equation is commonly used in dasymetric population mapping applications,
including population estimates in UA datasets [50,51]:

P′ i = Ps·
Ai·Wi

∑i(Ai·Wi)
(1)

where P′i stands for the initial population in the target zone, i; Ps is the known population
in the source zone, s (settlement); and Ai is the size of the target zone multiplied by the
weighting coefficient, Wi. Originally, Wi refers to the average soil sealing value of the
urban fabric class. The UA layer is only available for the Zadar catchment area and the
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population estimates correspond to the data collected by Eurostat for the year 2006 [51]. At
the settlement level, the difference between the UA data and the 2021 census data varies,
but in general, the UA estimates underestimate the 2021 census population (Figure 9). The
differences are smaller (2.1%) in densely populated areas such as the city of Zadar, and
increase (up to 51.5%) when the population density decreases, but the difference between
the two datasets is not statistically significant (Table 4). Since the IMD value is available at
the pixel level, instead of the average soil-sealing value of the LULC class for the urban
fabric polygon, weighting coefficients can be derived from the IMD layer, i.e., the weighting
coefficients are actually the IMD values, calculated as follows:

Wi = IMD/100 (2)
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Table 4. Basic and t-test statistics of the census and the UA estimated population.

Data N * Mean SD ** SEM *** t-Test SED ****

Census 2021
13

5985.15 18,465.22 5121.33
0.0463 7124.594UA 2018 5655.08 17,858.15 4952.96

* Sample size. ** Standard deviation. *** Standard error of the mean. **** Standard error of difference.

In general, the population count in spatially disaggregated LULC urban fabric poly-
gons (target zones), Ps, is a fraction of the total population count in the settlement Ps
derived from the census data [33,52]:

Pi = fis·Ps (3)

Fraction fis in the above equation marks the part of the population density in the
source zone, s, that can be assigned to the target zone [37,53]:

fis =
PDFi·ARis

∑i(PDFi·ARis)
(4)

The area ratio coefficient, ARis, ensures that higher weights are assigned to the imper-
vious areas in order to link higher IMD values with higher population densities. The ratio
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of the populated urban fabric area, Ais, and total settlement area, As, is multiplied with the
corresponding IMD value:

ARis = IMD·Ais
As

(5)

The population density fraction, PDFi, in Equation (4) allows for densely populated
areas in the target zone to receive higher priority, i.e.,

PDFi =
PD′ i

∑i PD′ i
(6)

With the area ratio coefficient and population density fraction included in calculations,
inhabited areas with greater impervious density values are more likely to have a greater
number of inhabitants. Finally, dividing the estimated population, Pi (Equation (3)), with
the size of the target zone, i, Ai results in the spatial distribution of the population density:

PopDeni =
Pi
Ai

(7)

The procedure is summarized and illustrated in Figure 10.
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Phase 3: Evaluation

To test the validity of the results, the root mean square error, RMSE, and percentage
error, PE, are calculated for each analysed catchment:

RMSE =

√
1
m∑m

s=1(Ps − Pes)
2 (8)

PE =
1
m∑m

s=1

(
Ps − Pes

Ps

)
(9)

where Ps and Pes are the actual and estimated populations in the census unit (settlement)
and m is the number of settlements.

3. Results

Appropriate LULC datasets are selected for each catchment with respect to their extent
and spatial characteristics (Table 5).
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Table 5. Available LULC datasets in selected catchments.

Catchment Available LULC Dataset Selected LULC Dataset

Gospić N2K N2K
Zadar UA, CZ UA

Metković CZ, N2K CZ

Two LULC datasets are available for the Zadar and Metković catchments: UA and
CZ for the Zadar catchment and CZ and N2K for the Metković catchment. The spatial
and thematic detail (Tables 1 and 2) of the UA urban fabric classes is by far the best
compared to other LUCL datasets, which is why it was selected for the Zadar catchment
(Figure 11). The spatial characteristics of the CZ and N2K layers are identical, but the
thematic characteristics of the urban structure classes are more detailed in the CZ layer.
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To test the accuracy of the thematic disaggregation of the UA urban fabric polygons
and the appropriateness of using UA classification thresholds, the RMSE is calculated for
each class in the catchments (Table 6). Classes with higher IMD values, occupying more
than 80% of the total area of the urban fabric, fit the data better than the lowest IMD values.
This is particularly evident for IMD values in the 50–80% range, which occupy almost
50% of the total area of the urban fabric. On the other hand, the RMSE is highest for the
very-low-density discontinuous urban fabric (IMD values below 10%), which occupies only
a small part of the urban fabric area (2.4%). The overall RMSE is less than one, indicating
good agreement.

Table 6. RMSE in the Zadar catchment.

Catchment Selected
LULC IMD Class Area

(%)
RMSE

per Class
RMSE
Total

Zadar UA

>80% 34.4 0.78

0.86
50–80% 48.9 0.43
30–50% 11.1 0.87
10–30% 3.2 1.61
<10% 2.4 2.05

The reclassification of urban fabric classes in the N2K and CZ layers selected for the
Gospić and Metković catchments is carried out in respect of the average IMD values within
the LULC urban fabric polygons (Table 3).
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In the Gospić catchment, the thematic detail of the residential area is improved from
one N2K urban fabric class to four FR urban fabric classes (Figure 12): most urban structure
areas (75.4%) are classified as discontinuous dense urban fabrics, followed by medium-
density urban fabric (17.1%), continuous urban fabric (7.3%) and discontinuous low-density
urban fabric (<1%).
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In the Metković catchment area, two CZ urban fabric classes are reclassified into
three FR urban fabric classes in terms of their average IMD value (Figure 13): the majority
of urban areas are classified as discontinuous dense urban fabric classes (78.6%) and
discontinuous medium-density urban fabric (20.9%), while only a small part is recognised
as continuous urban fabric (<1%).
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The spatial distribution of population density (inhabitants/ha) resulting from
Equations (1)–(7) (Figures 14a, 15a and 16a) follows the spatial distribution of the IMD layer,
which is restricted to the built-up areas within the LULC urban fabric classes. As expected,
the highest densities occur in the areas associated with the LULC urban fabric polygons that
are classified as continuous urban fabric (with IMD values above 80%) and discontinuous
dense urban fabric (with IMD values within the interval 50–80%) (Figures 11–13). To meet
the requirements of small-scale assessment, the resulting pixel-wise population densities
are aggregated based on the LULC urban fabric polygons (Figures 14b, 15b and 16b).
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To validate the results, the root mean square error and percentage error for both
the population count and population density are calculated using Equations (8) and (9)
(Table 7). It should be noted that the results refer to the areas whose boundaries correspond
to the administrative boundaries of the census units (settlements) that are wholly or partly
within the boundaries of the catchment area.

Table 7. Validation of the results.

Catchment
P *

(Inhabitants)
PD **

(Inhabitants/ha)
RMSE PE (%)

P * PD ** P * PD **

Gospić 8679 0.186 6.2 1.9 17.4 17.42
Zadar 77,807 4.022 5.75 0.11 0.007 0.012

Metković 18,157 1.760 25.83 9.1 22.22 22.23
* Population count. ** Population density.

As expected, the IMD values in combination with the UA dataset (Zadar catchment)
result in the smallest RMSE and PE values. This is also the catchment with the highest pop-
ulation, especially in the central part where the city of Zadar is located, and the population
density exceeds 64 inhabitants/ha. The Gospić catchment, as the least populated area, has
slightly higher RMSE and PE values. The main economic activity in the Metković catch-
ment is agriculture: the most represented LULC classes are different types of agriculture
with individual farmhouses that are not recognised as residential due to the MMU of the
dataset, which may lead to an incorrect population figure when estimating the population
distribution in relation to the urban fabric polygons.

4. Discussion

The procedure described uses surface imperviousness data to disaggregate existing
LULC urban fabric classes, as well as census data, which are normally only available in
aggregated form at the settlement level. The main objective is to derive and process the
basic spatial data that are necessary for estimating the exposure of assets and people to
floods at the meso level and thus for assessing flood risk. In terms of exposure, the focus
is primarily on the LULC classes of the urban fabric, which provide a detailed insight
into the imperviousness characteristics that are critical for flood hazard and flood risk
assessment at the meso level and the people living in these areas. The IMD thresholds used
for the reclassification of urban fabrics in the available LULC datasets were taken from
UA, clearly the most detailed dataset offered by the Copernicus Land Monitoring Service.
The other datasets (N2K and CZ) are spatially harmonised (using the same MMU) and the
nomenclature follows the same hierarchical procedure. However, the thematic detail of
the urban fabric differs depending on the focus of the mapping procedure: CZ focuses on
monitoring the marine coastline and provides information on the impact of anthropogenic
activities on the marine environment, while the purpose of the N2K data is to assess the
effectiveness of the preservation of Natura 2000 sites. In general, the differentiation in
the different levels of the imperviousness density within the urban environment is not
so much in focus, and both end up with far fewer classes of urban fabric than the UA
dataset (Table 3), which is not suitable for flood risk assessment, and is primarily focused
on urban and agricultural areas and aims to assess the adverse consequences of flooding
at the meso level.

The advantage of the described thematic disaggregation of the LULC urban fabric is
its simplicity, as only the available high-resolution IMD is used as auxiliary data. Based on
the assumption that a higher imperviousness density indicates a higher building density
and greater asset value, the reclassification of the existing urban classes in terms of the
IMD value allows for a more detailed analysis of the assets at risk. In this regard, the
proposed disaggregation of the LULC thematic urban fabric information is a step forward
to adjust the data and extract adequate information from the available data. On the
other hand, in terms of spatial characteristics, the disaggregated data are still within the
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spatial boundaries of the urban fabric polygons of the LULC dataset used, so further
improvements are needed to improve the spatial detail and, in particular, to adjust the
boundaries of the urban fabric polygons.

Similar to the LULC data, census data are usually only available at an aggregated level
(e.g., settlement) and are not detailed enough to meet the meso-level requirements. In recent
decades, many approaches to disaggregating population density data have been proposed,
including areal interpolation techniques and dasymetric mapping. The disaggregation ap-
proach described in this study is based on the dasymetric method proposed by Mennis [52]
and Mennis and Hultgren [33], which defines the relationship between the statistical com-
ponent being mapped (census data) and the auxiliary data used to assign appropriate value
classes to the residential areas (urban fabric classes in the selected LULC layer). However,
instead of using aggregate auxiliary classes (i.e., the average imperviousness density of
each LULC urban fabric class), we propose to use the actual IMD values derived from the
IMD layer and establish the relationship between population density and mapped IMD.
With a spatial resolution that is detailed enough for meso-level assessment, the IMD layer
provides sufficient information to disaggregate the population data at a finer scale. In
contrast to choropleth mapping (Figure 7), the main objective of the described approach
is to distribute census data to areas that are actually inhabited by residents, rather than
allocating population density to the entire administrative unit (settlement). The approach is
based on the assumption that higher values for impervious density tend to indicate a higher
density of residential development and, consequently, are more likely to be inhabited by
residents. To avoid assigning population density values to areas with high IMD values
that are not residential (e.g., industrial or commercial buildings, roads), the IMD values
are spatially limited to the selected LULC urban fabric polygons. In other words, the
distribution of population density is determined based on the density of imperviousness
and the proportion of the area in the settlements that can be considered residential.

The population distribution presented in this paper is a significant improvement
over the currently available population data for Croatia. Figure 17 shows the currently
available distribution of population data from the world’s largest population dataset,
WorldPop [54]. The dataset is compiled based on the 2020 census- or projection-based
estimates for 2020 [39]. In terms of flood risk assessment, the dataset is suitable for macro-
level assessment, but at the meso level, such a coarse resolution cannot provide satisfactory
estimates for flood exposure and flood damage analysis. The proposed approach not only
improves the spatial resolution of population distribution, but is also an improvement
in terms of thematic distribution: it allows for pixel-based estimates based on the latest
census data instead of projections.
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5. Conclusions

Estimating the exposure of the elements at risk, both assets and people, is the key
element of flood risk assessment. The process relates the flood hazard to the vulnerability of
the exposed elements to estimate the damage and, ultimately, the flood risk. As mentioned
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above, the assessment is subject to many uncertainties, often related to the data used. Most
of the data that are already available are suitable for mapping flood risks at the macro level.
However, for flood risk assessment at the meso (and micro) scale, sufficiently detailed
data are often lacking, forcing researchers to combine available assets and census data
with auxiliary information. Disaggregation techniques based on finding the functional
relationship between the aggregated and the auxiliary data (most commonly, the impervi-
ousness density) are one way to deal with the lack of detail. The aim of this research was
to propose a method that disaggregates exposure data (both for assets and residents) at a
meso level, using census data collected at the aggregated level (settlements) and available
LULC datasets, namely Coastal Zones, Natura 2000 and Urban Atlas, as well as pixel-based
IMD information as auxiliary data.

The main strength of the presented approach is primarily the use of the already
available data (Copernicus Land Monitoring Service LULC and IMD data) and the latest
census data, so that no additional data collection is required, which can be very time-
consuming and costly. Although the thematic disaggregation of urban fabric classes is
spatially limited by the polygon boundaries of the selected LULC dataset, which means
that the accuracy at the polygon boundaries depends on the accuracy of the original LULC
dataset, the information on the urban fabric classes and, consequently, the exposure of
the elements at risk is greatly improved. In terms of population density disaggregation,
pixel-based IMD data allow for better sensitivity to the variability of population density
within the target zones and improve the accuracy of the estimation of weights for the
different IMD levels. The result is a population density that is spatially disaggregated
down to the specific urban fabric polygons, which allows for an estimation of the people
that are exposed to flooding at the catchment level.

Limitations of the Proposed Method and Further Improvement

As described, the approach is specifically designed for countries where census data are
available, and its main objective is to provide the population data that are needed for flood
exposure analysis. If no census data are available, projection data, such as WorldPop, must
be used, but with certain methodological adjustments to the disaggregation procedure
described.

Apart from exposure, asset damage is highly dependent on the depth–damage infor-
mation available. The thematic detail of the depth–damage curves that are commonly used
in mesoscale flood risk assessment is relatively low in terms of land use categories. Built-up
areas are classified into five value classes: residential, commercial, industrial, transport and
infrastructure—roads. The disaggregated LULC urban fabric described earlier recognises
five residential classes depending on the percentage of impervious surfaces. However, the
depth–damage curves combine the residential classes into one category, which reduces the
accuracy of damage assessment in built-up areas and could be misleading when assessing
the effectiveness of flood protection measures.

The greatest flood damage occurs in urban areas. In this paper, the approach described
is limited to estimating population density that only considers residents, i.e., we have only
considered the exposure of residents and residential assets. Daily and seasonal migrations
are not considered. Further improvements should focus on including other urban (e.g.,
industrial, commercial) and agricultural classes, and including non-residents who might be
exposed to flooding (e.g., tourists, workers). Extensive sampling is also recommended to
improve the validation of the disaggregated data (both assets and population).

One of the assumptions on which the approach is based is the use of IMD values
as an indicator of building density. To estimate the exposure of residents in even more
detail, building heights can also be taken into account as one of the indicators of population
density (the higher the building, the denser the population) by using the difference between
the high-resolution digital elevation model (DEM) and the digital surface model (DSM) as
an indicator of the height of the building.
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Appendix A

Table A1. Comparison of the urban and agricultural classes of the available LULC nomenclatures.

CORINE Based
Level 1

MAES Based
Level 1 CLC UA CZ N2K

Artificial
surfaces

Urban

Continuous urban
fabric

Continuous urban fabric
(SL > 80%)

Continuous urban
fabric (IMD > 80%)

Urban fabric
(predominantly

public and private
units)

Discontinuous
urban fabric

Discontinuous dense
urban fabric (SL 50–80%)

Dense urban fabric
(IMD 30–80%)Discontinuous

medium-density urban
fabric (SL 30–50%)

Discontinuous
low-density urban fabric

(SL 10–30%) Low-density fabric
(IMD < 30%)Discontinuous

very-low-density urban
fabric (SL < 10%)

Industrial or
commercial units

Industrial, commercial,
public, military and

private units

Industrial,
commercial, public
and military units

(other)
Industrial,

commercial and
military unitsNuclear energy

plants and
associated land

Road and rail
networks and

associated land

Fast transit roads and
associated land Road networks

and associated
land

Road networks
and associated

landOther roads and
associated land

Railways and
associated land

Railways and
associated land

Railways and
associated land

https://land.copernicus.eu/
https://dzs.gov.hr/
https://www.worldpop.org/


Land 2023, 12, 2014 20 of 22

Table A1. Cont.

CORINE Based
Level 1

MAES Based
Level 1 CLC UA CZ N2K

Artificial
surfaces

Urban

Port areas Port areas

Cargo ports

Port areas

Passenger ports

Fishing ports

Naval ports

Marinas

Local
multi-functional

harbours

Shipyards

Airports Airports Airports and
associated land

Airports and
associated land

Mineral extraction
sites Mineral extraction and

dump sites

Mineral extraction
sites Mineral extraction

sites, dump and
construction sites

Dump sites Dump sites

Construction sites Construction sites Construction sites

- Land without current
use

Land without
current use

Land without
current use

Green urban areas Green urban areas Green urban,
sports and leisure

facilities

Green urban,
sports and leisure

facilities
Sport and leisure

facilities
Sport and leisure

facilities

Agricultural
areas

Cropland

Non-irrigated
arable land

Arable land (crops)
Arable irrigated

and non-irrigated
land

Arable irrigated
and non-irrigated

land

Permanently
irrigated arable

land

Rice fields

- - Greenhouses Greenhouses

Vineyards

Permanent crops

Vineyards, fruit
trees and berry

plantations

Vineyards, fruit
trees and berry

plantations
Fruit trees and

berry plantations

Olive groves Olive groves Olive groves

Pasture Pastures
Annual crops

associated with
permanent crops

Annual crops
associated with

permanent crops

Annual crops
associated with

permanent crops
-

Complex
cultivation

patterns

Complex and mixed
cultivation

Complex
cultivation

patterns

Complex
cultivation

patterns

Land principally
occupied by

agriculture with
significant areas of
natural vegetation

-

Land principally
occupied by

agriculture with
significant areas of
natural vegetation

Land principally
occupied by

agriculture with
significant areas of
natural vegetation

Agro-forestry areas - Agro-forestry areas Agro-forestry areas
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