Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Major Steps and Methodology
- The data were generated from different sources as depicted in Table 1. ArcGIS Pro and ERDAS Imagine 10.0 were utilized to generate different layers.
- The landslide incidence locations for the year 2018 acquired from Hao et al. [6] were utilized for training and validation.
- The multi-collinearity analysis of the conditioning factors was carried out using R 4.2.2 software.
- To validate the susceptibility maps, the incidence locations were split into two: training (60%) and validation datasets (40%).
- The ROC, accuracy, MAE, and RMSE techniques were used to validate the four susceptibility maps. The R 4.2.2 software was used to create the ROC curves and to compute accuracy, MAE, and RMSE values, and IBM SPSS Statistics 25 was utilized to compute the Kappa index.
2.3. Conditioning Factors
2.4. Accuracy Assessment Using Cohen’s Kappa Coefficient
2.5. Multi-Collinearity Analysis
2.6. AHP Modeling
2.7. F-AHP Modeling
- Step 1:
- The factors were compared.
- Step 2:
- was computed using Equation (15) [73].
- Step 3:
- Equation (16) [73] was used to modify the matrix.
- Step 4:
- Equation (17) [98] was used to compute the geometric average.
- Step 5:
- The next three sub-processes (5a, 5b, and 5c) were used to compute the fuzzy weight:
- Step 5a:
- The vector summation was computed;
- Step 5b:
- The fuzzy triangular number was replaced to arrange it in ascending order after computing the summation vector’s (−1) power;
- Step 5c:
- Each was multiplied by the reverse vector to determine the fuzzy weight as shown in Equations (18) and (19).
- Step 6:
- The de-fuzzification of fuzzy weights using Equation (20) [100].
- Step 7:
- For the standardization of , Equation (21) [73] was used.
2.8. GIS-TISSA Model
2.9. NCESS Model
2.10. Validation of the Maps
2.10.1. ROC Technique
2.10.2. Accuracy
2.10.3. MAE
2.10.4. RMSE
3. Results
3.1. Multicollinearity
3.2. Conditioning Factors
3.2.1. Slope
3.2.2. Soil
3.2.3. Land Use/Land Cover (LULC)
3.2.4. Geomorphology
3.2.5. Road Buffer
3.2.6. Normalized Difference Road Landslide Index (NDRLI)
3.2.7. Normalized Difference Water Index (NDWI)
3.2.8. Normalized Burnt Ratio (NBR)
3.2.9. Soil-Adjusted Vegetation Index (SAVI)
3.2.10. Lithology
3.3. Landslide Susceptible Zones
3.4. Validation of the Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sim, K.B.; Lee, M.L.; Wong, S.Y. A review of landslide acceptable risk and tolerable risk. Geoenviron. Disasters 2022, 9, 3. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Li, B.; Liu, K.; Wang, M.; He, Q.; Jiang, Z.; Zhu, W.; Qiao, N. Global dynamic rainfall-induced landslide susceptibility mapping using machine learning. Remote Sens. 2022, 14, 5795. [Google Scholar] [CrossRef]
- Broeckx, J.; Rossi, M.; Lijnen, K.; Campforts, B.; Poesen, J.; Vanmaercke, M. Landslide mobilization rates: A global analysis and model. Earth-Sci. Rev. 2020, 201, 102972. [Google Scholar] [CrossRef]
- NDMA. National Landslide Risk Management Strategy; National Disaster Management Authority, Government of India: New Delhi, India, 2019. [Google Scholar]
- Hao, L.; Rajaneesh, A.; van Westen, C.; Sajinkumar, K.S.; Martha, T.R.; Jaiswal, P.; McAdoo, B.G. Constructing a complete landslide inventory dataset for the 2018 monsoon disaster in Kerala, India, for land use change analysis. Earth Syst. Sci. Data 2020, 12, 2899–2918. [Google Scholar] [CrossRef]
- Hao, L.; van Westen, C.; Rajaneesh, A.; Sajinkumar, K.S.; Martha, T.R.; Jaiswal, P. Evaluating the relation between land use changes and the 2018 landslide disaster in Kerala, India. CATENA 2022, 216, 106363. [Google Scholar] [CrossRef]
- Vasudevan, N.; Ramanathan, K.; Syali, T.S. Land degradation in the Western Ghats: The case of the Kavalappara landslide in Kerala, India. In Environmental Restoration. F-EIR 2021; Lecture Notes in Civil, Engineering; Ashish, D.K., de Brito, J., Eds.; Springer: Cham, Switzerland, 2022; Volume 232. [Google Scholar] [CrossRef]
- Achu, A.L.; Joseph, S.; Aju, C.D.; Mathai, J. Preliminary analysis of a catastrophic landslide event on 6 August 2020 at Pettimudi, Kerala State, India. Landslides 2021, 18, 1459–1463. [Google Scholar] [CrossRef]
- Ajin, R.S.; Nandakumar, D.; Rajaneesh, A.; Oommen, T.; Ali, Y.P.; Sajinkumar, K.S. The tale of three landslides in the Western Ghats: Lessons to be learnt. Geoenviron. Disasters 2022, 9, 16. [Google Scholar] [CrossRef]
- Escobar-Wolf, R.; Sanders, J.D.; Vishnu, C.L.; Oommen, T.; Sajinkumar, K.S. A GIS tool for infinite slope stability analysis (GIS-TISSA). Geosci. Front. 2021, 12, 756–768. [Google Scholar] [CrossRef]
- Sajinkumar, K.S.; Oommen, T. Landslide atlas of Kerala; Geological Society of India: New Delhi, India, 2021; p. 34. [Google Scholar]
- NCESS. Landslide Susceptibility Map of Kerala. 2010. Available online: https://sdma.kerala.gov.in/hazard-maps/ (accessed on 4 December 2022).
- El Jazouli, A.; Barakat, A.; Khellouk, R. GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum ErRbia high basin (Morocco). Geoenviron. Disasters 2019, 6, 3. [Google Scholar] [CrossRef]
- Akshaya, M.; Danumah, J.H.; Saha, S.; Ajin, R.S.; Kuriakose, S.L. Landslide susceptibility zonation of the Western Ghats region in Thiruvananthapuram district (Kerala) using geospatial tools: A comparison of the AHP and Fuzzy-AHP methods. Saf. Extreme Environ. 2021, 3, 181–202. [Google Scholar] [CrossRef]
- Fatemi Aghda, S.M.; Bagheri, V.; Razifard, M. Landslide susceptibility mapping using fuzzy logic system and its influences on mainlines in Lashgarak Region, Tehran, Iran. Geotech. Geol. Eng. 2018, 36, 915–937. [Google Scholar] [CrossRef]
- Thomas, A.V.; Saha, S.; Danumah, J.H.; Raveendran, S.; Prasad, M.K.; Ajin, R.S.; Kuriakose, S.L. Landslide susceptibility zonation of Idukki district using GIS in the aftermath of 2018 Kerala floods and landslides: A comparison of AHP and frequency ratio methods. J. Geovis. Spat. Anal. 2021, 5, 21. [Google Scholar] [CrossRef]
- Swetha, T.V.; Gopinath, G. Landslides susceptibility assessment by analytical network process: A case study for Kuttiyadi river basin (Western Ghats, southern India). SN Appl. Sci. 2020, 2, 1776. [Google Scholar] [CrossRef]
- Vakhshoori, V.; Pourghasemi, H.R. A novel hybrid bivariate statistical method entitled FROC for landslide susceptibility assessment. Environ. Earth Sci. 2018, 77, 686. [Google Scholar] [CrossRef]
- Arroyo-Solórzano, M.; Quesada-Román, A.; Barrantes-Castillo, G. Seismic and geomorphic assessment for coseismic landslides zonation in tropical volcanic contexts. Nat Hazards 2022, 114, 2811–2837. [Google Scholar] [CrossRef]
- Ruiz, P.; Carr, M.J.; Alvarado, G.E.; Soto, G.J.; Mana, S.; Feigenson, M.D.; Sáenz, L.F. Coseismic landslide susceptibility analysis using LiDAR data PGA attenuation and GIS: The case of Poás Volcano, Costa Rica, Central America. In Poás Volcano. Active Volcanoes of the World; Tassi, F., Vaselli, O., Mora Amador, R., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Ballabio, C.; Sterlacchini, S. Support vector machines for landslide susceptibility mapping: The Staffora River Basin case study, Italy. Math. Geosci. 2012, 44, 47–70. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.M.; Jung, H.S. A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability 2017, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I. Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naïve Bayes models. Math. Probl. Eng. 2012, 2012, 974638. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.J.; Jung, H.S.; Lee, S. Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea. Geocarto Int. 2020, 35, 1665–1679. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Nefeslioglu, H.A.; Sezer, E.; Gokceoglu, C.; Bozkir, A.S.; Duman, T.Y. Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math. Probl. Eng. 2010, 2010, 901095. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, C.W.; Lee, S.; Lee, M.J. Landslide susceptibility mapping and comparison using decision tree models: A case study of Jumunjin area, Korea. Remote Sens. 2018, 10, 1545. [Google Scholar] [CrossRef]
- Poudyal, C.P. Landslide susceptibility analysis using decision tree method, Phidim, Eastern Nepal. Bull. Depart. Geol. 2013, 15, 69–76. [Google Scholar] [CrossRef]
- Abu El-Magd, S.A.; Ali, S.A.; Pham, Q.B. Spatial modeling and susceptibility zonation of landslides using random forest, naïve bayes and K-nearest neighbor in a complicated terrain. Earth Sci. Inform. 2021, 14, 1227–1243. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Kalsoom, I.; Asghar, A.; Shoaib, M. Landslide susceptibility mapping using machine learning algorithm: A case study along Karakoram Highway (KKH), Pakistan. J. Indian Soc. Remote Sens. 2022, 50, 849–866. [Google Scholar] [CrossRef]
- Taalab, K.; Cheng, T.; Zhang, Y. Mapping landslide susceptibility and types using random forest. Big Earth Data 2018, 2, 159–178. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Paryani, S.; Neshat, A.; Pradhan, B. Spatial landslide susceptibility mapping using integrating an adaptive neuro-fuzzy inference system (ANFIS) with two multi-criteria decision-making approaches. Theor. Appl. Climatol. 2021, 146, 489–509. [Google Scholar] [CrossRef]
- Li, W.; Fang, Z.; Wang, Y. Stacking ensemble of deep learning methods for landslide susceptibility mapping in the Three Gorges Reservoir area, China. Stoch. Environ. Res. Risk Assess. 2021, 36, 2207–2228. [Google Scholar] [CrossRef]
- Ngo, P.T.T.; Panahi, M.; Khosravi, K.; Ghorbanzadeh, O.; Kariminejad, N.; Cerda, A.; Lee, S. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci. Front. 2021, 12, 505–519. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.H.; Lee, M.J.; Won, J.S. Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environ. Geol. 2003, 44, 820–833. [Google Scholar] [CrossRef]
- Shahri, A.A.; Spross, J.; Johansson, F.; Larsson, S. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. CATENA 2019, 183, 104225. [Google Scholar] [CrossRef]
- Hemasinghe, H.; Rangali, R.S.S.; Deshapriya, N.L.; Samarakoon, L. Landslide susceptibility mapping using logistic regression model (a case study in Badulla district, Sri Lanka). Procedia Eng. 2018, 212, 1046–1053. [Google Scholar] [CrossRef]
- Oh, H.J.; Kadavi, P.R.; Lee, C.W.; Lee, S. Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models. Geomat. Nat. Hazards Risk 2018, 9, 1053–1070. [Google Scholar] [CrossRef]
- Sun, X.; Chen, J.; Bao, Y.; Han, X.; Zhan, J.; Peng, W. Landslide susceptibility mapping using logistic regression analysis along the Jinsha River and its tributaries close to Derong and Deqin county, southwestern China. ISPRS Int. J. Geo-Inf. 2018, 7, 438. [Google Scholar] [CrossRef] [Green Version]
- Balogun, A.L.; Rezaie, F.; Pham, Q.B.; Gigović, L.; Drobnjak, S.; Aina, Y.A.; Panahi, M.; Yekeen, S.T.; Lee, S. Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms. Geosci. Front. 2021, 12, 101104. [Google Scholar] [CrossRef]
- Panahi, M.; Gayen, A.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Sci. Total Environ. 2020, 741, 139937. [Google Scholar] [CrossRef]
- Nhu, V.H.; Mohammadi, A.; Shahabi, H.; Ahmad, B.B.; Al-Ansari, N.; Shirzadi, A.; Clague, J.J.; Jaafari, A.; Chen, W.; Nguyen, H. Landslide susceptibility mapping using machine learning algorithms and remote sensing data in a tropical environment. Int. J. Environ. Res. Public Health 2020, 17, 4933. [Google Scholar] [CrossRef] [PubMed]
- Ajin, R.S.; Thomas, N.V.; Arya, S.; Neelima, N.; Prasad, M.K.; Nair, A.A. Landslide susceptibility modelling of a part of the Western Ghats: A comparison of two machine learning ensemble models. In Proceedings of the XXII International Scientific Conference for Young Scientists, Students and Doctoral Candidates, Neryungri, Russia, 28–29 October 2022; pp. 181–185. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Tran, T.T.T.; Bui, D.T. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. CATENA 2019, 175, 203–218. [Google Scholar] [CrossRef]
- Moayedi, H.; Osouli, A.; Tien Bui, D.; Foong, L.K. Spatial landslide susceptibility assessment based on novel neural-metaheuristic geographic information system based ensembles. Sensors 2019, 19, 4698. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hong, H.; Panahi, M.; Shahabi, H.; Wang, Y.; Shirzadi, A.; Pirasteh, S.; Alesheikh, A.A.; Khosravi, K.; Panahi, S.; et al. Spatial prediction of landslide susceptibility using GIS-based data mining techniques of ANFIS with whale optimization algorithm (WOA) and grey wolf optimizer (GWO). Appl. Sci. 2019, 9, 3755. [Google Scholar] [CrossRef]
- Al-Shabeeb, A.R.; Al-Fugara, A.; Khedher, K.M.; Mabdeh, A.N.; Al-Adamat, R. Spatial mapping of landslide susceptibility in Jerash governorate of Jordan using genetic algorithm-based wrapper feature selection and bagging-based ensemble model. Geomat. Nat. Hazards Risk 2022, 13, 2252–2282. [Google Scholar] [CrossRef]
- Pham, B.T.; Phong, T.V.; Nguyen-Thoi, T.; Parial, K.; Singh, S.K.; Ly, H.B.; Nguyen, K.T.; Ho, L.S.; Le, H.V.; Prakash, I. Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto Int. 2022, 37, 735–757. [Google Scholar] [CrossRef]
- Arabameri, A.; Pal, S.C.; Rezaie, F.; Chakrabortty, R.; Saha, A.; Blaschke, T.; Napoli, M.D.; Ghorbanzadeh, O.; Ngo, P.T.T. Decision tree based ensemble machine learning approaches for landslide susceptibility mapping. Geocarto Int. 2022, 37, 4594–4627. [Google Scholar] [CrossRef]
- Chowdhuri, I.; Pal, S.C.; Chakrabortty, R.; Malik, S.; Das, B.; Roy, P. Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya. Nat. Hazards 2021, 107, 697–722. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Han, Z.; Pham, B.T. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 2020, 17, 641–658. [Google Scholar] [CrossRef]
- Ali, S.A.; Parvin, F.; Pham, Q.B.; Khedher, K.M.; Dehbozorgi, M.; Rabby, Y.W.; Anh, D.T.; Nguyen, D.H. An ensemble random forest tree with SVM, ANN, NBT, and LMT for landslide susceptibility mapping in the Rangit River watershed, India. Nat. Hazards 2022, 113, 1601–1633. [Google Scholar] [CrossRef]
- Saha, S.; Roy, J.; Pradhan, B.; Hembram, T.K. Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at East Sikkim Himalayan, India. Adv. Space Res. 2021, 68, 2819–2840. [Google Scholar] [CrossRef]
- Ajin, R.S.; Saha, S.; Saha, A.; Biju, A.; Costache, R.; Kuriakose, S.L. Enhancing the accuracy of the REPTree by integrating the hybrid ensemble meta-classifiers for modelling the landslide susceptibility of Idukki district, South-western India. J. Indian Soc. Remote Sens. 2022, 50, 2245–2265. [Google Scholar] [CrossRef]
- Saha, S.; Saha, A.; Hembram, T.K.; Kundu, B.; Sarkar, R. Novel ensemble of deep learning neural network and support vector machine for landslide susceptibility mapping in Tehri region, Garhwal Himalaya. Geocarto Int. 2022. [Google Scholar] [CrossRef]
- Sahana, M.; Pham, B.T.; Shukla, M.; Costache, R.; Thu, D.X.; Chakrabortty, R.; Satyam, N.; Nguyen, H.D.; Phong, T.V.; Le, H.V.; et al. Rainfall induced landslide susceptibility mapping using novel hybrid soft computing methods based on multi-layer perceptron neural network classifier. Geocarto Int. 2022, 37, 2747–2771. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Mei, H.; Xiao, D.; Li, Y.; Li, M. Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China. Appl. Sci. 2020, 10, 4016. [Google Scholar] [CrossRef]
- Huang, J.; Ma, N.; Ling, S.; Wu, X. Comparing the prediction performance of logistic model tree with different ensemble techniques in susceptibility assessments of different landslide types. Geocarto Int. 2022. [Google Scholar] [CrossRef]
- Saha, A.; Saha, S. Integrating the artificial intelligence and hybrid machine learning algorithms for improving the accuracy of spatial prediction of landslide hazards in Kurseong Himalayan Region. Artif. Intell. Geosci. 2022, 3, 14–27. [Google Scholar] [CrossRef]
- Saha, S.; Saha, A.; Hembram, T.K.; Mandal, K.; Sarkar, R.; Bhardwaj, D. Prediction of spatial landslide susceptibility applying the novel ensembles of CNN, GLM and random forest in the Indian Himalayan region. Stoch. Environ. Res. Risk Assess. 2022, 36, 3597–3616. [Google Scholar] [CrossRef]
- Saha, S.; Saha, A.; Roy, B.; Sarkar, R.; Bhardwaj, D.; Kundu, B. Integrating the Particle Swarm Optimization (PSO) with machine learning methods for improving the accuracy of the landslide susceptibility model. Earth Sci. Inform. 2022, 15, 2637–2662. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Gompf, K.; Traverso, M.; Hetterich, J. Using analytical hierarchy process (AHP) to introduce weights to social life cycle assessment of mobility services. Sustainability 2021, 13, 1258. [Google Scholar] [CrossRef]
- Carnero, M.C. Benchmarking of the maintenance service in health care organizations. In Handbook of Research on Data Science for Effective Healthcare Practice and Administration; Noughabi, E., Raahemi, B., Albadvi, A., Far, B., Eds.; IGI Global: Hershey, PA, USA, 2017; pp. 1–25. [Google Scholar] [CrossRef]
- Abrams, W.; Ghoneim, E.; Shew, R.; LaMaskin, T.; Al-Bloushi, K.; Hussein, S.; AbuBakr, M.; Al-Mulla, E.; Al-Awar, M.; El-Baz, F. Delineation of groundwater potential (GWP) in the northern United Arab Emirates and Oman using geospatial technologies in conjunction with simple additive weight (SAW), analytical hierarchy process (AHP), and probabilistic frequency ratio (PFR) techniques. J. Arid Environ. 2018, 157, 77–96. [Google Scholar] [CrossRef]
- Kumar, R.; Dwivedi, S.B.; Gaur, S. A comparative study of machine learning and Fuzzy-AHP technique to groundwater potential mapping in the data-scarce region. Comput. Geosci. 2021, 155, 104855. [Google Scholar] [CrossRef]
- Abdi, A.; Bouamrane, A.; Karech, T.; Dahri, N.; Kaouachi, A. Landslide susceptibility mapping using GIS-based fuzzy logic and the analytical hierarchical processes approach: A case study in Constantine (North-East Algeria). Geotech. Geol. Eng. 2021, 39, 5675–5691. [Google Scholar] [CrossRef]
- Babitha, B.G.; Danumah, J.H.; Pradeep, G.S.; Costache, R.; Patel, N.; Prasad, M.K.; Rajaneesh, A.; Mammen, P.C.; Ajin, R.S.; Kuriakose, S.L. A framework employing the AHP and FR methods to assess the landslide susceptibility of the Western Ghats region in Kollam district. Saf. Extreme Environ. 2022, 4, 171–191. [Google Scholar] [CrossRef]
- Senan, C.P.C.; Ajin, R.S.; Danumah, J.H.; Costache, R.; Arabameri, A.; Rajaneesh, A.; Sajinkumar, K.S.; Kuriakose, S.L. Flood vulnerability of a few areas in the foothills of the Western Ghats: A comparison of AHP and F-AHP models. Stoch. Environ. Res. Risk Assess. 2022, 37, 527–556. [Google Scholar] [CrossRef]
- Mersha, T.; Meten, M. GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenviron. Disasters 2020, 7, 20. [Google Scholar] [CrossRef]
- Wubalem, A. Landslide susceptibility mapping using statistical methods in Uatzau catchment area, northwestern Ethiopia. Geoenviron. Disasters 2021, 8, 1. [Google Scholar] [CrossRef]
- Guillaume, S.; Charnomordic, B. Learning interpretable fuzzy inference systems with fispro. Inf. Sci. 2011, 181, 4409–4427. [Google Scholar] [CrossRef]
- Guillaume, S.; Charnomordic, B. Fuzzy inference systems: An integrated modelling environment for collaboration between expert knowledge and data using fispro. Expert Syst. Appl. 2012, 39, 8744–8755. [Google Scholar] [CrossRef]
- Li, G.; Lu, D.; Moran, E.; Hetrick, S. Land-cover classification in a moist tropical region of Brazil with Landsat Thematic Mapper imagery. Int. J. Remote Sens. 2011, 32, 8207–8230. [Google Scholar] [CrossRef]
- Hütt, C.; Koppe, W.; Miao, Y.; Bareth, G. Best accuracy land use/land cover (LULC) classification to derive crop types using multitemporal, multisensor, and multi-polarization SAR satellite images. Remote Sens. 2016, 8, 684. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Liu, H.; Wei, Y.; Lin, Q.; Lu, Y. Use of the Normalized Difference Road Landside Index (NDRLI)-based method for the quick delineation of road-induced landslides. Sci. Rep. 2018, 8, 17815. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Trigg, S.N. Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef]
- Delcourt, C.J.F.; Combee, A.; Izbicki, B.; Mack, M.C.; Maximov, T.; Petrov, R.; Rogers, B.M.; Scholten, R.C.; Shestakova, T.A.; van Wees, D.; et al. Evaluating the differenced normalized burn ratio for assessing fire severity using Sentinel-2 imagery in Northeast Siberian Larch Forests. Remote Sens. 2021, 13, 2311. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Sim, J.; Wright, C.C. The Kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys. Ther. 2005, 85, 257–268. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Allen, M.P. The problem of multicollinearity. In Understanding Regression Analysis; Springer: Boston, MA, USA, 1997; pp. 176–180. [Google Scholar] [CrossRef]
- Oh, H.J.; Lee, S.; Hong, S.M. Landslide susceptibility assessment using frequency ratio technique with iterative random sampling. J. Sens. 2017, 2017, 3730913. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, K.; Song, Y.; Jiang, W.; Zhou, J. Study on landslide susceptibility mapping based on rock–soil characteristic factors. Sci. Rep. 2021, 11, 15476. [Google Scholar] [CrossRef] [PubMed]
- Forthofer, R.N.; Lee, E.S.; Hernandez, M. Linear Regression. In Biostatistics, 2nd ed.; Forthofer, R.N., Lee, E.S., Hernandez, M., Eds.; Academic Press: Cambridge, MA, USA, 2007; pp. 349–386. [Google Scholar] [CrossRef]
- Miles, J. Tolerance and Variance Inflation Factor. In Wiley Stats Ref: Statistics Reference Online; Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (Decision Making Series); McGraw Hill: New York, NJ, USA, 1980. [Google Scholar]
- Qazi, W.A.; Abushammala, M.F.M. Multi-criteria decision analysis of waste-to-energy technologies. In Waste-to-Energy; Ren, J., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 265–316. [Google Scholar] [CrossRef]
- Danumah, J.H.; Odai, S.N.; Saley, B.M.; Szarzynski, J.; Thiel, M.; Kwaku, A.; Kouame, F.K.; Akpa, L.Y. Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques (Cote d’Ivoire). Geoenviron. Disasters 2016, 3, 10. [Google Scholar] [CrossRef]
- Eskandari, S.; Miesel, J.R. Comparison of the fuzzy AHP method, the spatial correlation method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran. Geomat. Nat. Hazards Risk 2017, 8, 933–949. [Google Scholar] [CrossRef]
- Afolayan, A.H.; Ojokoh, B.A.; Adetunmbi, A.O. Performance analysis of fuzzy analytic hierarchy process multi-criteria decision support models for contractor selection. Sci. Afr. 2020, 9, e00471. [Google Scholar] [CrossRef]
- Buckley, J.J. Fuzzy hierarchical analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [Google Scholar] [CrossRef]
- Ayhan, M.B. A fuzzy AHP approach for supplier selection problem: A case study in a gear motor company. Int. J. Manag. Value Supply Chain. 2013, 4, 11–23. [Google Scholar] [CrossRef]
- Chou, S.W.; Chang, Y.C. The implementation factors that influence the ERP (Enterprise Resource Planning) benefits. Decis. Support Syst. 2008, 46, 149–157. [Google Scholar] [CrossRef]
- Pikul, S. Comparing SCOOP3D and GIS-TISSA Models for Slope Stability Analysis in Idukki, Kerala, India. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2021. [Google Scholar] [CrossRef]
- KSDMA. Available online: https://sdma.kerala.gov.in/disaster-management-plans/ (accessed on 4 December 2022).
- Marzban, C. The ROC curve and the area under it as performance measures. Weather Forecast. 2004, 19, 1106–1114. [Google Scholar] [CrossRef]
- Li, F.; He, H. Assessing the accuracy of diagnostic tests. Shanghai Arch. Psychiatry 2018, 30, 207–212. [Google Scholar] [CrossRef]
- Vakhshoori, V.; Zare, M. Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps? Geomat. Nat. Hazards Risk 2018, 9, 249–266. [Google Scholar] [CrossRef] [Green Version]
- D’souza, R.N.; Huang, P.Y.; Yeh, F.C. Structural analysis and optimization of convolutional neural networks with a small sample size. Sci. Rep. 2020, 10, 834. [Google Scholar] [CrossRef]
- Dalianis, H. Evaluation Metrics and Evaluation. In Clinical Text Mining; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Tchakounté, F.; Hayata, F. Supervised Learning Based Detection of Malware on Android. In Mobile Security and Privacy: Advances, Challenges and Future Research Directions; Au, M.H., Choo, K.K.R., Eds.; Syngress Publishing: Rockland, MA, USA, 2017; pp. 101–154. [Google Scholar] [CrossRef]
- Schneider, P.; Xhafa, F. Anomaly detection: Concepts and methods. In Anomaly Detection and Complex Event Processing over IoT Data Streams With Application to eHealth and Patient Data Monitoring; Schneider, P., Xhafa, F., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 49–66. [Google Scholar] [CrossRef]
- Rajawat, A.S.; Mohammed, O.; Shaw, R.N.; Ghosh, A. Renewable energy system for industrial internet of things model using fusion-AI. In Applications of AI and IOT in Renewable Energy; Shaw, R.N., Ghosh, A., Mekhilef, S., Balas, V.E., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 107–128. [Google Scholar] [CrossRef]
- Christie, D.; Neill, S.P. Measuring and observing the ocean renewable energy resource. In Comprehensive Renewable Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 149–175. [Google Scholar] [CrossRef]
- Tripathy, D.S.; Prusty, B.R. Forecasting of renewable generation for applications in smart grid power systems. In Advances in Smart Grid Power System; Tomar, A., Kandari, R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 265–298. [Google Scholar] [CrossRef]
- Panchal, S.; Shrivastava, A.K. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Eng. J. 2022, 13, 101626. [Google Scholar] [CrossRef]
- Sur, U.; Singh, P.; Meena, S.R. Landslide susceptibility assessment in a lesser Himalayan Road corridor (India) applying fuzzy AHP technique and earth-observation data. Geomat. Nat. Hazards Risk 2020, 11, 2176–2209. [Google Scholar] [CrossRef]
- Chawla, A.; Chawla, S.; Pasupuleti, S.; Rao, A.C.S.; Sarkar, K.; Dwivedi, R. Landslide susceptibility mapping in Darjeeling Himalayas, India. Adv. Civ. Eng. 2018, 2018, 6416492. [Google Scholar] [CrossRef]
- Meng, S.; Zhao, G.; Yang, Y. Impact of plant root morphology on rooted-soil shear resistance using triaxial testing. Adv. Civ. Eng. 2020, 2020, 8825828. [Google Scholar] [CrossRef]
- Shu, H.; Hürlimann, M.; Molowny-Horas, R.; González, M.; Pinyol, J.; Abancó, C.; Ma, J. Relation between land cover and landslide susceptibility in Val d’Aran, Pyrenees (Spain): Historical aspects, present situation and forward prediction. Sci. Total Environ. 2019, 693, 133557. [Google Scholar] [CrossRef]
- Abedin, J.; Rabby, Y.W.; Hasan, I.; Akter, H. An investigation of the characteristics, causes, and consequences of June 13, 2017, landslides in Rangamati district Bangladesh. Geoenviron. Disasters 2020, 7, 23. [Google Scholar] [CrossRef]
- Getachew, N.; Meten, M. Weights of evidence modeling for landslide susceptibility mapping of Kabi-Gebro locality, Gundomeskel area, Central Ethiopia. Geoenviron. Disasters 2021, 8, 6. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Chen, W.; Bai, H. GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China. J. Earth Syst. Sci. 2015, 124, 1399–1415. [Google Scholar] [CrossRef]
- Sharma, S.; Mahajan, A.K. Comparative evaluation of GIS-based landslide susceptibility mapping using statistical and heuristic approach for Dharamshala region of Kangra Valley, India. Geoenviron. Disasters 2018, 5, 4. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, A. Road cut slope stability analysis at Kotropi landslide zone along NH-154 in Himachal Pradesh, India. J. Geol. Soc. India 2022, 98, 379–386. [Google Scholar] [CrossRef]
- Ma, H.; Guo, S.; Zhou, Y. Detection of water area change based on remote sensing images. InGeo-Informatics in Resource Management and Sustainable Ecosystem. Communications in Computer and Information Science; Bian, F., Xie, Y., Cui, X., Zeng, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 398. [Google Scholar] [CrossRef]
- Taloor, A.K.; Manhas, D.S.; Kothyari, G.C. Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Appl. Comput. Geosci. 2021, 9, 100051. [Google Scholar] [CrossRef]
- Li, L.; Vrieling, A.; Skidmore, A.; Wang, T.; Muñoz, A.R.; Turak, E. Evaluation of MODIS spectral indices for monitoring hydrological dynamics of a small, seasonally-flooded wetland in Southern Spain. Wetlands 2015, 35, 851–864. [Google Scholar] [CrossRef] [Green Version]
- EOS. Available online: https://eos.com/make-an-analysis/ndwi/ (accessed on 4 December 2022).
- Abraham, M.T.; Satyam, N.; Pradhan, B.; Alamri, A.M. Forecasting of landslides using rainfall severity and soil wetness: A probabilistic approach for Darjeeling Himalayas. Water 2020, 12, 804. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Rengers, F.K.; McGuire, L.A.; Oakley, N.S.; Kean, J.W.; Staley, D.M.; Tang, H. Landslides after wildfire: Initiation, magnitude, and mobility. Landslides 2020, 17, 2631–2641. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Mokarram, M.; Hojjati, M.; Roshan, G.; Negahban, S. Modeling the behavior of vegetation indices in the salt dome of Korsia in North-East of Darab, Fars, Iran. Model. Earth Syst. Environ. 2015, 1, 27. [Google Scholar] [CrossRef]
- Ajin, R.S.; Loghin, A.M.; Vinod, P.G.; Jacob, M.K.; Krishnamurthy, R.R. Landslide susceptible zone mapping using ARS and GIS techniques in selected taluks of Kottayam district, Kerala, India. Int. J. Appl. Remote Sens. GIS 2016, 3, 16–25. [Google Scholar]
- Khan, H.; Shafique, M.; Khan, M.A.; Bacha, M.A.; Shah, S.U.; Calligaris, C. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. Egypt J. Remote Sens. Space Sci. 2019, 22, 11–24. [Google Scholar] [CrossRef]
- Temme, A.J.A.M. Relations between soil development and landslides. In Hydrogeology, Chemical Weathering, and Soil Formation; Hunt, A., Egli, M., Faybishenko, B., Eds.; American Geophysical Union: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Yalcin, A. The effects of clay on landslides: A case study. Appl. Clay Sci. 2007, 38, 77–85. [Google Scholar] [CrossRef]
- Fairbridge, R.W. Denudation. In Geomorphology. Encyclopedia of Earth Science; Springer: Berlin/Heidelberg, Germany, 1968. [Google Scholar] [CrossRef]
- Ninu Krishnan, M.V.; Pratheesh, P.; Rejith, P.G.; Vijith, H. Determining the suitability of two different statistical techniques in shallow landslide (Debris flow) initiation susceptibility assessment in the Western Ghats. Environ. Res. Eng. Manag. 2014, 4, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Vijith, H.; Rejith, P.G.; Madhu, G. Using InfoVal method and GIS techniques for the spatial modelling of landslide susceptibility in the upper catchment of river Meenachil in Kerala. J. Indian Soc. Remote Sens. 2009, 37, 241–250. [Google Scholar] [CrossRef]
- Vijith, H.; Krishnakumar, K.N.; Pradeep, G.S.; Ninu Krishnan, M.V.; Madhu, G. Shallow landslide initiation susceptibility mapping by GIS-based weights-of-evidence analysis of multi-class spatial data-sets: A case study from the natural sloping terrain of Western Ghats, India. Georisk 2014, 8, 48–62. [Google Scholar] [CrossRef]
- Scott, K.M. Origin and sedimentology of 1969 debris flow near Glendora, California. US Geol. Surv. Prof. Pap. 1971, 750, 242–247. [Google Scholar]
- Filipponi, F.; Manfron, G. Observing Post-Fire Vegetation Regeneration Dynamics Exploiting High-Resolution Sentinel-2 Data. Proceedings 2019, 18, 10. [Google Scholar] [CrossRef]
- Gonzalez-Ollauri, A.; Mickovski, S.B. Hydrological effect of vegetation against rainfall-induced landslides. J. Hydrol. 2017, 549, 374–387. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef]
- Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Jierula, A.; Wang, S.; Oh, T.M.; Wang, P. Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using artificial neural networks with acoustic emission data. Appl. Sci. 2021, 11, 2314. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Meshram, S.G.; Alvandi, E.; Singh, V.P.; Meshram, C. Comparison of AHP and fuzzy AHP models for prioritization of watersheds. Soft Comput. 2019, 23, 13615–13625. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Agrawal, S.; Gupta, R.D. Comparison of GIS-based AHP and fuzzy AHP methods for hospital site selection: A case study for Prayagraj City, India. GeoJournal 2021, 87, 3507–3528. [Google Scholar] [CrossRef]
- Vilasan, R.T.; Kapse, V.S. Evaluation of the prediction capability of AHP and F-AHP methods in flood susceptibility mapping of Ernakulam district (India). Nat. Hazards 2022, 112, 1767–1793. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Dixit, A.; Sahany, S.; Rajagopalan, B.; Choubey, S. Role of changing land use and land cover (LULC) on the 2018 megafloods over Kerala, India. Clim. Res. 2022, 89, 1–14. [Google Scholar] [CrossRef]
- Saranya, M.S.; Nair, V.V. Impact evaluation and analysis at a river basin scale under projected climate and land-use change. Water Supply 2022, 22, 8907–8922. [Google Scholar] [CrossRef]
- Sonu, T.S.; Mohammed Firoz, C.; Bhagyanathan, A. The impact of upstream land use land cover change on downstream flooding: A case of Kuttanad and Meenachil River Basin, Kerala, India. Urban Clim. 2022, 41, 101089. [Google Scholar] [CrossRef]
- Vijith, H.; Ninu Krishnan, M.V.; Sulemana, A. Regional scale analysis of land cover dynamics in Kerala over last two decades through MODIS data and statistical techniques. J. Environ. Stud. Sci. 2022, 12, 577–593. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Prakash, S.; Sathiyamoorthy, V.; Mahesh, C.; Gairola, R.M. An evaluation of high-resolution multisatellite rainfall products over the Indian monsoon region. Int. J. Remote Sens. 2014, 35, 3018–3035. [Google Scholar] [CrossRef]
- Jena, P.; Garg, S.; Azad, S. Performance analysis of IMD high-resolution gridded rainfall (0.25° × 0.25°) and satellite estimates for detecting cloudburst events over the Northwest Himalayas. J. Hydrometeorol. 2020, 21, 1549–1569. [Google Scholar] [CrossRef]
Data | Source | Thematic Layers Derived | Data Type | Spatial Resolution | Scale |
---|---|---|---|---|---|
ASTER GDEM | https://earthexplorer.usgs.gov/ (accessed on 22 August 2022) | Slope angle | Continuous | 30 m | |
Landsat 8 OLI image | https://earthexplorer.usgs.gov/ (accessed on 15 November 2022) | NBR NDWI SAVI LULC NDRLI Geomorphology | Continuous | 30 m | |
Soil map | National Bureau of Soil Survey and Land Use Planning | Soil texture | Discrete | 1:250,000 | |
Geological map | Geological Survey of India | Lithology | Discrete | 1:50,000 | |
Topographical map | Survey of India | Road | Discrete | 1:50,000 | |
Google Earth Pro | https://www.google.com/intl/en_in/earth/versions/ (accessed on 24 November 2022) | Road (updated) | Discrete | 15 cm to 15 m |
SA | Soil | LULC | Geom. | RB | NDRLI | NDWI | NBR | SAVI | Litho. | Vp | Cp | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SA | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 4.529 | 0.290 |
Soil | 1/2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 3.392 | 0.218 |
LULC | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 2.414 | 0.155 |
Geom. | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1.707 | 0.109 |
RB | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 5 | 6 | 1.196 | 0.077 |
NDRLI | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 5 | 0.836 | 0.054 |
NDWI | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 0.586 | 0.038 |
NBR | 1/8 | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 0.414 | 0.027 |
SAVI | 1/9 | 1/8 | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 0.298 | 0.019 |
Litho. | 1/10 | 1/9 | 1/8 | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 0.221 | 0.014 |
∑ | 2.93 | 4.83 | 7.72 | 11.59 | 16.45 | 22.28 | 29.08 | 36.83 | 45.50 | 55.00 | 15.59 | 1.00 |
SA | Soil | LULC | Geom. | RB | NDRLI | NDWI | NBR | SAVI | Litho. | ∑ Rank | [C] | [D] = [A]*[C] | [E] = [D]/[C] | λmax | CI | CR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SA | 0.34 | 0.41 | 0.39 | 0.35 | 0.30 | 0.27 | 0.24 | 0.22 | 0.20 | 0.18 | 2.90 | 0.290 | 3.17 | 10.95 | 10.54 | 0.06 | 0.04 (4.1%) |
Soil | 0.17 | 0.21 | 0.26 | 0.26 | 0.24 | 0.22 | 0.21 | 0.19 | 0.18 | 0.16 | 2.10 | 0.210 | 2.32 | 11.06 | |||
LULC | 0.11 | 0.10 | 0.13 | 0.17 | 0.18 | 0.18 | 0.17 | 0.16 | 0.15 | 0.15 | 1.52 | 0.152 | 1.66 | 11.00 | |||
Geom. | 0.09 | 0.07 | 0.06 | 0.09 | 0.12 | 0.13 | 0.14 | 0.14 | 0.13 | 0.13 | 1.09 | 0.109 | 1.18 | 10.83 | |||
RB | 0.07 | 0.05 | 0.04 | 0.04 | 0.06 | 0.09 | 0.10 | 0.11 | 0.11 | 0.11 | 0.79 | 0.079 | 0.83 | 10.58 | |||
NDRLI | 0.06 | 0.04 | 0.03 | 0.03 | 0.03 | 0.04 | 0.07 | 0.08 | 0.09 | 0.09 | 0.56 | 0.056 | 0.58 | 10.34 | |||
NDWI | 0.05 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.05 | 0.07 | 0.07 | 0.40 | 0.040 | 0.40 | 10.15 | |||
NBR | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.28 | 0.028 | 0.28 | 10.08 | |||
SAVI | 0.04 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.20 | 0.020 | 0.20 | 10.14 | |||
Litho. | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.15 | 0.015 | 0.15 | 10.29 | |||
∑ | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 10.00 | 1.00 | 105.46 |
SA | Soil | LULC | Geom. | RB | NDRLI | NDWI | NBR | SAVI | Litho. | |
---|---|---|---|---|---|---|---|---|---|---|
SA | (1,1,1) | (1,2,3) | (2,3,4) | (3,4,5) | (4,5,6) | (5,6,7) | (6,7,8) | (7,8,9) | (8,9,10) | (10,10,10) |
Soil | (1/3,1/2,1) | (1,1,1) | (1,2,3) | (2,3,4) | (3,4,5) | (4,5,6) | (5,6,7) | (6,7,8) | (7,8,9) | (8,9,10) |
LULC | (1/4,1/3,1/2) | (1/3,1/2,1) | (1,1,1) | (1,2,3) | (2,3,4) | (3,4,5) | (4,5,6) | (5,6,7) | (6,7,8) | (7,8,9) |
Geom | (1/5,1/4,1/3) | (1/4,1/3,1/2) | (1/3,1/2,1) | (1,1,1) | (1,2,3) | (2,3,4) | (3,4,5) | (4,5,6) | (5,6,7) | (6,7,8) |
RB | (1/6,1/5,1/4) | (1/5,1/4,1/3) | (1/4,1/3,1/2) | (1/3,1/2,1) | (1,1,1) | (1,2,3) | (2,3,4) | (3,4,5) | (4,5,6) | (5,6,7) |
NDRLI | (1/7,1/6,1/5) | (1/6,1/5,1/4) | (1/5,1/4,1/3) | (1/4,1/3,1/2) | (1/3,1/2,1) | (1,1,1) | (1,2,3) | (2,3,4) | (3,4,5) | (4,5,6) |
NDWI | (1/8,1/7,1/6) | (1/7,1/6,1/5) | (1/6,1/5,1/4) | (1/5,1/4,1/3) | (1/4,1/3,1/2) | (1/3,1/2,1) | (1,1,1) | (1,2,3) | (2,3,4) | (3,4,5) |
NBR | (1/9,1/8,1/7) | (1/8,1/7,1/6) | (1/7,1/6,1/5) | (1/6,1/5,1/4) | (1/5,1/4,1/3) | (1/4,1/3,1/2) | (1/3,1/2,1) | (1,1,1) | (1,2,3) | (2,3,4) |
SAVI | (1/10,1/9,1/8) | (1/9,1/8,1/7) | (1/8,1/7,1/6) | (1/7,1/6,1/5) | (1/6,1/5,1/4) | (1/5,1/4,1/3) | (1/4,1/3,1/2) | (1/3,1/2,1) | (1,1,1) | (1,2,3) |
Litho | (1/10,1/10,1/10) | (1/10,1/9,1/8) | (1/9,1/8,1/7) | (1/8,1/7,1/6) | (1/7,1/6,1/5) | (1/6,1/5,1/4) | (1/5,1/4,1/3) | (1/4,1/3,1/2) | (1/3,1/2,1) | (1,1,1) |
Fuzzy Geometric Mean Value () | |||
---|---|---|---|
SA | 3.64 | 4.53 | 5.32 |
Soil | 2.59 | 3.36 | 4.23 |
LULC | 1.83 | 2.41 | 3.13 |
Geom. | 1.28 | 1.71 | 2.25 |
RB | 0.90 | 1.20 | 1.59 |
NDRLI | 0.63 | 0.84 | 1.12 |
NDWI | 0.44 | 0.59 | 0.78 |
NBR | 0.32 | 0.41 | 0.55 |
SAVI | 0.24 | 0.30 | 0.39 |
Litho. | 0.19 | 0.22 | 0.28 |
Fuzzy Weight () | |||
---|---|---|---|
SA | 0.19 | 0.29 | 0.44 |
Soil | 0.13 | 0.22 | 0.35 |
LULC | 0.09 | 0.16 | 0.26 |
Geom. | 0.07 | 0.11 | 0.19 |
RB | 0.05 | 0.08 | 0.13 |
NDRLI | 0.03 | 0.05 | 0.09 |
NDWI | 0.02 | 0.04 | 0.06 |
NBR | 0.02 | 0.03 | 0.05 |
SAVI | 0.01 | 0.02 | 0.03 |
Litho. | 0.01 | 0.01 | 0.02 |
12.046 | 15.557 | 19.626 | |
0.051 | 0.064 | 0.083 |
Weight () | Normalized Weight () | |
---|---|---|
SA | 0.306 | 0.283 |
Soil | 0.233 | 0.215 |
LULC | 0.169 | 0.157 |
Geom. | 0.121 | 0.112 |
RB | 0.085 | 0.079 |
NDRLI | 0.059 | 0.055 |
NDWI | 0.042 | 0.039 |
NBR | 0.029 | 0.027 |
SAVI | 0.021 | 0.020 |
Litho. | 0.016 | 0.01 |
∑ | 1.08 | 1.00 |
Factors | Collinearity Statistics | |
---|---|---|
Tolerance | VIF | |
Slope | 0.829 | 1.206 |
Soil | 0.853 | 1.173 |
LULC | 0.932 | 1.073 |
Geomorphology | 0.853 | 1.173 |
Road buffer | 0.920 | 1.088 |
NDRLI | 0.208 | 4.808 |
NDWI | 0.206 | 4.854 |
NBR | 0.215 | 4.651 |
SAVI | 0.217 | 4.608 |
Lithology | 0.868 | 1.152 |
LULC classes | Total | |||||
---|---|---|---|---|---|---|
Forest | Built-Up Area | Agricultural Land | Wasteland | |||
GPS points | Forest | 5 | 0 | 0 | 1 | 6 |
Built-up area | 0 | 3 | 0 | 1 | 4 | |
Agricultural land | 2 | 1 | 82 | 0 | 85 | |
Wasteland | 2 | 1 | 0 | 12 | 15 | |
Total | 9 | 5 | 82 | 14 | 110 |
Value | Asymptotic Standard Error a | Approximate T b | Approximate Significance | |
---|---|---|---|---|
Measure of agreement–Kappa | 0.818 | 0.057 | 12.225 | 0.000 |
No. of valid cases | 110 | - | - | - |
AHP | F-AHP | GIS-TISSA | NCESS | |||||
---|---|---|---|---|---|---|---|---|
Susceptible Zones | Area in sq. km. | Percentage of Area | Area in sq. km. | Percentage of Area | Area in sq. km. | Percentage of Area | Area in sq. km. | Percentage of Area |
Low | 320.34 | 43.42 | 317.32 | 43.01 | 411.67 | 55.80 | 50.54 | 6.85 |
Moderate | 280.35 | 38.00 | 282.71 | 38.32 | 82.19 | 11.14 | 133.68 | 18.12 |
High | 137.08 | 18.58 | 137.74 | 18.67 | 111.11 | 15.06 | 61.61 | 8.35 |
Total | 737.77 | 100 | 737.77 | 100 | 604.97 * | 82 * | 245.83 ** | 33.32 ** |
Matrices | Training Dataset | Validation Dataset | ||||||
---|---|---|---|---|---|---|---|---|
AHP | F-AHP | TISSA | NCESS | AHP | F-AHP | TISSA | NCESS | |
Accuracy | 0.831 | 0.842 | 0.863 | 0.752 | 0.855 | 0.856 | 0.869 | 0.770 |
MAE | 0.292 | 0.278 | 0.274 | 0.422 | 0.249 | 0.243 | 0.226 | 0.309 |
RMSE | 0.218 | 0.214 | 0.196 | 0.298 | 0.159 | 0.147 | 0.122 | 0.177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhagya, S.B.; Sumi, A.S.; Balaji, S.; Danumah, J.H.; Costache, R.; Rajaneesh, A.; Gokul, A.; Chandrasenan, C.P.; Quevedo, R.P.; Johny, A.; et al. Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps. Land 2023, 12, 468. https://doi.org/10.3390/land12020468
Bhagya SB, Sumi AS, Balaji S, Danumah JH, Costache R, Rajaneesh A, Gokul A, Chandrasenan CP, Quevedo RP, Johny A, et al. Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps. Land. 2023; 12(2):468. https://doi.org/10.3390/land12020468
Chicago/Turabian StyleBhagya, Sheela Bhuvanendran, Anita Saji Sumi, Sankaran Balaji, Jean Homian Danumah, Romulus Costache, Ambujendran Rajaneesh, Ajayakumar Gokul, Chandini Padmanabhapanicker Chandrasenan, Renata Pacheco Quevedo, Alfred Johny, and et al. 2023. "Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps" Land 12, no. 2: 468. https://doi.org/10.3390/land12020468
APA StyleBhagya, S. B., Sumi, A. S., Balaji, S., Danumah, J. H., Costache, R., Rajaneesh, A., Gokul, A., Chandrasenan, C. P., Quevedo, R. P., Johny, A., Sajinkumar, K. S., Saha, S., Ajin, R. S., Mammen, P. C., Abdelrahman, K., Fnais, M. S., & Abioui, M. (2023). Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps. Land, 12(2), 468. https://doi.org/10.3390/land12020468