Microbial Community Structure and Predictive Functional Analysis in Reclaimed Soil with Different Vegetation Types: The Example of the Xiaoyi Mine Waste Dump in Shanxi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Collection and Analysis
2.3. Soil DNA Extraction and PCR Amplification
2.4. 16S rRNA High-Throughput Sequencing
2.5. Statistical Analysis
3. Results and Analysis
3.1. Analysis of the Chemical Properties of Rhizosphere Soil of Different Reclaimed Plants
3.2. Analysis of Soil Bacterial Community Structure in Different Reclaimed Vegetation Types
3.2.1. OTU and Microbial Abundance Analysis
3.2.2. α-Diversity Analysis
3.2.3. Analysis of Bacterial Community Structure in Reclaimed Soils
3.3. Prediction and Analysis of PICRUSt Functions of Different Vegetation Types
3.3.1. Kyoto Encyclopedia of Genes and Genomes (KEGG) Primary Function
3.3.2. KEGG Secondary Functions
4. Discussion
4.1. Effects of Soil Environmental Factors on Soil Bacterial Community
4.2. Effect of Soil Environmental Factors on Functional Abundance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.P.; Pang, B.L.; Yu, Y.J. Soil microbial community characteristics and indicator function in coal gangue mountains. J. Arid Land Resour. Environ. 2017, 31, 140–144. [Google Scholar] [CrossRef]
- Hou, H.P.; Wang, C.; Ding, Z.Y.; Zhang, S.L.; Yang, Y.J.; Ma, J.; Chen, F.; Li, J.R. Variation in the soil microbial community of reclaimed land over different reclamation periods. Sustainability 2018, 10, 2286. [Google Scholar] [CrossRef]
- Liang, W.J.; Dong, Y.H.; Li, Y.B.; Zhang, X.K.; Li, Q.; Wu, Z.J. Biological characterization and regulation of soil health. J. Appl. Ecol. 2021, 32, 719–728. [Google Scholar] [CrossRef]
- Wang, M.H.; Liang, X.; Li, Z. Research on the evaluation index system of the soil remediation effect based on blockchain. Land 2021, 10, 1274. [Google Scholar] [CrossRef]
- Wardle, D.A. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 2006, 9, 870–886. [Google Scholar] [CrossRef]
- Tajik, S.; Ayouni, S.; Lorenz, N. Soil microbial communities affected by vegetation, topography and soil properties in a forest ecosystem. Appl. Soil Ecol. 2020, 149, 103514. [Google Scholar] [CrossRef]
- Shanmugam, S.G.; Kingery, W.L. Changes in soil microbial community structure in relation to plant succession and soil properties during 4000 years of pedogenesis. Eur. J. Soil Biol. 2018, 88, 80–88. [Google Scholar] [CrossRef]
- Furtak, K.; Galazka, A. Edaphic factors and their influence on the microbiological biodiversity of the soil environment. Adv. Microbiol. 2020, 58, 375–384. [Google Scholar] [CrossRef]
- An, F.J.; Su, Y.Z.; Niu, Z.R.; Liu, T.G.; Wang, X.F. Soil nematode community composition, diversity, and soil properties in an age sequence of Halosylon ammodendron plantations in an oasis-desert ecotone of northwestern China. Arid Land Res. Manag. 2021, 35, 463–482. [Google Scholar] [CrossRef]
- Han, G.; Huang, Y.M. Impacts of the three-north shelter forest program on the main soil nutrients in northern Shanxi China: A meta-analysis. For. Ecol Manag. 2020, 458, 117808. [Google Scholar] [CrossRef]
- Rojas, C.; Gutierrez, R.M.; Bruns, M.A. Bacterial and eukaryal diversity in soils forming from acid mine drainage precipitates under reclaimed vegetation and biological crusts. Appl Soil Ecol. 2016, 105, 57–66. [Google Scholar] [CrossRef]
- Yang, B.; Wang, W.L.; Guo, M.M.; Kang, H.L.; Liu, C.C.; Chen, Z.X.; Wang, W.X.; Zhao, M. Erosion-controlling Effects of Revegetation on Slope of Refuse Dump in Mining Area Relative to Vegetation Pattern. Acta Pedol. Sin. 2019, 56, 1347–1358. [Google Scholar] [CrossRef]
- Li, G.; Fu, X.Y.; Li, Y.C.; Wang, T.; Song, Z.L. Soil macropore characteristics of different reclaimed mine soils in dump of surface coal mine. J. China Coal Soc. 2018, 43, 529–539. [Google Scholar] [CrossRef]
- Zhu, S.F.; Liu, Y.J.; Zhang, Q.; Jiang, C.; Jian, X.M.; Shui, W. Effects of ecological restoration patterns on soil microbial community functional diversity in Zoige alpine desertification grassland. J. Environ. Eng. Technol. 2022, 12, 199–206. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.C.; Yue, J.Y.; Zhou, X.M.; Guo, C.Y.; Lu, N.; Wang, Y.H.; Yang, S.Q. Comparison of Soil Fertility Among Open-pit Mine Reclaimed Lands in Antaibao Regenerated with Different Vegetation ypes. Environ. Sci. 2013, 34, 3601–3606. [Google Scholar] [CrossRef]
- Li, J.H.; Li, X.P.; Lu, H.; Yao, T.; Wang, L.D.; Guo, C.X.; Shi, S.L. Characteristics of, and the correlation between, vegetation and N-fixing soil bacteria in alpine grassland showing various degrees of degradation. Acta Ecol. Sin. 2017, 37, 3647–3654. [Google Scholar] [CrossRef]
- Fan, W.H.; Bai, Z.K.; Li, H.F.; Qiao, J.Y.; Xu, J.W. Effects of different vegetation restoration patterns and reclamation years on microbes in reclaimed soil. Trans. Chin. Soc. Agric Eng. 2011, 27, 330–336. [Google Scholar] [CrossRef]
- Zhang, S.M.; Huang, Y.M.; Ni, Y.X.; Zhong, Q.Q. Effects of artificial forest and grass on soil fungal community at southern Ningxia mountain. China Environ. Sci. 2018, 38, 1449–1458. [Google Scholar] [CrossRef]
- Li, G.X.; Ma, K.M. PICRUSt-based predicted metagenomic analysis of treeline soil bacteria on Mount Dongling, Beijing. Acta Ecol. Sin. 2018, 38, 2180–2186. [Google Scholar] [CrossRef]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; Huerta-Cepas, J.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, Y.Q.; Ru, Y.; Lai, Z.R.; Qin, S.G.; Sun, Y.F.; She, W.W.; Liu, Z. Dominant soil bacteria ard their ecological attributes across the deserts in northern China. Eur. J. Soil Sci. 2020, 71, 524–535. [Google Scholar] [CrossRef]
- Antwis, R.E.; Griffiths, S.H.; Harrison, X.A.; Aranega-Bou, P.; Arce, A.; Bettridge, A.S.; Brailsford, F.L.; Menezes, D.A.; Devaynes, A.; Forbes, K.M.; et al. Fifty imprtant research questions in microbial ecology. FEMS Microbiol. Ecol. 2017, 93, 5. [Google Scholar] [CrossRef]
- Ding, Y.P.; Du, Y.J.; Gao, G.L.; Zhang, Y.; Cao, H.Y.; Zhu, B.B.; Yang, S.Y.; Zhang, J.X.; Qiu, Y.; Liu, X.L. Soil bacterial community structure and functional prediction of Pinus sylvestris var. mongolica plantations in the Hulum Buir Sandy Land. Acta Ecol. Sin. 2021, 41, 4131–4139. [Google Scholar] [CrossRef]
- Xiao, Z.W.; Song, M.S.; Zhou, J.; Shi, L.L.; Yang, Y. Spatial heterogeneity of microbial community and functional groups of different cushion species in alpine scree habitat in northwestern Yunnan, China. Chin. J. Appl. Environ. Biol. 2021, 27, 1119–1129. [Google Scholar] [CrossRef]
- Chang, S.; Chen, J.; Su, J.Q.; Yang, Y.; Sun, H. Seasonal comparison ofbacterial communities in rhizosphere of alpine cushion plants in the Himalay an Hengduan Mountains. Plant Divers. 2018, 40, 209–216. [Google Scholar] [CrossRef]
- Hortal, S.; Bastida, F.; Armas, C.; Lozano, Y.M.; Moreno, J.L.; García, C.; Pugnaire, F.I. Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows. Soil Biol. Biochem. 2013, 64, 139–146. [Google Scholar] [CrossRef]
- Wang, C.; Michalet, R.; Liu, Z.; Jiang, X.P.; Wang, X.T.; Zhang, G.S.; An, L.Z.; Chen, S.Y.; Xiao, S. Disentangling large- and small-scale abiotic and biotic factors shaping soil microbial communities in an alpine cushion plant system. Front. Microbiol. 2020, 11, 925. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhai, Y.P.; Zhao, X.; Wang, S.M.; Liu, H.L.; Zhang, X. Effect of interaction between arbuscular mycorrhizal fungi and Rhizobium on Medicago sativa rhizosphere soil bacterial community structure and PICRUSt functional prediction. Microbiol. China 2020, 47, 3868–3879. [Google Scholar] [CrossRef]
- Chakraborty, U.; Purkayastha, R.P. Role of rhizobitoxine in pmtecting soybean roots from Macrophomina phaseolina infection. Can. J. Microbiol. 1984, 30, 285–289. [Google Scholar] [CrossRef]
- Crampon, M.; Bodilis, J.; Portet-Koltalo, F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. J. Hazard. Mater. 2018, 359, 500–509. [Google Scholar] [CrossRef]
- Zhang, F.; Tian, W.; Sun, F.; Chen, Y.; Ding, C.Y.; Pang, F.H.; Yao, L.G.; Li, Y.Y.; Chen, Z.J. Community Structure and Predictive Functional Analysis of Surface Water Bacterioplankton in the Danjiangkou Reservoir. Environ. Sci. 2019, 40, 1252–1260. [Google Scholar] [CrossRef]
- Dong, Z.Y.; Hong, M.; Hu, H.J.; Wang, Y.T.; Zhang, D.M.; Wang, K. Effect of excess nitrogen loading on the metabolic potential of the bacterial community in oligotrophic coastal water. Acta Sci. Circumstantiae 2018, 38, 457–466. [Google Scholar] [CrossRef]
- Li, T.T.; Tang, Y.B.; Zhou, R.H.; Yu, F.Y.; Dong, H.J.; Wang, M.; Hao, J.F. Understory plant diversity and its relationship with soil hysicochemical properties in different plantations in Yunding Mountain. Acta Ecol. Sin. 2021, 41, 1168–1177. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J. Predictive functional profiling of microbial communities in fermentative hydrogen production system using PICRUSt. Int. J. Hydrog. Energy 2021, 46, 3716–3725. [Google Scholar] [CrossRef]
- Chen, M.L.; Zeng, Q.C.; Huang, Y.M.; Ni, Y.X. Effects of the Farmland-to-Forest/Grassland Conversion Program on the Soil Bacterial Community in the Loess Hilly Region. Environ. Sci. 2018, 39, 1824–1832. [Google Scholar] [CrossRef]
- Wang, M.; Yan, Z.W.; Zhao, Z.W.; Wu, Y.; Chen, W.J.; Yang, Y.X.; Liu, G.B.; Xue, S. Variation Characteristics of Specific Soil Enzyme Activities During Vegetation Succession on the Loess Plateau. J. Soil Water Conserv. 2021, 35, 181–187. [Google Scholar] [CrossRef]
- Huang, L.; Bao, W.K.; Li, F.L.; Hu, H. Effects of soil structure and vegetation on microbial communities. Chin, J. Appl. Environ. Biol. 2021, 27, 1725–1731. [Google Scholar] [CrossRef]
- Fan, Y.; Tang, X.L.; Liu, Q.H.; Yin, C.Y. Advances in the study of endophytes in woody plant seeds. Chin. J. Appl. Environ. Biol. 2022, 28, 1375–1383. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, M. Characteristic of Soil Bacterial Community Diversity among Different Vegetation Types in the Loess Hilly Region. J. Ecol. Rural Environ. 2022, 38, 225–235. [Google Scholar] [CrossRef]
- Xiao, L.; Huang, Y.M.; Zhao, J.F.; Zhou, J.Y.; Guo, Z.H.; Liu, Y. High-throughput sequencing sevealed soil fungal communities under three terrace agrotypes on the loess plateau. China Environ. Sci. 2017, 37, 3151–3158. [Google Scholar]
- Shi, Y.; Li, Y.; Yang, T.; Chu, H.Y. Threshold effects of soil pH on microbial co-occurrence structure in acidic and alkaline arable lands. Sci. Total Enviro. 2021, 800, 149592. [Google Scholar] [CrossRef]
- Tian, M.J.; Guo, J.L.; Li, J.; Ge, T.D.; Tang, H.M.; He, Z.L.; Liu, Y. The Effect of Long-term Fertilization on the Abundance and Composition of Ammonia-oxidizing Archaea and Bacteria in Paddy Soil Profiles. Acta Pedol. Sin. 2022, 59, 285–296. [Google Scholar] [CrossRef]
- Rezacova, V.; Czako, A.; Stehlik, M.; Mayerová, M.; Šimon, T.; Smatanová, M.; Madaras, M. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci. Rep. 2021, 11, 12548. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lei, S.; Gong, C. Comparison of plant and microbial communities between an artificial restoration and a natural restoration topsoil in coal mining subsidence area. Environ. Earth Sci. 2019, 78, 204. [Google Scholar] [CrossRef]
- Swab, R.M.; Lorenz, N.; Lee, N.R.; Culman, S.W.; Dick, R.P. From the ground up: Prairies on reclaimed mine land-impacts on soil and vegetation. Land 2020, 9, 455. [Google Scholar] [CrossRef]
- Yin, Y.; Sang, P.; Xian, W.; Li, X.; Jiao, J.Y.; Liu, L.; Hozzein, W.N.; Xiao, M.; Li, W.J. Expression and characteristics of two glucose-tolerant GH1 beta-glucosidases from Actinomadura amylolytica YIM 77502T for promoting cellulose degradation. Front. Microbiol. 2019, 9, 3149. [Google Scholar] [CrossRef]
Vegetation Types | WC/% | SOC/g·kg−1 | TN/g·kg−1 | TP/g·kg−1 | TK/g·kg−1 | AK/mg·kg−1 | pH |
---|---|---|---|---|---|---|---|
Yellow rose (R) | 21.70 ± 1.70 b | 4.88 ± 0.57 b | 0.49 ± 0.03 a | 0.42 ± 0.01 c | 19.59 ± 0.78 a | 155.93 ± 29.59 a | 8.26 ± 0.05 a |
Lespedeza (L) | 26.20 ± 0.70 a | 4.01 ± 1.97 c | 0.39 ± 0.13 b | 0.56 ± 0.01 a | 18.65 ± 0.24 a | 123.23 ± 9.21 b | 8.22 ± 0.04 a |
Sweet wormwood herb (K) | 21.28 ± 8.56 b | 5.21 ± 3.09 b | 0.41 ± 0.15 b | 0.49 ± 0.12 b | 18.00 ± 2.42 a | 125.81 ± 16.63 b | 8.17 ± 0.08 a |
Alfalfa (M) | 14.63 ± 1.84 c | 5.99 ± 4.00 a | 0.46 ± 0.16 a | 0.48 ± 0.08 b | 18.50 ± 0.62 a | 105.12 ± 9.69 c | 8.23 ± 0.08 a |
Diversity Index | Chao Index | ACE Index | Shannon Index |
---|---|---|---|
Yellow Rose | 2939.82 ± 243.02 a | 2900.7 ± 215.03 a | 9.36 ± 0.01 a |
Lespedeza | 2244.71 ± 88.52 b | 2290.8 ± 117.83 b | 9.17 ± 0.01 a |
Sweet Wormwood Herb | 2472.99 ± 752.06 b | 2569.2 ± 798.91 b | 8.95 ± 0.91 a |
Alfalfa | 1725.89 ± 711.69 c | 1725.8 ± 712.05 c | 8.30 ± 1.65 b |
Soil Factors | WC | Temperature | SOC | TN | TP | TK | AK | pH |
---|---|---|---|---|---|---|---|---|
RDA1 | 0.2704 | 0.1355 | −0.4838 | −0.3356 | 0.0188 | 0.2474 | 0.4406 | 0.0866 |
RDA2 | 0.0501 | 0.4314 | −0.4298 | −0.4640 | −0.4357 | −0.1951 | 0.6610 | −0.0485 |
Soil Functional | Energy Metabolism | Folding, Sorting, and Degradation | Metabolism of Other Amino Acids | Lipid Metabolism | Enzyme Families | Cellular Processes and Signaling | Cell Growth and Death |
---|---|---|---|---|---|---|---|
OTU | 0.824 ** | −0.057 | −0.442 | −0.868 ** | −0.833 ** | −0.815 ** | 0.258 |
Chao index | −0.857 ** | 0.575 | 0.778 ** | 0.730 ** | 0.826 ** | 0.649 * | 0.268 |
ACE index | −0.836 ** | 0.577 * | 0.776 ** | 0.708 ** | 0.809 ** | 0.629 * | 0.287 |
Shannon index | −0.911 ** | 0.574 | 0.848 ** | 0.818 ** | 0.935 ** | 0.777 ** | 0.204 |
Proteobacteria | 0.892 ** | −0.706 * | −0.945 ** | −0.749 ** | −0.910 ** | −0.753 ** | −0.290 |
Actinobacteria | −0.494 | 0.922 ** | 0.887 ** | 0.242 | 0.465 | 0.174 | 0.827 ** |
Acidobacteria | −0.920 ** | 0.262 | 0.642 * | 0.929 ** | 0.931 ** | 0.857 ** | −0.106 |
Chloroflexi | −0.798 ** | 0.557 | 0.855 ** | 0.705 * | 0.860 ** | 0.782 ** | 0.101 |
Planctomycetes | −0.912 ** | 0.588 * | 0.782 ** | 0.763 ** | 0.852 ** | 0.708 * | 0.244 |
Gemmatimonadetes | −0.837 ** | 0.607 * | 0.855 ** | 0.714 ** | 0.873 ** | 0.793 ** | 0.125 |
Bacteroidetes | 0.241 | −0.379 | −0.453 | −0.155 | −0.248 | −0.200 | −0.212 |
Thaumarchaeota | −0.638 * | 0.028 | 0.350 | 0.685 * | 0.700 * | 0.871 ** | −0.558 |
Nitrospirae | −0.588 * | 0.062 | 0.413 | 0.639 * | 0.690 * | 0.828 ** | −0.488 |
WC | 0.213 | 0.068 | −0.095 | −0.173 | −0.159 | −0.242 | 0.138 |
Temperature | 0.061 | 0.203 | 0.089 | −0.124 | −0.090 | −0.211 | 0.375 |
SOC | 0.090 | −0.445 | −0.435 | 0.003 | −0.195 | −0.028 | −0.406 |
TN | −0.049 | −0.386 | −0.348 | 0.138 | −0.063 | 0.066 | −0.385 |
TP | −0.087 | −0.198 | −0.129 | 0.153 | 0.064 | 0.170 | −0.290 |
TK | −0.029 | 0.243 | 0.150 | 0.011 | 0.074 | 0.075 | 0.023 |
AK | −0.146 | 0.409 | 0.295 | 0.014 | 0.109 | −0.133 | 0.580 * |
pH | −0.439 | 0.566 | 0.693 * | 0.332 | 0.483 | 0.372 | 0.274 |
Soil Functional | Signaling Molecules and Interaction | Carbohydrate Metabolism | Cell Communication | Xenobiotic Biodegradation and Metabolism | Transport and Catabolism | Translation | Glycan Biosynthesis and Metabolism |
OTU | 0.775 ** | −0.834 ** | −0.014 | −0.127 | −0.866 ** | −0.201 | −0.842 ** |
Chao index | −0.408 | 0.783 ** | 0.145 | 0.148 | 0.666 * | 0.598 * | 0.879 ** |
ACE index | −0.382 | 0.765 ** | 0.159 | 0.147 | 0.644 * | 0.606 * | 0.861 ** |
Shannon index | −0.515 | 0.870 ** | 0.003 | 0.261 | 0.792 ** | 0.668 * | 0.939 ** |
Proteobacteria | 0.451 | −0.830 ** | 0.100 | −0.468 | −0.742 ** | −0.731 ** | −0.925 ** |
Actinobacteria | 0.192 | 0.317 | 0.127 | 0.446 | 0.181 | 0.985 ** | 0.581 * |
Acidobacteria | −0.734 ** | 0.909 ** | −0.242 | 0.103 | 0.898 ** | 0.408 | 0.942 ** |
Chloroflexi | −0.538 | 0.781 ** | −0.299 | 0.623 * | 0.750 ** | 0.559 | 0.846 ** |
Planctomycetes | −0.471 | 0.817 ** | 0.194 | 0.316 | 0.721 ** | 0.592 * | 0.907 ** |
Gemmatimonadetes | −0.523 | 0.810 ** | −0.225 | 0.582 * | 0.747 ** | 0.559 | 0.833 ** |
Bacteroidetes | 0.074 | −0.139 | 0.741 ** | −0.575 | −0.176 | −0.392 | −0.295 |
Thaumarchaeota | −0.816 ** | 0.784 ** | −0.406 | 0.295 | 0.799 ** | −0.116 | 0.530 |
Nitrospirae | −0.757 ** | 0.718 ** | −0.603 * | 0.415 | 0.751 ** | −0.039 | 0.531 |
WC | 0.243 | −0.227 | −0.270 | −0.355 | −0.218 | 0.107 | −0.208 |
Temperature | 0.324 | −0.175 | −0.287 | −0.097 | −0.162 | 0.405 | −0.070 |
SOC | −0.211 | −0.097 | −0.255 | −0.144 | −0.013 | −0.527 | −0.140 |
TN | −0.300 | 0.012 | −0.252 | −0.139 | 0.099 | −0.441 | 0.007 |
TP | −0.263 | 0.054 | −0.724 ** | 0.102 | 0.173 | −0.181 | 0.028 |
TK | −0.031 | 0.027 | −0.402 | 0.152 | 0.038 | 0.110 | 0.007 |
AK | 0.273 | 0.019 | 0.806 ** | −0.002 | −0.077 | 0.475 | 0.242 |
pH | −0.150 | 0.415 | −0.301 | 0.387 | 0.346 | 0.577 * | 0.496 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Hou, H.; Liu, H.; Wang, C.; Ding, Z.; Xiong, J. Microbial Community Structure and Predictive Functional Analysis in Reclaimed Soil with Different Vegetation Types: The Example of the Xiaoyi Mine Waste Dump in Shanxi. Land 2023, 12, 456. https://doi.org/10.3390/land12020456
Zhao D, Hou H, Liu H, Wang C, Ding Z, Xiong J. Microbial Community Structure and Predictive Functional Analysis in Reclaimed Soil with Different Vegetation Types: The Example of the Xiaoyi Mine Waste Dump in Shanxi. Land. 2023; 12(2):456. https://doi.org/10.3390/land12020456
Chicago/Turabian StyleZhao, Dong, Huping Hou, Haiya Liu, Chen Wang, Zhongyi Ding, and Jinting Xiong. 2023. "Microbial Community Structure and Predictive Functional Analysis in Reclaimed Soil with Different Vegetation Types: The Example of the Xiaoyi Mine Waste Dump in Shanxi" Land 12, no. 2: 456. https://doi.org/10.3390/land12020456
APA StyleZhao, D., Hou, H., Liu, H., Wang, C., Ding, Z., & Xiong, J. (2023). Microbial Community Structure and Predictive Functional Analysis in Reclaimed Soil with Different Vegetation Types: The Example of the Xiaoyi Mine Waste Dump in Shanxi. Land, 12(2), 456. https://doi.org/10.3390/land12020456