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Abstract: Arid and semi-arid areas are facing severe land degradation and desertification due to
water scarcity. To alleviate these environmental issues, the Chinese government has launched a “water
conveyance” project for environmental protection along the Tarim River. While previous studies have
mainly focused on environmental conditions, the influence of these policies on land use conditions
remains less explored. Therefore, this study first simulated the land use and land cover (LULC)
changes in a major city (Korla) around the Tarim River. We found that the water conveyance routes
have exerted notable influences on surrounding LULC changes. Next, we primarily focused on the
LULC changes among different reaches of the Tarim River. We found that water and forest areas in the
lower reaches have increased at the expense of a slight decrease in such areas in the upper and middle
reaches, which suggests that the water conveyance policy may also have unintended consequences.
These findings could attract the attention of decision makers in many other arid and semi-arid areas,
and they could provide practical policy implications for other similar inter-basin water conveyance
projects. The benefits and risks of these man-made projects should be carefully balanced.
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1. Introduction

Land use and land cover (LULC) change is a primary issue in global environmen-
tal change and sustainable development [1–5]. Land use activities will inevitably have
significant influences on the planet’s land surface [6–9]. Numerous environmental and
social issues are associated with rapid urbanization and population growth throughout
the world [10–13]. In particular, arid and semi-arid areas suffer from a series of envi-
ronmental problems, such as land degradation [14–16], desertification [17–19], and water
scarcity [20–22], even though the urban growth rates are not as high as those in fast-growing
regions. It is increasingly important to analyze and simulate the LULC changes in these ar-
eas, which can provide practical instructions for environmental management and decision
making [23–29].

In arid and semi-arid areas, water resources play fundamental roles in land use and
economic development [30–32]. To restrict or stop the flow of water and underground
streams for personal use, local residents generally construct a number of dams and ditches
along rivers throughout the world. Reservoirs created by dams can not only prevent
floods but also provide a large amount of water for various daily activities, such as agri-
cultural irrigation, industrial use, and human consumption [33–35]. However, due to
excessive and inefficient water consumption in the upper and middle reaches of some en-
dorheic rivers, the lower reaches are easily affected by water scarcity, especially in drought
years [36–38]. To address these problems, some decision makers have decided to convey
water resources from the upper to lower reaches [39–42]. Notably, the Chinese government
has launched a long-term project called “ecological water conveyance”, which aims to
protect the environment and natural resources in the lower reaches of the Tarim River Basin,
Xinjiang [43–46].
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These projects will inevitably affect the surrounding natural environment and ecosys-
tem services. Although a number of studies have analyzed the consequences of such water
conveyance projects, two major limitations remain to be explored. First, most previous stud-
ies have mainly focused on the influence of water conveyance on environmental conditions.
For example, Akron et al. [47] pointed out that water conveyance can restore water flow and
enhance ecosystem services in Ayun, Israel; Genereux et al. [48] analyzed the advantages
of water conveyance in the lowland rainforest of Costa Rica; Zhao et al. [49] demonstrated
that such projects are able to restore biodiversity and vegetation in the lower reaches of the
Tarim River; and Guo et al. [50] found that water conveyance has raised the groundwater
level in the lower reaches of the Heihe River Basin, China. However, less attention has been
given to the effects of these man-made policies on land use conditions [51,52].

Second, it is not easy to identify the influences of water conveyance on land use
conditions simply based on remote sensing monitoring due to the complexity of LULC
changes. Interestingly, LULC models (e.g., cellular automata) have the potential to address
this matter by simulating whole change processes. For example, Mubako et al. [53] eval-
uated past and future LULC changes in the semi-arid Dodoma, Tanzania, by combining
artificial neural networks and CA models. Hou et al. [54] simulated LULC changes in the
Tarim River Basin with the support of the CA–Markov model, and the results revealed
the spatiotemporal pattern of land use in the future. Mamitimin et al. [55] analyzed the
spatiotemporal LULC change in Urumqi, Xinjiang, during 1980–2020, and then projected
future LULC change in 2050 under several scenarios by using a CA model. Xie et al. [56]
utilized a LULC model to simulate the LULC changes and ecosystem service values in the
arid Aksu River Basin. Alqadhi et al. [57] investigated the LULC changes in a semi-arid
region of Saudi Arabia from 1990 to 2018, and they further simulated the LULC changes
in 2040 by using the multilayer perceptron neural network land change model. All these
previous studies have provided important insights into LULC change modeling in arid
and semi-arid areas. Nevertheless, the influences of water conveyance have rarely been
considered in LULC change simulation and prediction. Since the implementation of water
conveyance projects could have a considerable influence on LULC changes, a meaningful
attempt should be made to carefully consider the influences of water conveyance on LULC
change simulation and prediction. Therefore, the aim of this study is to fill these gaps by
addressing the following two research questions: (1) What are the positive and negative
effects of man-made water conveyance policies on land use conditions in arid and semi-
arid areas? (2) Can the consideration of the influences of water conveyance improve the
accuracies of LULC change modeling?

2. Materials and Methods
2.1. Study Area and Spatial Data

The Xinjiang Uyghur Autonomous Region is situated in northwestern China. As
shown in Figure 1, this region is the largest Chinese administrative division, with a total
land area of more than 1.66 million km2. Due to the extremely low precipitation and
intensive evaporation in this area, most of the rivers in Xinjiang are fed by the snowmelt
of the surrounding mountain ranges [33,58]. As a result of excessive and inefficient water
consumption in the upper and middle reaches, many rivers and lakes have begun to dry
up, dating back to the 1970s. Specifically, the Tarim River region, which is located in
the central part of Xinjiang, has witnessed a substantial decrease in riparian vegetation
(e.g., Populus euphratica) and wildlife.
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Figure 1. Location of the study area.

The Tarim River, which is the largest endorheic river in China, originates from the
union of the Aksu River, Yarkand River, and Hotan River. The Tarim River flows in an
eastward direction around the Taklamakan Desert [59]. To protect the natural environ-
ment and resources, the Chinese government has launched well-known “ecological water
conveyance” projects. From 14 May to 12 July 2000, 98 million cubic meters of water was
conveyed to the lower reaches of the Tarim River. Since then, such water conveyance efforts
have been made annually. Now, the water can finally flow into the tail section (Taitema
Lake) in most cases.

To systematically investigate the influence of LULC on water conveyance, this study
obtained time series remote sensing classification data from 1990, 2000, 2010, and 2020. The
data were generated by manually interpreting the Landsat remote sensing images with a
spatial resolution of 30 m. A classification scheme of two levels, with level-1 including six
major classes and level-2 including more specific classes, was adopted. As listed in Table 1,
the level-1 classification consists of farmland, forest, grassland, water area, built-up area,
and unused land. The results were further classified into sub-categories of level-2.

Specifically, the widely used random forest algorithm was applied to the timeseries
Landsat remote sensing images for supervised classification. In our research, both the
training and testing samples for LULC classification were obtained from the remote sensing
images using the China multi-period land use and land cover (CNLUCC) data from the
Chinese Academy of Sciences and high-resolution Google Earth Pro images as reference
sources. Firstly, all of the samples (5000 samples for each year) were selected from the
CNLUCC data according to a stratified random sampling method. Secondly, we carefully
corrected the misclassified samples with the support of Google Earth Pro images. Thirdly,
the corrected samples were randomly classified as training (80%) and testing sub-datasets
(20%). Finally, the LULC datasets from 1990, 2000, 2010, and 2020 could be obtained
based on the above methodological framework. The performance of the remote sensing
classification was validated according to the overall accuracies. The overall accuracies of
the LULC datasets from 1990, 2000, 2010, and 2020 were found to be 92.6%, 94.7%, 92.2%,
and 95.1%, respectively. The above results demonstrate that the classified LULC datasets
have high reliability, which can be further utilized for LULC change assessment, simulation,
and prediction.
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Table 1. Land use and land cover classification scheme.

Level-1 Classification Level-2 Classification Level-1 Classification Level-2 Classification

Farmland
Paddy field

Built-up area
Urban land

Dryland farming Rural settlement

Forest

Dense forest Other built-up area

Shrubland

Unused land

Desert
Sparse forest Gobi
Other forest Saline-alkali soil

Grassland
Dense grassland Swampland

Moderate grassland Bare soil
Sparse grassland Bare rock

Water area

River Other unused land

Lake

– –Reservoir and pond
Snow cover
Bottomland

2.2. Land Use and Land Cover Change Monitoring

Timeseries remote sensing classification data are useful for analyzing LULC changes
over a long period. We adopted the commonly used land use conversion matrix for LULC
change monitoring in the study area. According to previous studies, the annual change
rate for each LULC category over different periods can be directly compared by using the
following formula:

R =
Lb − La

La
× 1

T
(1)

where R is the rate of LULC changes during a specific period, La and Lb are the total area of
a single LULC category at the beginning and the end of this period, and T is the length of
this period (e.g., in years).

2.3. Land Use and Land Cover Change Modeling

Since this study involves six level-1 LULC categories, we selected the artificial neu-
ral network cellular automaton (ANN-CA) model to simulate the spatiotemporal LULC
changes in the study area. Many studies have demonstrated that the ANN-CA model is a
successful tool for modeling multiple LULC changes [60–62].

An ANN contains three different layers: an input layer, hidden layer, and output layer.
The input layer includes m neurons, which are used to receive m different spatial factors
associated with LULC changes. In the hidden layer, the number of neurons is generally
set as 2m/3, while the number of neurons in the output layer is the same as the number of
LULC categories. Each output neuron represents a change probability corresponding to a
single LULC category. We trained the ANN by using the commonly used back propagation
learning model. More details are presented as follows:

First, a two-dimensional matrix will be used to stand for a study area. Each matrix
entry is equipped with m attribute values corresponding to m spatial factors. These values,
which will be input into the first layer of the ANN, can be represented as follows:

X(k, t) = [x1(k, t), x2(k, t), . . . , xm(k, t)]T (2)

where xi(k, t) denotes the ith attribute value of cell k at time t, and T refers to the transpose
of a matrix.

Second, these attribute values will be further transferred to the hidden layer by using
the following formula [61]:

netj(k, t) = ∑iwi,jxi(k, t) (3)
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where netj(k, t) denotes the value transferred from cell k at time t to the jth neuron in the
hidden layer, and wi,j denotes the weight between the input layer and hidden layer. Then,
the hidden layer will respond by using the following sigmoidal function:

1

1 + e−netj(k,t)
(4)

Third, the response result will be transferred to the output layer as the LULC change
probability:

p(k, t, l) = ∑jwj,l
1

1 + e−netj(k,t)
(5)

where p(k, t, l) denotes the LULC change probability from the current LULC category to a
new category l for cell k at time t, and wj,l denotes the weight between the hidden layer and
output layer.

In addition, we should also consider a random perturbation factor in accordance
with previous studies [63–65]. As a consequence, the LULC change probability can be
formulated as follows:

p(k, t, l) = ∑jwj,l
1

1 + e−netj(k,t)
×

(
1 + (−lnγ)α) (6)

where γ denotes a stochastic number within the range [0, 1], and α is a parameter for
determining the stochastic degree.

Each land use cell can only be converted to a single LULC category at a time. Therefore,
only the maximum change probability will be considered. We used a threshold value within
the range [0, 1] to ensure that the land use cells changed step by step. This procedure can
be formulated by using the following equation:

St+1
k =

{
q, max[p(k, t, l)] > pthreshold
St

k, max[p(k, t, l)] ≤ pthreshold
(7)

where St
k is the LULC category for cell k at time t, St+1

k is the LULC category for cell k at time
(t + 1), q denotes the LULC category with the maximum change probability, and pthreshold
denotes a threshold value determined by the total number of land use cells derived from
the last remote sensing classification data.

Finally, we used the figure of merit (FoM) and confusion matrix to measure the
performance of different simulation results given that the other metrics affected by large
numbers of persistence grid cells (e.g., kappa) are potentially misleading. The FoM, the ratio
of the intersection of observed changes and simulated changes to the union of observed
changes and simulated changes is, therefore, a more suitable metric for evaluating LULC
modeling [66]. The FoM can be calculated as follows:

FoM = Hits/(Hits + Misses + False alarms + Wrong gaining category) (8)

where Hits refers to the correctness produced by observed change simulated as change,
Misses refers to the mistake caused by observed change simulated as persistence, False
alarms refers to the mistake caused by observed persistence simulated as change, and
Wrong gaining category refers to the mistake caused by observed change simulated as the
wrong gaining category.

Generally speaking, three years (e.g., Year 1, Year 2, and Year 3) of LULC datasets
are necessary for the validation of LULC change modeling. More specifically, the LULC
datasets in Year 1 and Year 2 are employed to calibrate the LULC change model, while the
LULC datasets in Year 2 and Year 3 are employed to validate the generalization ability of
the above calibrated LULC change model. To this end, firstly, the LULC change model in
our research was calibrated according to the samples of LULC changes between 1990 and
2000. Secondly, we simulated the LULC changes during this period based on the calibrated
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LULC change model and compared the simulation result with the actual remote sensing
classification data in 2000. This comparison can assess the performance of the above model
calibration procedure. Thirdly, we further predicted the LULC changes between 2000
and 2010 with the support of this well-calibrated LULC change model. The prediction
result was compared with the actual remote sensing classification data in 2010, which can
adequately validate the generalization ability of the above calibrated LULC change model.

3. Implementation and Results

In this study, we first simulated the LULC changes in a city around the Tarim River to
identify the influence of the water conveyance project. Next, we primarily focused on the
comparison of LULC changes among the upper, middle, and lower reaches of the Tarim
River region. More detailed results are presented in the following subsections.

3.1. Modeling Land use and Land Cover Changes in Korla Using ANN-CA

Korla, the largest city in southern Xinjiang that has benefited from the ecological water
conveyance project, was selected for LULC change modeling. We only considered the
level-1 classification results in this attempt. Two experiments were carried out to identify
the influence of water conveyance routes by using the effective ANN-CA model. Based on
previous studies, we first simulated the LULC changes from 1990 to 2010 by considering
various relevant spatial factors [67–72]. As listed in Table 2, the only difference between
the first and second experiments is that the latter also considers the location of the water
conveyance routes (i.e., the Konqi River).

Table 2. Spatial factors used for modeling land use and land cover changes.

Spatial Factor Acquisition Method

Distance from a cell to the nearest country center

Euclidean Distance function in ArcMap
Distance from a cell to the nearest city road

Distance from a cell to the nearest country road
Distance from a cell to the nearest water body

Distance from a cell to the Konqi River (DisKonqi)

Slope Digital Elevation Model

Area of farmland within a cell’s 3 × 3 neighborhood

Focal Statistics function in ArcMap

Area of forest within a cell’s 3 × 3 neighborhood
Area of grassland within a cell’s 3 × 3 neighborhood
Area of water area within a cell’s 3 × 3 neighborhood

Area of built-up area within a cell’s 3 × 3 neighborhood
Area of unused land within a cell’s 3 × 3 neighborhood

Current LULC category LULC classification data

In this study, the input layer of the ANN included twelve/thirteen neurons that
represented the spatial factors mentioned above, while the hidden layer had eight neurons.
Six neurons were needed in the output layer to represent six level-1 LULC categories.
Each output neuron offered a conversion probability corresponding to one category. We
randomly selected twenty percent of the samples from the remote sensing classification
data, among which fifteen percent were used for training and five percent for testing. A
cell’s various spatial attributes (given in Table 2) and its final LULC category were regarded
as independent and dependent variables, respectively [73]. We built the ANN-CA model
with the support of the MATLAB platform.

Firstly, we simulated the spatiotemporal LULC changes in Korla from 1990 to 2000.
The simulation result was compared with the actual remote sensing classification data
to assess the performance of the two experiments (see Figure 2). As shown in Table 3,
we adopted the figure of merit (FoM) and confusion matrix to measure the simulation
accuracies. We found that there was only a marginal difference between the accuracy values,
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which means that the “distance from a cell to the Konqi River” was not that influential
before the implementation of the conveyance project.
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Figure 2. Two simulation results of LULC changes in Korla from 1990 to 2000.

Table 3. Confusion matrix for modeling LULC changes in Korla from 1990 to 2000 (in km2).

Observed in 2000 Farmland Forest Grassland Water Built-Up Unused

Simulated
in 2000 (without

considering “DisKonqi”)

Farmland 17.65 0.31 3.43 0.01 0.60 0.19
Forest 0.15 4.27 3.48 0.01 0.02 0.04

Grassland 11.28 1.71 113.43 0.06 0.26 10.54
Water 0.02 0.01 0.14 0.96 0.01 0.37

Built-up 0.15 0.02 0.04 0.00 1.90 0.12
Unused 0.67 0.16 4.89 0.18 0.10 110.90

FoM 0.075 Overall accuracy 86.47%

Simulated
in 2000 (considering

“DisKonqi”)

Farmland 19.26 0.36 2.54 0.01 0.49 0.19
Forest 0.13 4.40 3.46 0.01 0.02 0.04

Grassland 9.74 1.53 114.35 0.06 0.11 10.56
Water 0.01 0.01 0.12 0.96 0.00 0.37

Built-up 0.12 0.02 0.05 0.00 2.16 0.12
Unused 0.66 0.16 4.89 0.18 0.11 110.89

FoM 0.081 Overall accuracy 87.48%

Secondly, we simulated the LULC changes in Korla from 2000 to 2010. The results are
displayed in Figure 3 and Table 4. The simulation result is much closer to the actual remote
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sensing classification data if the locations of the water conveyance routes are taken into
consideration. For example, although the two overall accuracies are similar, the values of
the FoM, which focuses on the changed parts rather than all the land use cells, are quite
different (0.177 and 0.228). In addition, we found that most LULC changes occurred around
the Konqi River, according to the visual comparison. These experiments demonstrate
that the water conveyance route has been an important factor for LULC changes after the
implementation of the conveyance project.
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3.2. Comparing LULC Changes in the Xinjiang and Tarim River Regions

To systematically investigate the influences of water conveyance projects on land
use conditions, we further compared the spatiotemporal LULC changes in the whole
Xinjiang area and the Tarim River region from 1990 to 2020. The results are summarized in
Tables S1 and S2 (Supplementary Materials). For Xinjiang, the LULC change patterns
during these three ten-year periods were quite similar. Generally, the areas of farmland
and built-up land continuously increased. In addition, forest and water areas increased
during 1990–2000 and remained steady afterwards. For the Tarim River region, the area
of farmland exhibited a much higher annual growth rate. Forest and water areas also
expanded dramatically at first, but then began to decrease after 2000. These results indicate
that the LULC changes in the Tarim River region are substantially different from those in
Xinjiang, even though the Tarim River region is a major part of this province.
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Table 4. Confusion matrix for modeling LULC changes in Korla from 2000 to 2010 (in km2).

Observed in 2010 Farmland Forest Grassland Water Built-Up Unused

Simulated
in 2010 (without

considering “DisKonqi”)

Farmland 34.11 0.59 10.20 0.00 0.03 0.11
Forest 0.28 4.88 0.00 0.00 0.00 0.00

Grassland 9.65 0.03 100.44 0.00 0.02 0.00
Water 0.01 0.00 0.00 1.15 0.00 0.05

Built-up 1.15 0.11 0.05 0.00 2.96 0.00
Unused 1.25 1.20 0.02 0.00 1.04 118.76

FoM 0.177 Overall accuracy 91.04%

Simulated
in 2010 (considering

“DisKonqi”)

Farmland 35.64 0.56 6.36 0.29 0.09 2.65
Forest 0.12 5.03 0.00 0.00 0.00 0.00

Grassland 9.21 0.02 104.34 0.01 0.05 0.00
Water 0.01 0.00 0.01 0.86 0.00 0.05

Built-up 0.75 0.01 0.01 0.00 2.89 0.03
Unused 0.73 1.19 0.00 0.00 1.02 116.18

FoM 0.228 Overall accuracy 91.96%

To further explore the LULC changes in the Tarim River region, we made a comparison
among its upper, middle, and lower reaches during the above three periods. The results are
summarized in Tables 5–7 and Figures 4–6. We found that these three sub-regions shared
similar LULC change patterns at first (1990–2000). For example, the areas of farmland,
forest, and water exhibited an obvious upward trend at the expense of grassland areas.
However, there were enormous differences after the implementation of the ecological water
conveyance project in 2000. Water and forest areas began to decrease in the upper and
middle reaches, while they substantially increased in the lower reaches from 2000 to 2010.
Most of these increases were in lakes in the tail section (Taitema Lake) and in dense forests,
according to the level-2 classification results. In addition, water areas in the upper and
middle reaches continued to shrink during 2010–2020. Furthermore, the annual growth
rate of farmland areas has also slowed. However, the water areas in the lower reaches have
remained relatively stable.

Table 5. Land use and land cover changes in the upper reaches of the Tarim River (in km2).

2000
1990

Farmland Forest Grassland Water Built-Up Unused Total

Farmland 1197.00 14.85 341.95 3.55 12.45 95.74 1665.52
Forest 25.89 1631.41 1123.96 19.35 1.37 251.36 3053.34

Grassland 15.47 93.35 6595.33 23.91 5.94 208.32 6942.32
Water 9.59 26.70 140.99 549.31 0.15 8.94 735.69

Built-up 11.28 0.12 4.46 0.02 25.70 0.20 41.77
Unused 20.12 35.69 726.18 36.94 0.79 4808.08 5627.79

Total 1279.34 1802.11 8932.87 633.07 46.40 5372.65
R 6.04% 13.89% −4.46% 3.24% −1.99% 0.95%

2010
2000

Farmland Forest Grassland Water Built-Up Unused Total

Farmland 1654.06 263.76 295.87 15.51 0.17 91.13 2320.49
Forest 0.00 2767.99 3.07 0.21 0.00 15.79 2787.06

Grassland 3.65 15.15 6635.55 77.81 0.00 41.34 6773.50
Water 0.00 3.68 5.67 639.97 0.00 15.56 664.90

Built-up 7.81 0.00 1.06 0.00 41.60 0.01 50.48
Unused 0.00 2.75 1.10 2.20 0.00 5463.96 5470.01

Total 1665.52 3053.34 6942.32 735.69 41.77 5627.79
R 7.87% −1.74% −0.49% −1.92% 4.17% −0.56%
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Table 5. Cont.

2020
2010

Farmland Forest Grassland Water Built-Up Unused Total

Farmland 2256.75 110.02 93.98 16.63 1.59 29.38 2508.34
Forest 14.95 2625.40 19.97 3.07 0.25 16.62 2680.26

Grassland 42.43 37.05 6595.90 34.94 0.10 11.36 6721.79
Water 2.03 4.70 3.68 597.08 0.04 2.24 609.76

Built-up 2.80 0.05 0.41 0.01 48.49 0.03 51.79
Unused 1.54 9.86 59.56 13.16 0.03 5410.37 5494.51

Total 2320.49 2787.06 6773.50 664.90 50.48 5470.01
R 1.62% −0.77% −0.15% −1.66% 0.52% 0.09%

Table 6. Land use and land cover changes in the middle reaches of the Tarim River (in km2).

2000
1990

Farmland Forest Grassland Water Built-Up Unused Total

Farmland 237.85 7.13 177.65 0.47 0.29 15.76 439.15
Forest 1.49 839.78 514.42 14.81 0.05 97.14 1467.69

Grassland 79.35 130.94 6504.48 18.49 0.18 333.54 7066.98
Water 0.04 17.66 35.34 60.01 0.01 8.02 121.08

Built-up 0.87 0.06 0.02 0.00 9.07 0.00 10.02
Unused 0.17 25.39 1004.17 10.46 0.00 2012.55 3052.74

Total 319.77 1020.95 8236.07 104.25 9.60 2467.02
R 7.47% 8.75% −2.84% 3.23% 0.88% 4.75%

2010
2000

Farmland Forest Grassland Water Built-Up Unused Total

Farmland 439.07 39.80 277.33 0.01 0.00 26.31 782.52
Forest 0.00 1427.89 0.01 0.00 0.00 0.00 1427.90

Grassland 0.09 0.00 6789.64 1.21 0.00 0.00 6790.94
Water 0.00 0.00 0.00 119.85 0.00 0.00 119.85

Built-up 0.00 0.00 0.00 0.00 10.02 0.00 10.02
Unused 0.00 0.00 0.00 0.00 0.00 3026.43 3026.43

Total 439.15 1467.69 7066.98 121.08 10.02 3052.74
R 15.64% −0.54% −0.78% −0.20% 0.00% −0.17%

2020
2010

Farmland Forest Grassland Water Built-Up Unused Total

Farmland 768.33 8.24 50.62 0.87 0.39 5.97 834.42
Forest 1.38 1390.31 12.63 2.16 0.06 5.79 1412.34

Grassland 8.27 21.63 6709.66 6.76 0.00 17.03 6763.35
Water 0.48 2.28 2.53 100.85 0.00 1.17 107.31

Built-up 0.37 0.05 0.05 0.01 9.57 0.00 10.06
Unused 3.69 5.39 15.46 9.20 0.00 2996.47 3030.20

Total 782.52 1427.90 6790.94 119.85 10.02 3026.43
R 1.33% −0.22% −0.08% −2.09% 0.07% 0.02%

Table 7. Land use and land cover changes in the lower reaches of the Tarim River (in km2).

2000
1990

Farmland Forest Grassland Water Built-Up Unused Total

Farmland 293.45 9.47 56.06 0.39 7.75 4.11 371.23
Forest 9.48 317.00 209.11 0.25 0.36 22.60 558.80

Grassland 25.16 52.96 3831.37 3.40 0.82 104.39 4018.09
Water 0.28 5.22 51.24 70.05 0.01 12.30 139.10

Built-up 2.83 0.05 0.44 0.01 16.46 0.13 19.92
Unused 3.56 15.82 377.10 10.41 0.09 5204.98 5611.96

Total 334.75 400.53 4525.31 84.50 25.49 5348.50
R 2.18% 7.90% −2.24% 12.92% −4.37% 0.99%
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Table 7. Cont.

2010
2000

Farmland Forest Grassland Water Built-Up Unused Total

Farmland 371.19 0.00 25.06 0.68 0.00 0.47 397.40
Forest 0.00 557.76 3.66 0.00 0.00 22.96 584.38

Grassland 0.00 0.73 3969.62 0.00 0.00 7.13 3977.48
Water 0.04 0.30 19.74 138.42 0.00 37.56 196.05

Built-up 0.00 0.00 0.00 0.00 19.92 0.00 19.92
Unused 0.00 0.00 0.00 0.00 0.00 5543.85 5543.85

Total 371.23 558.80 4018.09 139.10 19.92 5611.96
R 1.41% 0.92% −0.20% 8.19% 0.00% −0.24%

2020
2010

Farmland Forest Grassland Water Built-Up Unused Total

Farmland 390.42 1.32 9.48 0.12 0.74 1.09 403.18
Forest 0.68 565.32 12.26 1.50 0.04 4.22 584.03

Grassland 4.98 12.45 3931.65 1.62 0.12 51.77 4002.58
Water 0.11 1.56 1.04 191.53 0.01 1.34 195.58

Built-up 0.80 0.03 0.14 0.00 19.01 0.00 19.98
Unused 0.41 3.69 22.92 1.28 0.01 5485.43 5513.74

Total 397.40 584.38 3977.48 196.05 19.92 5543.85
R 0.29% −0.01% 0.13% −0.05% 0.06% −0.11%
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These phenomena may be largely attributed to the implementation of the ecological
water conveyance project. A number of dams, reservoirs, and ditches in the upper and
middle reaches of the Tarim River unreasonably restricted and stopped the water flow
before 2000. Owing to the abundant water resources, a large quantity of grassland has been
changed to farmland and forest. It seems that the water areas in the lower reaches have
also increased at a higher rate. However, we found that this observation can be mostly
attributed to the expansion of two reservoirs (Qiala and Daxihaizi), according to the level-2
classification results. As increasing amounts of water resources were conveyed to the lower
reaches after 2000, much natural vegetation in the upper and middle reaches began to
decrease. Nevertheless, the areas of farmland continued to expand to satisfy the food
supply due to rapid population growth. This phenomenon further increased the demand
for water resources.
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4. Discussion and Policy Implications

Water resources play fundamental roles in arid and semi-arid areas. Although ecologi-
cal water conveyance policies can restore biodiversity and vegetation in the lower reaches
of rivers to a considerable extent, the upper and middle reaches may also suffer from some
land use and environmental problems. Therefore, appropriate measures should be taken to
carefully balance the benefits and risks of these man-made projects. First, local governments
should develop a more reasonable water allocation plan for resolving the conflicts between
upstream and downstream regions, especially when the headstreams (e.g., Bosten Lake)
are at a lower water level. In a hopeful manner, the allocation of water resources should
be as equitable as possible. Second, local governments should strictly control the annual
growth rates of built-up areas and farmland (especially for water-intensive crops), which
are the major consumers of underground and surface water. Although cotton is a highly
profitable cash crop in Xinjiang, it is still necessary to balance its economic development and
environmental conservation. The national “Returning Farmland to Forest and Grassland”
and “Payments for Environmental Services” policies would be helpful in reducing land
degradation, desertification, and other environmental issues. Third, drip irrigation meth-
ods should be widely promoted to replace traditional flood irrigation. The former is a new
irrigation system that can distribute water directly onto the roots of crops and minimize
evaporation, while the latter involves the flow of water over the ground and through the
crops. This improvement could effectively save water in arid and semi-arid areas.

In summary, this study could provide practical policy implications for other similar
inter-basin water conveyance attempts. One of the advantages of our analyses is that
level-2 remote sensing classification results were adopted to better reflect the detailed
LULC changes. For example, there are substantial differences between the ecological
importance of lakes and reservoirs, even though they both belong to the “water area”
category. Nevertheless, several aspects could still be improved in future experiments.
For example, this study only considered the influence of ecological water conveyance
projects on land use conditions. In future studies, we will take into account more relevant
indicators (e.g., biological diversity and groundwater levels) to further investigate the
influence of water conveyance. In addition, we will compare the Tarim River Basin with
other regions that have also carried out water conveyance projects. We can explore whether
the aforementioned effects are common phenomena.

5. Conclusions

This study found that the implementation of ecological water conveyance policies,
which convey water resources in a direction from upstream to downstream, could exert
notable influences on LULC changes in arid and semi-arid areas. The consideration of
water conveyance routes made almost no difference to LULC modeling at first but could
substantially improve the simulation accuracy after the application of water conveyance.
While previous studies have mainly focused on positive outcomes, much less attention has
been given to the influence of these policies on LULC conditions. To this end, our study
found that water conveyance will more or less have unintended consequences on the LULC
conditions in the upper and middle reaches of the study area (Tarim River region). For
example, water and forest areas in the upper and middle reaches exhibited an obvious up-
ward trend before the implementation of the ecological water conveyance project. Although
these projects did improve environmental conditions in the lower reaches, some valuable
natural resources in the upper and middle reaches slightly decreased in return, according
to the detailed remote sensing classification data. With the Tarim River region being a
primary objective of such large projects, this study contributes to a clear and comprehensive
understanding of their influences on LULC conditions. These findings should draw the
attention of decision makers to the unintended influence of water conveyance, and they
could provide a valuable reference for environmental management and decisions in other
similar arid and semi-arid areas.
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