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Abstract: Identification of spatiotemporal changes in ecosystem service value and their drivers is the
basis for ecosystem services management and decision making. This research selects Fujiang River
Basin (FJRB) as the area of study, using the equivalent factor method to estimate the ecosystem service
value (ESV) variation and characteristics of its spatial distribution. The contributions of the drivers
of ecosystem service value and their interactions were also explored using the optimal parameters-
based geographical detectors (OPGD) model. The results showed the following: (1) the total ESV
increased from 104,891.22 × 106 yuan to 105,032.08 × 106 yuan from 2000 to 2020, and displayed an
upward trend from the southeast to northwest; (2) The distribution of ESV showed a strong positive
spatial autocorrelation. High ESVs were concentrated upstream of the study region with a higher
elevation and vegetation coverage, whereas low values were mainly found in the midstream and
downstream regions, where frequent human activity occurs; (3) The elevation of natural factors,
HAI and LA of human-social factors, and PEL of landscape pattern factors were the main forces
leading to ESV differentiation, and the spatial heterogeneity of ESV in the study area resulted from
the synergistic effect of natural factors, human socioeconomic activities, and landscape pattern factors.
This research reveals the spatial and temporal patterns and drivers of ecosystem service values in the
FJRB, and provides a scientific reference for the establishment of land-use planning and ecological
environmental protection mechanisms in this region.

Keywords: ecosystem service value; equivalent coefficient; driving factors; heterogeneity; spatial
autocorrelation analysis

1. Introduction

Ecosystems are the foundation for the survival and development of human society,
and the essence of many environmental problems facing humanity is the destruction and
degradation of ecosystem functions and services [1]. Ecosystem services (ESs) are the
ability of ecosystems to provide tangible or intangible natural products, environmental
resources, and ecological public interests to sustain human activities, such as production,
consumption, and circulation [2]. The values of ESs are incredibly high and sometimes
immeasurable; thus, maintaining ESs is vital for human welfare [3,4]. However, because
the socioeconomic system does not adequately elevate ecosystem assets and their value,
ESs are considered a free and inexhaustible public service, resulting their overconsumption
and ultimately scarcity [5,6]. Therefore, accurately assessing and quantifying ecosystem
service value (ESV) and exploring the drivers that influence the spatial heterogeneity
of ESV are vital for maintaining human well-being, promoting a healthy development
ecosystem, and providing an essential reference for making reasonable ecological protection
policies [7].

Currently, the assessment of ESs primarily includes monetary measurements [8], phys-
ical measurements [9], and energy-analysis models [10]. Using monetary units to quantify
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the ESV allows it to be aggregated and compared across ecosystems. The evaluation find-
ings can also be quickly incorporated into the national accounting system, which is essential
for environmental accounting and producing a “green” gross domestic product (GDP) [11].
The main methods for assessing ESV include the market price, travel cost, productivity,
and benefit transfer methods [12]. Among them, the benefit transfer method is popular,
first proposed by Costanza et al. in 1997. It has the advantages of fast evaluation and
low cost of data collection [13]. Based on the global equivalent factor table proposed by
Costanza et al. [14], a large number of scholars have evaluated the ESV in different countries
and regions [15–17]. Moreover, the study by Xie et al. [18] supplemented and revised the
equivalent factor method to provide a reference for ESV studies in China based on the view
of Costanza et al. [14]; this method combined the current situation of the ecosystem with
the economic and social development of China. However, because of the scale effect in the
assessment of ESV, existing value equivalent factors can be used at the macro scale, and it
is challenging to address the requirements of ESV in a specific region [19]. In particular,
if the value coefficient corresponds to the actual condition in the research region, the scale
effect would directly influence the accuracy of the final ESV assessment [20]. Consequently,
an equivalence factor per unit area depending on the current local condition for various
sizes and areas must be determined [21].

If the description of the spatial pattern of regional ESs is “knowing what it is”, ex-
ploring the driving force on regional ESs is “knowing why”, which is more beneficial in
understanding the underlying causes of ecosystem issues and directing local ecological
construction [22]. The complex relationship between human and natural ecosystems has
attracted the interest of many researchers [23–25], but most studies have focused on the
relationship between a single factor and ecosystem services [26], or the confirmation of the
main influencing factors and their individual effects on ESV [27]. Such studies disregard
the combined effects of factors in ESV changes, and lack a systematic perspective to fully
comprehend the driving forces on ESV. Sannigrahi et al. noted that the combined effects of
the influencing factors were much higher than their individual effects [28]. The diversity
and breadth of influencing factors of ESs show that the impact mechanism of ecosystem
services is complex. Related studies in China, especially small-scale studies, are not suffi-
ciently detailed. Changes in ESV typically result from the interaction of several causes [16].
To explain the complex ESV variation accurately and comprehensively, the synergistic
effect of these drivers should be considered. The OPGD model can quantitatively detect the
single-factor driving factor and the multi-factor interaction driving force, which can com-
pensate for the lack of studies on the driving force of ESV. The influencing factors of ESs can
be categorized as natural (terrain, climate, soil, biological), socioeconomic (social economy,
land-use), and landscape (landscape index, landscape structure) aspects. Regarding natural
factors, topography indirectly regulates soil retention, water supply capacity, and crop
production capacity by influencing ecological conditions such as the surface’s temperature,
the intensity of light, and precipitation [29]. Climate directly regulates hydrothermal condi-
tions and influences ESs [30]. Soil is the background ecological element for organisms to
grow and inhabit, and its physical and chemical properties significantly impact ESs [31].
Human factors such as land-use type, changes in land-use intensity, and human activities
have an impact on the level of ESs [17,32]. Thus, the synergistic effects of drivers from three
aspects (nature, human-social, and landscape) should be considered to provide an accurate
and comprehensive explanation of complex ESV changes.

The Fujiang River Basin (FJRB) is a significant headwater and ecological shelter up-
stream of the Yangtze River Basin and a key ecologically functional region in southwestern
China, which has important regional security functions such as water connotation, soil
conservation, and biodiversity protection [33]. Jeremy Rayner et al. [34] highlighted that as
society develops, the link between the ecological environment and socioeconomic devel-
opment increases, and there is a growing concern for coordinated or “integrated” policy
strategies. Therefore, it is crucial to strengthen the study of ESV in the FJRB and identify its
drivers to optimize the ecological structure and coordinate ecological protection and so-



Land 2023, 12, 449 3 of 16

cioeconomic development in the Yangtze River basin. At present, there is a lack of research
on ecosystem service valuation and driving force in FJRB. The main research objectives of
this study are (1) to assess ESV in different periods (2000, 2010, and 2020), (2) to discuss
the spatiotemporal differentiation characteristics of the ESV from 2000 to 2020, and (3) to
quantify the drivers of spatial differentiation of ESV. The results of the study will enrich
the theoretical knowledge of the complex relationship between drivers and ecosystem
services, and provide a theoretical basis for decision making on the regulation of ecosystem
functions, the construction of ecological security patterns and the construction of ecological
civilization in the FJRB.

2. Materials and Methods
2.1. Study Area

The Fujiang River is the secondary tributary of the Yangtze River and the largest
right-bank tributary of the Jialing River. The river is located between 29.10–33.04◦ N and
103.30–106.30◦ E, with a total area of 3.92× 104 km2. The multi-year average annual precip-
itation is >800 mm, with significant spatiotemporal differentiation of precipitation, and the
multi-year average annual temperature is >15◦. The mean elevation of the FJRB is 986.7 m
(above sea level) (a.s.l), and the average slope is approximately 14◦ [33]. Mountains and
hills dominate the terrain, and the elevation difference in the basin is 5393 m. The ecological
protection of the FJRB is critical to the long-term development of the Yangtze River Basin
(Figure 1).
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2.2. Data Source

The LULC data for the three periods in 2000, 2010, and 2020 were all downloaded
from the GlobelLand30 (http://www.globallandcover.com, accessed on 23 May 2022) [35].
Six land-use types were obtained after the “China Land Use/Land Cover Remote Sensing
Monitoring data classification system” was used to reclassify each year’s land-use types
according to the needs of the research: cultivated land, forest land, grassland, waterbody,
construction land, and unutilized land (Figure S1). A total of 4658 grids were created by
dividing the study area into 3 km by 3 km finishing nets using ArcGIS 10.5. ESV was
calculated in these grids. The other geospatial, meteorological, and socioeconomic data are
shown in Table 1.

Table 1. Data sources and processing.

Driving Factor Sources and Time Processing

Nature factor

Temperature (Tem) https://www.ncdc.noaa.gov/, accessed
on 15 March 2022
(2000, 2010, 2020)

Anusplin interpolation
model

Precipitation (Pre)
Elevation https://www.gscloud.cn/, accessed on

18 June 2022
ArcGIS Spatial analysis
toolSlop

Soil erosion https://www.resdc.cn/, accessed on 18
June 2022
(2000, 2010, 2020)

Difference Vegetation Index
(NDVI)

Human-social factors

GDP per land (GDP) (2000, 2010, 2020) Kriging method
Population density (POP) (2000, 2010, 2020)

Distance from the road (DFR) https://www.webmap.cn/, accessed on
18 June 2022 Euclidean Distance

Land use intensity (LA) [36]
(2000, 2010, 2020) LA = 100×

n
∑

i=1
(Ai × Ci)

Human activity intensity
(HAI)

[37]
(2000, 2010, 2020) HAI =

n
∑

i=1

Ai Pi
TA

Landscape pattern
factors

Landscape Division Index
(DIVISION)

LULC data
(2000, 2010, 2020)

Fragstats software 4.0Contagion Index (CONTAG)
Shannon’s Diversity Index
(SHDI)
Landscape Shape Index (LSI)
The Proportion of ecological
land (PEL)

Statistic data
Total population

Local Bureau of Statistics
(2000, 2010, 2020)

Gross Domestic Product
(GDP)
Total area

2.3. Calculation of ESV

Costanza et al. [38] originally suggested measuring global ESV using the equivalent
coefficient method as demonstrated in the current study. An equivalent factor value is 1/7
of the market price of food produced per hectare of arable land per year [18,39]. Based on
the average grain yield per unit area in the FJRB, as well as the lowest price of the indica
rice in Sichuan Provence from 2000 to 2020, the equivalent factor value of ESs in the FJRB
was 2122.77 yuan/hm2. The calculating formula of ESV is as follows:

ESV =
m

∑
i=1

Ai ×VCi (1)

ESVj =
m

∑
i=1

(
Ai ×VCjm

)
(2)

http://www.globallandcover.com
https://www.ncdc.noaa.gov/
https://www.gscloud.cn/
https://www.resdc.cn/
https://www.webmap.cn/
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where Ai and VCi denotes the area and ESV coefficient of landscape type i, respectively,
ESVj represents the jth ESV, and VCjm represents the ESV coefficient of jth service of
landscape type i. The ESV coefficient of each land-use type in the FJRB was obtained
(Table 2).

Table 2. ESV coefficients for each land-use type in the FJRB (yuan/hm2).

Type Cultivated Land Forest Land Grassland Waterbody Unutilized Land

Regulating
service

Gas regulation 1061.39 7429.70 1698.22 3820.99 0.00
Climate
regulation 1889.26 5731.48 1910.49 36,299.37 0.00

Hydrological
regulation 1273.66 6792.86 1698.22 32,902.94 63.69

Soil
conservation 3099.24 8278.80 4139.40 3629.94 42.46

Supporting
service

Waste disposal 3481.35 2780.83 2780.83 38,591.96 21.23
Maintaining
biodiversity 1507.17 6920.23 2313.82 5306.93 721.74

Provisioning
service

Food
production 2122.77 212.28 636.83 636.83 21.23

Raw material
production 212.28 5519.20 106.14 148.59 0.00

Cultural service Aesthetic
landscape 21.23 2717.14 84.91 11,781.38 21.23

Total 14,668.34 46,382.52 15,368.86 133,118.91 891.57

2.4. ESV Sensitivity Index Analysis

The sensitivity model used in this study calculates the response of ESV to the variety in
the value coefficient (VC). The VC for each land-use type was adjusted by 50%, and then the
change in ESV as time passed and the level of dependence on the VC were determined [40].
The formula is as follows:

CS =

∣∣∣∣∣∣
(
ESVj − ESVi

)
/ESVi(

VCj f −VCi f

)
/VCi f

∣∣∣∣∣∣ (3)

where CS is the sensitivity index, ESV is the total ESV, and VC refers to the value coefficient;
i and j represent the initial and change values, respectively (adjusted up or down by 50%),
and f represents the land-use type. If CS > 1, the ESV is elastic to the VC. If CS < 1, elasticity
is lacking. Therefore, the larger the CS, the more critical the accuracy of the ESV index.

2.5. Spatial Heterogeneity Analysis of ESV

Spatial autocorrelation analysis is a method used to determine whether there is a
correlation in the spatial distribution of an attribute and to calculate the degree of correlation.
It can intuitively express the correlation and spatial heterogeneity of a certain spatial
phenomenon [41,42]. The formula is as follows:

Moran′sI = n
n

∑
i=1

n

∑
j 6=1

Wij(xi − x)
(

xj − x
)
/(

n

∑
i=1

n

∑
j=1

Wij)
n

∑
i=1

(xi − x)2 (4)

where n is the number of spatial cells, xi and xj are the ESV of the i and j spatial units,
respectively, and Wij is the spatial weight. The interpretation of the local indicators of
spatial association (LISA) is detailed in Table S1.

2.6. Driving Factor Index System Construction

In the geographical exploration of spatial differentiation mechanisms, the choice of the
driving factor indicators is crucial [43]. Based on the research area’s actual circumstances
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and the availability of data principle, three categories and 16 factors were screened out,
namely, natural factors (Tem, Pre, elevation, slope, soil erosion, and NDVI), human-social
factors (DFR, POP, GDP, HAI, and LA), and landscape pattern factors (DIVISION, SHDI,
LSI, CONTAG, and PEL). See Table 1 for details.

2.7. The Optimal Parameter-Based Geographical Detectors Model (OPGD)

The Geographical Detector (Geodetector) is a statistical tool for measuring regionally
stratified heterogeneity and performing attribution analysis [44,45]. The OPGD model
utilized in this research was created with the GD1.10 package of R, and the spatial dis-
cretization and the spatial-scale optimization are both types of parameter optimization [46].
In this study, the q-value was used to measure the independent variable X (16 driving
factors) affecting the spatial variation of dependent variable Y (ESVs) at zonal levels in the
FJRB. The formula is as follows:

q = 1− 1
Nδ2

L

∑
n=1

Nhδh
2 (5)

where q is the independent variable (X)’s explanatory power on the dependent variable (Y),
ranging from 0 to 1, L is the layer of X, and Nh and δh represent the sample size and variable
of the ESV in layer h, respectively. The types of interactions are detailed in Table S2.

3. Results
3.1. Analysis of the Spatiotemporal Distribution Characteristics of ESVs in the FJRB

Based on the ESV calculation, the sensitivity index was analyzed according to Formula (3).
Considering 2020 as an example, the CS values of the different land-use types were all less
than one. Among these, the sensitivity index of forestland was the largest (0.604), while that
of farmland, grassland, and waterbody was 0.319, 0.030, and 0.048, respectively. The unused
land’s sensitivity index was less than 0.001. Therefore, the ESV was not sensitive to the
equivalent coefficient of each land-use type.

The total ESVs of the FJRB in 2000, 2010, and 2020 were 104,891.22× 106, 105,032.38 × 106,
and 105,032.08 × 106 yuan, respectively. From 2000 to 2020, the ESV of the FJRB showed
a positive growth state (0.13% growth rate), and the total amount of ESV increased by
140.86 × 106 yuan. Using the natural break classification, the total ESV in the FJRB was
divided into five categories (extremely low, low, medium, high, and extremely high). Table 3
and Figure 2 present the spatial patterns of the ESV from 2000 to 2020. Spatially, the ESV in
the FJRB displayed a tendency that increased from southeast to northwest. Among them,
the high-value zones are primarily found upstream of the FJRB in the northwest, such as
Songpan, Pingwu, and Beichuan, and the highest values of ESV in 2000, 2010, and 2020
were 76.52 × 106, 68.80 × 106, and 75.02 × 106 yuan, respectively. The low-value areas
are mainly located in the urban regions of the Fujiang River, such as Youxian, Jingyang,
Luojiang, Anyue, and Tongnan.

Table 3. Spatial change tendency of ESV in the FJRB.

Different ESV Grade Zones Extremely Low Low Medium High Extremely High

Area (km2)
2000 664.87 17,308.69 7609.63 4533.36 9082.00
2010 675.50 16,180.56 8434.22 4622.26 9280.00
2020 2427.85 15,481.19 7656.17 5356.99 8267.35

Change (%)
2000–2010 1.60 −6.52 10.84 1.96 2.18
2010–2020 259.41 −4.32 −9.22 15.90 −10.91
2000–2020 265.16 −10.56 0.61 18.17 −8.97



Land 2023, 12, 449 7 of 16

Land 2023, 12, x FOR PEER REVIEW 7 of 17 
 

were all less than one. Among these, the sensitivity index of forestland was the largest 
(0.604), while that of farmland, grassland, and waterbody was 0.319, 0.030, and 0.048, re-
spectively. The unused land’s sensitivity index was less than 0.001. Therefore, the ESV 
was not sensitive to the equivalent coefficient of each land-use type. 

The total ESVs of the FJRB in 2000, 2010, and 2020 were 104,891.22 × 106, 105,032.38 × 
106, and 105,032.08 × 106 yuan, respectively. From 2000 to 2020, the ESV of the FJRB showed 
a positive growth state (0.13% growth rate), and the total amount of ESV increased by 
140.86 × 106 yuan. Using the natural break classification, the total ESV in the FJRB was 
divided into five categories (extremely low, low, medium, high, and extremely high). Ta-
ble 3 and Figure 2 present the spatial patterns of the ESV from 2000 to 2020. Spatially, the 
ESV in the FJRB displayed a tendency that increased from southeast to northwest. Among 
them, the high-value zones are primarily found upstream of the FJRB in the northwest, 
such as Songpan, Pingwu, and Beichuan, and the highest values of ESV in 2000, 2010, and 
2020 were 76.52 × 106, 68.80 × 106, and 75.02 × 106 yuan, respectively. The low-value areas 
are mainly located in the urban regions of the Fujiang River, such as Youxian, Jingyang, 
Luojiang, Anyue, and Tongnan. 

Table 3. Spatial change tendency of ESV in the FJRB. 

Different ESV Grade Zones Extremely Low Low Medium High Extremely High 

Area (km2) 

2000 664.87  17,308.69  7609.63  4533.36  9082.00  

2010 675.50  16,180.56  8434.22  4622.26  9280.00  

2020 2427.85  15,481.19  7656.17  5356.99  8267.35  

Change (%) 

2000–2010 1.60  −6.52  10.84  1.96  2.18  

2010–2020 259.41  −4.32  −9.22  15.90  −10.91  

2000–2020 265.16  −10.56  0.61  18.17  −8.97  

 
Figure 2. Total ESV of FJRB from 2000 to 2020. 

  

Figure 2. Total ESV of FJRB from 2000 to 2020.

3.2. Spatial Autocorrelation Analysis of ESVs

Based on ArcGIS 10.5 and the GeoDa 1.18.0 software, and considering the ESV of the
FJRB in 2000, 2010, and 2010 as variables, the spatial autocorrelation analysis of ESVs was
performed using the queen’s spatial weight method. The Moran’s I values were 0.755,
0.756, and 0.771 in 2000, 2010, and 2020, respectively, and the Z value was greater than
1.96. The research finding shows that the ESV of the FJRB had a strong positive spatial
autocorrelation and spatial agglomeration effect from 2000 to 2020; that is, the areas with
high ESV tend to be adjacent in space, and the areas with low ESV also have the tendency
of adjacent connections in space.

The LISA clustering chart from 2000 to 2020 (Figure 3) shows the low-low agglomer-
ation of ESV in the midstream and downstream of the study region. These regions have
a high level of urbanization and relatively concentrated construction land. The govern-
ment has strengthened the construction and protection of Jiuhaigo, Xuebaodin, Wanglan,
and other national nature reserves in the upstream region. The high-high ESV areas are
concentrated in these regions. With the intensive production of non-agricultural industries,
the lower-low areas of ESV in the northwest of Fucheng, Youxian, south of Anzhou, north-
west of Luojiang, Zhongjiang, southwest of Lezhi, east of Pengxi, Anyue, and Tongnan
gradually expanded along the urban development axis. The low-high and high-low ESV
areas did not change substantially.

3.3. Analysis of the Driving Force of the Spatiotemporal Distribution of ESVs
3.3.1. Factor Detector Analysis

The OPGD model was utilized to calculate the driving forces underlying the spatial
differentiation of the ESVs in the FJRB from 2000 to 2020 (Figure 4). The spatial differences
of the distribution of ESVs in the FJRB were influenced by natural, human-social, and land-
scape factors. Among them, the spatial variation of ESV in the FJRB in 2000 was most
significantly influenced by PEL, HAI, LA, and elevation, all with q-values > 0.74. In 2010,
the contributions of factors such as LA, HAL, elevation, PEL, and Tem were less than those
in 2000, all with q-values > 0.62. In 2020, the elevation had the biggest contribution to the
spatial heterogeneity of ESV in the FJRB, with a q-value of 0.6833. This was followed by a
reduced contribution of Tem, PEL, and LA, all with q-values > 0.50. The influencing factors
with the highest contribution during 2000–2020 were elevation, PEL, LA, and HAI, with a
high explanatory power (q-values > 65%) and significant influence. Second, the influences
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of POP, Pre, Slope, and NDVI were approximately 40–60%, which are key factors influenc-
ing the spatial differentiation of ESVs within the research area. In addition, both the DFR
and the effect of soil erosion were greater than 15%, which are minor factors of importance
affecting the spatial variation of ESV in the watershed. Finally, the explanatory power of
factors such as GDP, LSI, SHDI, DIVISION, and CONTAG was below 10%.
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3.3.2. Interaction Detector Analysis

The interaction detector identifies the interaction between different factors on the
spatial differentiation of ESV and analyzes whether the dependent variable’s explanatory
power increases or decreases (Figure 5). The findings of the interaction for the drivers of
the spatial heterogeneity of ESVs in the FJRB show that the interaction of any two of the
factors was stronger than the impact of a single factor. The types of the two interactions are
primarily nonlinear enhancement interaction-enhancement and two-factor enhancement,
indicating that the interaction of multiple factors influences the spatial heterogeneity results
of ESVs.

In 2000, the interaction of the PEL and NDVI had the most substantial influence on ESV
spatial differentiation, with the highest q-value of 0.8829 for factor interaction detection
and an explanatory power close to 90%. The LA, HAI, PEL, and elevation interacting
with other arbitrary factors on ESV spatial differentiation in the FJRB were above 80%.
In 2010, the spatial variation of ESV in the FJRB was most strongly influenced by the
interaction between the LA and elevation, with a q value of factor interaction detection
reaching 0.8745. Second, the interaction effects of elevation, LA, HAI, and PEL with other
factors were all above 70%, and the interaction effects of Tem, Pre, and slope with other
factors were all above 50%. In 2020, the most decisive influence on the spatial variation
of ESVs in the FJRB was the interaction between HAI and PEL, with q values as high as
0.8520. The interaction reached more than 75%, including LA ∩ HAI (0.8210) and HAI
∩ elevation (0.7555). Although the q-value of the interactions between the LSI, SHDI,
CONTAG, Division, and other factors were under 20%, the results revealed that double
factors had a greater effect on ESV spatial difference than single factors (Figure 4).

The results of the analysis indicate that even though the q-values of the interactions
between the drivers of spatial differentiation ESV in the study region were decreasing from
year to year, the q-values of the interactions were still higher than the q-value of the single
factor. The complex coupling between different drivers formed a synergistic enhancement
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effect that jointly influenced the spatial differentiation effect of ESV in the study region.
Furthermore, the interaction results between the PEL and human social factors (HAI, LA)
and topographic factors (elevation, slope) showed higher q-values, demonstrating the
synergistic enhancement effect of multi-factor interaction on the spatial differentiation of
ESV in the FJRB. Therefore, the spatial differentiation of ESV in the FJRB results from the
interaction between natural, human-social, and landscape factors, and the interactions
between natural and human-social factors are more significant.
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4. Discussion
4.1. Analysis of the Driving Force of the Spatiotemporal Distribution of ESVs

ESs have been a focal point in geography, ecology, and other fields, serving as a vital
link between human well-being and environmental structure [47]. The value assessment
of ESs can provide a reliable basis for assessing ecosystem quality changes, formulating
payments for ESs policies, and promoting ecosystem protection and ecological civilization
construction [48]. As shown by the elevation map analysis, the northwestern part of the
research region is situated in the hilly plateau mountainous area of northwest Sichuan
Province. The terrain in this region is primarily mountainous, with considerable differences
in vegetation changes, apparent terrain fluctuation, less human activities, and forest land
with a high vegetation cover as the primary landscape type in these regions. Therefore,
the ESV in the northwest is high. Although the southeast part of the research region is
situated in the hilly region of the Sichuan Basin, the terrain is relatively flat, the main
land-use types are cultivation and construction land, and human activities are relatively
intensive, resulting in a low ESV. Therefore, the ESV in the northwest is higher than in the
southeast. This study is consistent with previous research findings on ESV distribution in
the southwest and the whole of China [16,18].

In this research, the OPGD model was used to explore the driving mechanism of
the spatial heterogeneity of the ESV in the FJRB. It can provide a quantitative analysis of
the relative importance of the driving force for the ESV in the study region and identify
interactions between factors. In 2000–2020, the factors that explained the strongest q-values
of spatial variation in ESV in the FJRB were PEL (0.8130), LA (0.8032), and elevation
(0.6832). Among them, the most stable influencing factor was elevation, and the influence
was stable at approximately 70% for the period 2000–2020. This is due to the significant
elevation difference (the difference between the highest and the lowest elevation is 5393 m),
and the apparent topographic relief in the study region. This research also investigated
the driving mechanism of ESV spatial differentiation in different regions of the upstream,
midstream, and downstream of the FJRB in 2000, 2010, and 2020. The findings showed that
the dominant drivers of ESV spatial differentiation characteristics in the area differed more
prominently in different regions and periods (Figure 6). During 2000–2020, in the upstream
region, the differences in the spatial distribution of ESV were primarily impacted by LA,
PEL, HAI, and elevation, all of which had an influence higher than 50%, followed by Tem,
Pre, and slope, which had influences of 20–30%; the influence of the remaining factors
was less than 10%. In the midstream region, the differences in the spatial distribution
of ESV during 2000–2020 were primarily influenced by the factors of PEL, LA, and HAI.
The explanatory power of the rest of the factors was less than 10%, indicating that the
landscape pattern factors and human-social factors influenced the ESVs distribution in
the midstream region. In the downstream region, the spatial variation in ESV during the
study period was primarily influenced by PEL, LA, HAI, and elevation. These findings are
consistent with the study results. Thus, the spatially heterogeneous distribution of ESV
in the study area was influenced by a combination of multiple factors, with natural and
human-social factors having the most significant influence, followed by landscape pattern
factors.
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Overall, based on the OPGD model, 16 drivers were selected from natural, human-
social and landscape patterns to investigate the driving force of ESV spatial differentiation,
complementing the qualitative and regression analyses that have lacked spatiality in
recent years. The result showed that ESV increased with increasing elevation, which is
consistent with the studies by Teng et al. in the Qilian Mountains [49]. This is because
elevation affects the distribution of temperature, precipitation, and vegetation, which will
substantially impact the distribution of ESV. Simultaneously, the interaction of nature and
human-social factors might influence the landscape, and the intensity of human activities
indirectly changes the distribution and changes of ESVs in the study region. The change
in land-use patterns can also modify the spatiotemporal distribution of resources, which
further impacts the ecological environment’s structure and function [17]. Among the
landscape factors, the contribution rate of the PEL was always the highest, up to 0.8120,
and the contribution rate of other landscape factors was low, indicating that the change
in landscape pattern would also have an impact on the ecosystem function. Furthermore,
changes in landscape patterns affect the processes of material cycling and energy flow in
ecosystems and eventually lead to changes in regional ESs via interactions with biotic and
abiotic processes [33]. The findings demonstrate that the synergistic interactions of natural,
socioeconomic, and landscape pattern factors caused spatial differentiation of ESV in the
study region. As a result, decision-making institutions should maximize the allocation
of natural resources based on local conditions, control the influence of human social and
economic activities on the ecological environment, and adapt the allocation of landscape
types when developing future ecosystem management policies.

4.2. Policy Suggestions

Land policy determines the strategic direction of the future development of the re-
gion [50], and influences the development of regional urban economic construction [51].
Regional planning should not be guided by a prescriptive view of design, but rather by
the rationalization of space and the corresponding approach [51]. This study evaluated the
ESVs, analyzed the spatial and temporal variability of ESVs, and quantitatively analyzed
the drivers of spatial variability of ESVs in the FJRB, thus providing a scientific reference for
urban regional planning and environmental protection policies in the study area and over
the whole Yangtze River Economic Zone. Considering the above analysis, the government
departments should enhance the protection of nature reserves upstream of the study area
and reasonably control the encroachment of human activities on forests and water bodies.
We advise that ecological restoration projects should be carried out upstream of the study
area, such as comprehensive water environment management, mine restoration, ecological
replenishment of forest land, and geological disaster prevention and control; midstream and
downstream of the study area, projects such as territorial spatial planning, basic farmland
protection planning, and habitat improvements should also be implemented to coordinate
the development of an ecological-production-living space. Based on the above analysis,
an ecological economy should become mainstream. Abundant water, tourism resources,
and high vegetation cover in the study area offer the possibility of this eco-economic model.
The ecotourism industry, plantations, three-dimensional agriculture and other organic agri-
cultural practices are all examples of ecological economies that could give the study area
its own competitive advantage in the construction of the entire Yangtze River Economic
Belt. A change in the economic development model can also reduce the contradiction
between ecological protection and economic development, and to a certain extent promote
regional sustainable development. Further, to enhance policy feasibility, policy makers
should pay closer attention to the effects of drivers on the ESV and tailor them to regional
conditions. For example, when formulating ecological restoration policies, a diversified and
differentiated coordination strategy should be adopted to weigh and coordinate multiple
ecosystem service functions; when formulating territorial spatial planning policies, priority
should be given to the differences between local geographical conditions and economic
development patterns.
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4.3. Limitations and Future Work

In this study, the VC was adjusted to reflect the real condition in the research region
accurately, and the ESV in the FJRB was calculated using the ESV equivalent coefficient
per unit area. Additionally, using the OPGD model, the explanatory power of each driving
force on the spatial differential features of ESV was determined from three aspects (natural,
human-social, and landscape pattern). In this study, the OPGD method was used to dis-
cretize the dependent variable which improves the reliability and accuracy of applying the
geographic detector model. However, the distribution of ESV is influenced by the inter-
action of several factors and is not simply a positive or negative relationship. Meanwhile,
because of the difficulty in obtaining and quantifying the data of some factors, policy factors
were not significantly considered. Therefore, more factors should be considered from the
viewpoint of ecosystem service stakeholders and human welfare, and quantitative and
qualitative analysis methods should be combined to explore the spatiotemporal variation
features and driving force of ESV. Furthermore, the ecological compensation mechanism in
the FJRB should be further studied to provide a scientific basis for formulating reasonable
ecological environmental protection policies in the basin.

5. Conclusions

This research assessed the ESV in the FJRB from 2000 to 2020 using the equivalent
coefficient method, and systematically analyzed the spatial and temporal evolution patterns
of ESVs. Based on the OPGD model, the driving force of spatial heterogeneity of ESVs in
the FJRB are revealed from three aspects (nature, human-social, and landscape pattern).
The conclusions are as follows:

(1) From 2000 to 2020, the total amount of ESV increased by 140.86 × 106 yuan, and the
ESV in the FJRB displayed a tendency that increased from southeast to northwest;

(2) The positive spatial autocorrelation of ESV distribution was significant. The high-
value and high-high agglomerated areas were primarily distributed upstream of
the FJRB, and the low-value and low-low agglomerated regions were primarily dis-
tributed in the midstream and downstream of the FRJB;

(3) The most significant driving factors were elevation, HAI, LA, and PEL, and the
synergistic interactions of natural factors, human activities, and landscape pattern
factors contributed to the regional heterogeneity of the ESV in the research region.

In future, to optimize the ecosystem function of the FJRB, it is necessary to adopt dif-
ferentiated regulation models and strategies based on the impacts of various factors and the
interaction characteristics and effects of different factors. These findings serve as a scientific
guide for formulating management models with accurate, diversified, and differentiated
ecosystem functions.
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terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [CrossRef]
10. Zhan, J.; Zhang, F.; Chu, X.; Liu, W.; Zhang, Y. Ecosystem services assessment based on emergy accounting in Chongming Island,

Eastern China. Ecol. Indic. 2019, 105, 464–473. [CrossRef]
11. Fu, B.; Lv, Y.; Gao, G. Major research progresses on the ecosystem service and ecological safety of main terrestrial ecosystems in

China. Chin. J. Nat. 2012, 34, 261–272.
12. King, D.M.; Mazzotta, M.J.; Markowitz, K.J. Ecosystem Valuation. Available online: http://www.ecosystemvaluation.org/default.

htm (accessed on 3 February 2023).
13. Liu, Y.; Hou, X.; Li, X.; Song, B.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover

change in the Bohai Rim coastal zone. Ecol. Indic. 2020, 111, 106004. [CrossRef]
14. Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.

The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [CrossRef]
15. Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Identification of ecosystem service bundles and driving factors in Beijing and its surrounding

areas. Sci. Total Environ. 2020, 711, 134687. [CrossRef]
16. Luo, Q.; Zhou, J.; Li, Z.; Yu, B. Spatial differences of ecosystem services and their driving factors: A comparation analysis among

three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [CrossRef]
17. Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial differentiation and driving mechanisms in ecosystem service value of

Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718.
[CrossRef]

18. Xie, G.; Zhang, C.; Zhang, C.; Xiao, Y.; Lu, C. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746.
19. Hong, Y.; Ding, Q.; Zhou, T.; Kong, L.; Wang, M.; Zhang, J.; Yang, W. Ecosystem service bundle index construction, spatiotemporal

dynamic display, and driving force analysis. Ecosyst. Health Sustain. 2020, 6, 1843972. [CrossRef]
20. Wu, C.; Chen, B.; Huang, X.; Wei, Y.D. Effect of land-use change and optimization on the ecosystem service values of Jiangsu

province, China. Ecol. Indic. 2020, 117, 106507. [CrossRef]
21. Rao, Y.; Zhou, M.; Ou, G.; Dai, D.; Zhang, L.; Zhang, Z.; Nie, X.; Yang, C. Integrating ecosystem services value for sustainable

land-use management in semi-arid region. J. Clean. Prod. 2018, 186, 662–672. [CrossRef]
22. Xue, C.; Zhang, H.; Wu, S.; Chen, J.; Chen, X. Spatial-temporal evolution of ecosystem services and its potential drivers: A

geospatial perspective from Bairin Left Banner, China. Ecol. Indic. 2022, 137, 108760. [CrossRef]
23. Su, S.; Li, D.; Xiao, R.; Zhang, Y. Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai,

China. Ecol. Indic. 2014, 45, 332–339. [CrossRef]
24. Gao, F.; Cui, J.; Zhang, S.; Xin, X.; Zhang, S.; Zhou, J.; Zhang, Y. Spatio-Temporal distribution and driving factors of ecosystem

service value in a fragile hilly area of North China. Land 2022, 11, 2242. [CrossRef]
25. Su, K.; Wei, D.-Z.; Lin, W.-X. Evaluation of ecosystem services value and its implications for policy making in China–a case study

of Fujian province. Ecol. Indic. 2020, 108, 105752. [CrossRef]
26. Zhou, D.; Tian, Y.; Jiang, G. Spatio-temporal investigation of the interactive relationship between urbanization and ecosystem

services: Case study of the Jingjinji urban agglomeration, China. Ecol. Indic. 2018, 95, 152–164. [CrossRef]
27. Song, F.; Su, F.; Mi, C.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast China.

Sci. Total Environ. 2021, 751, 141778. [CrossRef]
28. Sannigrahi, S.; Zhang, Q.; Pilla, F.; Joshi, P.K.; Basu, B.; Keesstra, S.; Roy, P.; Wang, Y.; Sutton, P.C.; Chakraborti, S. Responses of

ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world’s largest mangrove
ecosystem. Sci. Total Environ. 2020, 715, 137004. [CrossRef]

29. Zhu, M.; He, W.; Zhang, Q.; Xiong, Y.; Tan, S.; He, H. Spatial and temporal characteristics of soil conservation service in the area
of the upper and middle of the Yellow River, China. Heliyon 2019, 5, e02985. [CrossRef]

http://doi.org/10.1016/j.ecoser.2013.02.003
http://doi.org/10.1016/j.jclepro.2019.119803
http://doi.org/10.1016/j.landusepol.2017.04.021
http://doi.org/10.1126/science.289.5478.395
http://doi.org/10.1016/j.ecolecon.2009.12.011
http://doi.org/10.1016/j.ecoser.2013.02.001
http://doi.org/10.1016/j.gloenvcha.2014.04.002
http://doi.org/10.1016/j.scitotenv.2021.146716
http://doi.org/10.1016/j.ecolind.2018.04.015
http://www.ecosystemvaluation.org/default.htm
http://www.ecosystemvaluation.org/default.htm
http://doi.org/10.1016/j.ecolind.2019.106004
http://doi.org/10.1038/387253a0
http://doi.org/10.1016/j.scitotenv.2019.134687
http://doi.org/10.1016/j.scitotenv.2020.138452
http://doi.org/10.1016/j.jclepro.2021.128718
http://doi.org/10.1080/20964129.2020.1843972
http://doi.org/10.1016/j.ecolind.2020.106507
http://doi.org/10.1016/j.jclepro.2018.03.119
http://doi.org/10.1016/j.ecolind.2022.108760
http://doi.org/10.1016/j.ecolind.2014.04.031
http://doi.org/10.3390/land11122242
http://doi.org/10.1016/j.ecolind.2019.105752
http://doi.org/10.1016/j.ecolind.2018.07.007
http://doi.org/10.1016/j.scitotenv.2020.141778
http://doi.org/10.1016/j.scitotenv.2020.137004
http://doi.org/10.1016/j.heliyon.2019.e02985


Land 2023, 12, 449 16 of 16

30. Braun, D.; de Jong, R.; Schaepman, M.E.; Furrer, R.; Hein, L.; Kienast, F.; Damm, A. Ecosystem service change caused by
climatological and non-climatological drivers: A Swiss case study. Ecol. Appl. 2019, 29, e01901. [CrossRef]

31. Wang, Y.; Liu, Z. Vertical distribution and influencing factors of soil water content within 21-m profile on the Chinese Loess
Plateau. Geoderma 2013, 193, 300–310. [CrossRef]

32. Fu, B.; Zhang, L. Land-use change and ecosystem services: Concepts, methods and progress. Prog. Geogr. 2014, 33, 441–446.
33. Zhang, X.; Du, H.; Wang, Y.; Chen, Y.; Ma, L.; Dong, T. Watershed landscape ecological risk assessment and landscape pattern

optimization: Take Fujiang River Basin as an example. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 2254–2276. [CrossRef]
34. Rayner, J.; Howlett, M. Introduction: Understanding integrated policy strategies and their evolution. Policy Soc. 2009, 28, 99–109.

[CrossRef]
35. Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [CrossRef]
36. Zhuang, D.; Liu, J. Study on the model of regional differentiation of land use degree in China. J. Nat. Resour. 1997, 12, 10–16.
37. Chen, F.; Ge, X.; Chen, G.; Peng, B. Spatial different analysis of landscape change and human impact in urban fringe. Sci. Geogr.

Sin. 2001, 21, 210–216.
38. Costanza, R.; Patten, B.C. Defining and predicting sustainability. Ecol. Econ. 1995, 15, 193–196. [CrossRef]
39. Fei, L.; Shuwen, Z.; Jiuchun, Y.; Liping, C.; Haijuan, Y.; Kun, B. Effects of land use change on ecosystem services value in West

Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20. [CrossRef]
40. Kindu, M.; Schneider, T.; Döllerer, M.; Teketay, D.; Knoke, T. Scenario modelling of land use/land cover changes in Munessa-

Shashemene landscape of the Ethiopian Highlands. Sci. Total Environ. 2018, 622, 534–546. [CrossRef]
41. Xie, H.; Kung, C.-C.; Zhao, Y. Spatial disparities of regional forest land change based on ESDA and GIS at the county level in

Beijing-Tianjin-Hebei area. Front. Earth Sci. 2012, 6, 445–452. [CrossRef]
42. Huang, C.; Liu, K.; Zhou, L. Spatio-temporal trends and influencing factors of PM2. 5 concentrations in urban agglomerations in

China between 2000 and 2016. Environ. Sci. Pollut. Res. 2021, 28, 10988–11000. [CrossRef] [PubMed]
43. Liao, J.; Yu, C.; Feng, Z.; Zhao, H.; Wu, K.; Ma, X. Spatial differentiation characteristics and driving factors of agricultural

eco-efficiency in Chinese provinces from the perspective of ecosystem services. J. Clean. Prod. 2021, 288, 125466. [CrossRef]
44. Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [CrossRef]
45. Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment

and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127.
[CrossRef]

46. Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics
of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. Giscience Remote Sens. 2020,
57, 593–610. [CrossRef]

47. Peng, J.; Hu, X.; Zhao, M.; Liu, Y.; Tian, L. Research progress on ecosystem service trade-offs: From cognition to decision-making.
Acta Geogr. Sin. 2017, 72, 960–973.

48. Torres, A.V.; Tiwari, C.; Atkinson, S.F. Progress in ecosystem services research: A guide for scholars and practitioners. Ecosyst.
Serv. 2021, 49, 101267. [CrossRef]

49. Teng, Y.; Zhan, J.; Liu, W.; Chu, X.; Zhang, F.; Wang, C.; Wang, L. Spatial heterogeneity of ecosystem services trade-offs among
ecosystem service bundles in an alpine mountainous region: A case-study in the Qilian Mountains, Northwest China. Land
Degrad. Dev. 2022, 33, 1846–1861. [CrossRef]

50. Shahab, S.; Hartmann, T.; Jonkman, A. Strategies of municipal land policies: Housing development in Germany, Belgium,
and Netherlands. Eur. Plan. Stud. 2021, 29, 1132–1150. [CrossRef]

51. Hartmann, T.; Jehling, M. From diversity to justice–Unraveling pluralistic rationalities in urban design. Cities 2019, 91, 58–63.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/eap.1901
http://doi.org/10.1016/j.geoderma.2012.10.011
http://doi.org/10.1080/10807039.2021.1970511
http://doi.org/10.1016/j.polsoc.2009.05.001
http://doi.org/10.1038/514434c
http://doi.org/10.1016/0921-8009(95)00048-8
http://doi.org/10.1016/j.ecoser.2018.03.009
http://doi.org/10.1016/j.scitotenv.2017.11.338
http://doi.org/10.1007/s11707-012-0338-7
http://doi.org/10.1007/s11356-020-11357-z
http://www.ncbi.nlm.nih.gov/pubmed/33108644
http://doi.org/10.1016/j.jclepro.2020.125466
http://doi.org/10.1016/j.ecolind.2016.02.052
http://doi.org/10.1080/13658810802443457
http://doi.org/10.1080/15481603.2020.1760434
http://doi.org/10.1016/j.ecoser.2021.101267
http://doi.org/10.1002/ldr.4266
http://doi.org/10.1080/09654313.2020.1817867
http://doi.org/10.1016/j.cities.2018.02.009

	Introduction 
	Materials and Methods 
	Study Area 
	Data Source 
	Calculation of ESV 
	ESV Sensitivity Index Analysis 
	Spatial Heterogeneity Analysis of ESV 
	Driving Factor Index System Construction 
	The Optimal Parameter-Based Geographical Detectors Model (OPGD) 

	Results 
	Analysis of the Spatiotemporal Distribution Characteristics of ESVs in the FJRB 
	Spatial Autocorrelation Analysis of ESVs 
	Analysis of the Driving Force of the Spatiotemporal Distribution of ESVs 
	Factor Detector Analysis 
	Interaction Detector Analysis 


	Discussion 
	Analysis of the Driving Force of the Spatiotemporal Distribution of ESVs 
	Policy Suggestions 
	Limitations and Future Work 

	Conclusions 
	References

