Physical Properties of Retisol under Secondary Pulp and Paper Sludge Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experiment Installation
2.2. Plant Growth Parameters
2.3. Soil Sample Preparation
2.4. Soil Water Retention Capacity
2.5. Saturated Hydraulic Conductivity
2.6. Soil Thermal Conductivity
2.7. Soil Particle and Microaggregate Size Distribution
2.8. Statistical Analyses
3. Results
3.1. Plant Growth Parameters
3.2. Soil Particle and Microaggregate Sized Compositions
3.3. Water Retention Capacity
3.4. Saturated Hydraulic Conductivity
3.5. EffectiveThermalConductivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benjamin, J.G.; Nielsen, D.C.; Vigil, M.F. Quantifying effects of soil conditions on plant growth and crop production. Geoderma 2003, 116, 137–148. [Google Scholar] [CrossRef]
- Passioura, J.B. Soil structure and plant growth. Soil Res. 1991, 29, 717–728. [Google Scholar] [CrossRef]
- Indoria, A.K.; Sharma, K.L.; Sammi Reddy, K.; Srinivasa Rao, C. Role of soil physical properties in soil health management and crop productivity in rainfed systems—II management technologies and crop productivity. Curr. Sci. 2016, 110, 320–328. [Google Scholar] [CrossRef]
- Wu, D.; Andales, A.A.; Yang, H.; Sun, Q.; Chen, S.; Guo, X.; Li, D.; Du, T. Linking crop water productivity to soil physical, chemical and microbial properties. Front. Agric. Sci. Eng. 2021, 8, 545–558. [Google Scholar] [CrossRef]
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 2002, 116, 353–362. [Google Scholar] [CrossRef]
- Krasilnikov, P.V. Stable carbon compounds in soils: Their origin and functions. Eurasian Soil Sci. 2015, 48, 997–1008. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shapiro, C.A.; Wortmann, C.S.; Drijber, R.A.; Mamo, M.; Shaver, T.M.; Ferguson, R.B. Soil organic carbon: The value to soil properties. J. Soil Water Conserv. 2013, 68, 129A–134A. [Google Scholar] [CrossRef]
- Faubert, P.; Barnabé, S.; Bouchard, S.; Côté, R.; Villeneuve, C. Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions? Resour. Conserv. Recycl. 2016, 108, 107–133. [Google Scholar] [CrossRef]
- Cabral, F.; Vasconcelos, E.; Goss, M.J.; Cordovil, C.M. The value, use, and environmental impacts of pulp-mill sludge additions to forest and agricultural lands in Europe. Environ. Rev. 1998, 6, 55–64. [Google Scholar] [CrossRef]
- Camberato, J.J.; Gagnon, B.; Angers, D.A.; Chantigny, M.H.; Pan, W.L. Pulp and paper mill by-products as soil amendments and plant nutrient sources. Can. J. Soil Sci. 2006, 86, 641–653. [Google Scholar] [CrossRef]
- N’Daygamiye, A.; Nyiraneza, J.; Giroux, M.; Grenier, M.; Drapeau, A. Manure and paper mill sludge application effects on potato yield, nitrogen efficiency and disease incidence. Agronomy 2013, 3, 43. [Google Scholar] [CrossRef]
- Kinnula, S.; Toivonen, M.; Soinne, H.; Joona, J.; Kivelä, J. Effects of mixed pulp mill sludges on crop yields and quality. Agric. Food Sci. 2020, 29, 276–286. [Google Scholar] [CrossRef]
- Turner, T.; Wheeler, R.; Oliver, I.W. Evaluating land application of pulp and paper mill sludge: A review. J. Environ. Manag. 2022, 317, 115439. [Google Scholar] [CrossRef]
- Zhang, X.; Campbell, A.G.; Mahler, R.L. Newsprint pulp and paper sludge as a soil additive/amendment for Alfalfa and bluegrass: Greenhouse study. Commun. Soil Sci. Plant Anal. 1993, 24, 1371–1388. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Beauchamp, C.J. Active carbon pools and enzyme activities in soils amended with de-inking paper sludge. Can. J. Soil Sci. 2000, 80, 99–105. [Google Scholar] [CrossRef]
- Rotenberg, D.; Cooperband, L.; Stone, A. Dynamic relationship between soil properties and foliar disease as effected by annual additions of organic amendment to a sandy soil vegetable production systems. Soil Biol. Biochem. 2005, 37, 1343–1357. [Google Scholar] [CrossRef]
- Nunes, J.R.; Cabral, F.; Loґpez-Pineiro, A. Short-term effects on soil properties and wheat production from secondary paper sludge application on two Mediterranean agricultural soils. Bioresour. Technol. 2008, 99, 4935–4942. [Google Scholar] [CrossRef]
- Norris, M.; Titshall, L. The potential for direct application of papermill sludge to land: A greenhouse study. Int. J. Environ. Res. 2011, 5, 673–680. [Google Scholar]
- Zibilske, L.; Clapham, W.; Rourke, R. Multiple applications of paper mill sludge in an agricultural system: Soil effects. J. Environ. Qual. 2000, 29, 1975–1981. [Google Scholar] [CrossRef]
- Chow, T.; Rees, H.; Fahmy, S.; Monteith, J. Effects of pulp fibre on soil physical properties and soil erosion under simulated rainfall. Can. J. Soil Sci. 2003, 83, 109–119. [Google Scholar] [CrossRef]
- Sippola, J.; Mäkelä-Kurtto, R.; Rantala, P.-R. Effects of Composted Pulp and Paper Industry Wastewater Treatment Residuals on Soil Properties and Cereal Yield. Compos. Sci. Util. 2003, 11, 228–237. [Google Scholar] [CrossRef]
- Aitken, M.N. Long term effects of sewage sludge on grassland. Soil Use Manag. 1995, 11, 145–154. [Google Scholar] [CrossRef]
- Douglas, J.T.; Aitken, M.N.; Smith, C.A. Effects of five non-agricultural organic wastes on soil composition, and on the yield and nitrogen recovery of Italian ryegrass. Soil Use Manag. 2003, 19, 135–138. [Google Scholar] [CrossRef]
- Fahim, S.; Nisar, N.; Ahmad, Z.; Asghar, Z.; Said, A.; Atif, S.; Ghani, N.; Qureshi, N.; Soomro, G.A.; Iqbal, M.; et al. Managing Paper and Pulp Industry By-Product Waste Utilizing Sludge as a Bio-Fertilizer. Pol. J. Environ. Stud. 2019, 28, 83–90. [Google Scholar] [CrossRef]
- Mahmood, T.; Elliott, A. A review of secondary sludge reduction technologies for the pulp and paper industry. Water Res. 2006, 40, 2093–2112. [Google Scholar] [CrossRef]
- Bajpai, P. Management of Pulp and Paper Mill Waste, 1st ed.; Springer Cham: Berlin, Germany, 2015; p. 197. [Google Scholar]
- Curnoe, W.E.; Irving, D.C.; Dow, C.B.; Velema, G.; Unc, A. Effect of spring application of a paper mill soil conditioner on corn yield. Agron. J. 2006, 98, 423–429. [Google Scholar] [CrossRef]
- Gibbs, P.; Muir, I.; Richardson, S.; Hickman, G.; Chambers, B. Land Spreading on Agricultural Land: Nature and Impact of Paper Wastes Applied in England & Wales, 1st ed.; Environment Agency: Bristol, UK, 2005; p. 66. [Google Scholar]
- Gagnon, B.; Lalande, R.; Fahmy, S.H. Organic matter and aggregation in a degraded potato soil as affected by raw and composted pulp residue. Biol. Fertil. Soils 2001, 34, 441–447. [Google Scholar] [CrossRef]
- Gael, A.G.; Smirnova, L.F. Sand and Sandy Soils; GEOS: Moscow, Russia, 1999. [Google Scholar]
- Ikkonen, E.; Chazhengina, S.; Jurkevich, M. Photosynthetic Nutrient and Water Use Efficiency of Cucumis sativus under Contrasting Soil Nutrient and Lignosulfonate Levels. Plants 2021, 10, 340. [Google Scholar] [CrossRef]
- Shein, E.V.; Karpachevskii, L.O. Theory and Methods of Soil Physics; Grif i K.: Moscow, Russia, 2007. [Google Scholar]
- Lal, R.; Shukla, M.K. Principles of Soil Physics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004; p. 736. [Google Scholar]
- McPhee, C.; Reed, J.; Zubizarreta, I. Routine Core Analysis. In Developments in Petroleum Science, 1st ed.; McPhee, C., Reed, J., Zubizarreta, I., Eds.; Elsevier: Cambridge, MA, USA, 2015; Volume 64, pp. 181–268. [Google Scholar]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Klute, A. Water retention: Laboratory methods. In Methods of Soil Analysis, Physical and Mineralogical Methods; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; Volume 1, pp. 635–662. [Google Scholar]
- Romano, N.; Santini, A. Water retention and storage: Field. In Methods of Soil Analysis; Dane, J.H., Topp, G.C., Eds.; SSSA: Madison, WI, USA, 2002; Volume 4, pp. 721–738. [Google Scholar]
- N’Daygamiye, A.; Huard, S.; Thibault, Y. Influence of paper mill sludges on corn yields and N recovery. Can. J. Soil Sci. 2003, 83, 497–505. [Google Scholar] [CrossRef]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of 65 biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Speratti, A.; Johnson, M.; Martins Sousa, H.; Nunes Torres, G.; Guimarães Couto, E. 298 Impact of Different Agricultural Waste Biochars on Maize Biomass and Soil Water Content 299 in a Brazilian Cerrado Arenosol. Agronomy 2017, 7, 49. [Google Scholar] [CrossRef]
- Edeh, I.G.; Mašek, O.; Buss, W. A meta-analysis on biochar’s effects on soil water properties—New insights and future research challenges. Sci. Total Environ. 2020, 714, 136857. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarian, B.; Daigle, H. Thermal conductivity in porous media: Percolation-based effective-medium approximation. Water Resour. Res. 2016, 52, 295–314. [Google Scholar] [CrossRef]
- Shiozawa, S.; Campbell, G.S. Soil thermal conductivity. Remote Sens. Rev. 1990, 5, 301–310. [Google Scholar] [CrossRef]
- He, R.; Jia, H.; Jin, H.; Wang, H.; Li, X. Experimental Study on Thermal Conductivity of Organic-Rich Soils under Thawed and Frozen States. Geofluids 2021, 2021, 7566669. [Google Scholar] [CrossRef]
- Zhao, Y.; Si, B. Thermal properties of sandy and peat soils under unfrozen and frozen conditions. Soil Tillage Res. 2019, 189, 64–72. [Google Scholar] [CrossRef]
Parameter | 0% | 20% | 40% | p |
---|---|---|---|---|
Leaf number plant−1 | 13.3 ± 0.7 b | 15.8 ± 1.8 ab | 16.7 ± 0.7 a | ** |
Shoot dry weight, g plant−1 | 1.0 ± 0.2 b | 1.3 ± 0.1 ab | 1.6 ± 0.1 a | ** |
Root dry weight, g plant−1 | 0.51 ± 0.13 a | 0.61 ± 0.07 a | 0.68 ± 0.06 a | ns |
Total weight, g plant−1 | 1.5 ± 0.4 b | 1.9 ± 0.2 ab | 2.3 ± 0.2 a | * |
Shoot weight ratio | 0.66 ± 0.01 b | 0.69 ± 0.01 a | 0.71 ± 0.01 a | ** |
Root weight ratio | 0.34 ± 0.01 a | 0.31 ± 0.01 b | 0.29 ± 0.01 b | * |
Root:Shoot weight ratio | 0.53 ± 0.01 a | 0.46 ± 0.03 b | 0.42 ± 0.02 b | ** |
Leaf area, cm2 plant−1 | 289 ± 39 a | 303 ± 20 a | 321 ± 13 a | ns |
LMA, g m−2 | 36 ± 3 b | 44 ± 4 ab | 51 ± 3 a | * |
Particle Size, mm | Secondary Sludge | Soil Samples | ||
---|---|---|---|---|
0% | 20% | 40% | ||
<0.002 | 13.6 ± 0.2 a | 6.5 ± 0.1 b | 6.4 ± 0.1 b | 6.8 ± 0.2 b |
0.002–0.05 | 55.3 ± 0.6 b | 62.1 ± 0.4 a | 62.6 ± 0.3 a | 63.3 ± 0.7 a |
0.05–1.0 | 30.7 ± 0.8 a | 31.0 ± 0.4 a | 31.0 ± 0.4 a | 29.1 ± 0.8 a |
Particle Size, mm | Secondary Sludge | Soil Samples | ||
---|---|---|---|---|
0% | 20% | 40% | ||
<0.002 | 0 b | 1.3 ± 0.0 a | 1.2 ± 0.0 a | 1.2 ± 0.1 a |
0.002–0.05 | 39.0 ± 0.9 a | 38.1 ± 0.5 a | 37.1 ± 0.5 a | 37.1 ± 1.3 a |
0.05–1.0 | 60.9 ± 0.9 a | 60.5 ± 0.5 a | 61.5 ± 0.5 a | 61.5 ± 1.3 a |
Sludge Dose, % | Saturated Water Content | Field Capacity | Air-Dried Soil |
---|---|---|---|
0 | 0.92 ± 0.01 b | 0.83 ± 0.04 b | 0.17 ± 0.00 a |
20 | 0.92 ± 0.05 ab | 0.85 ± 0.02 b | 0.17 ± 0.00 a |
40 | 0.98 ± 0.01 a | 0.92 ± 0.01 a | 0.16 ± 0.00 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butylkina, M.; Ikkonen, E. Physical Properties of Retisol under Secondary Pulp and Paper Sludge Application. Land 2023, 12, 2022. https://doi.org/10.3390/land12112022
Butylkina M, Ikkonen E. Physical Properties of Retisol under Secondary Pulp and Paper Sludge Application. Land. 2023; 12(11):2022. https://doi.org/10.3390/land12112022
Chicago/Turabian StyleButylkina, Marina, and Elena Ikkonen. 2023. "Physical Properties of Retisol under Secondary Pulp and Paper Sludge Application" Land 12, no. 11: 2022. https://doi.org/10.3390/land12112022
APA StyleButylkina, M., & Ikkonen, E. (2023). Physical Properties of Retisol under Secondary Pulp and Paper Sludge Application. Land, 12(11), 2022. https://doi.org/10.3390/land12112022