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Abstract: The heading stage of rice is a critical period for disease control, such as for panicle blast. The
rapid and accurate monitoring of rice growth is of great significance for plant protection operations
in large areas for mobilizing resources. For this paper, the canopy multispectral information acquired
continuously by an unmanned aerial vehicle (UAV) was used to obtain the heading rate by inversion.
The results indicated that the multi-vegetation index inversion model is more accurate than the
single-band and single-vegetation index inversion models. Compared with traditional inversion
algorithms such as neural network (NN) and support vector regression (SVR), the adaptive boosting
algorithm based on ensemble learning has a higher inversion accuracy, with a correlation coefficient
(R2) of 0.94 and root mean square error (RMSE) of 0.12 for the model. The study suggests that a
more effective inversion model of UAV multispectral remote sensing and heading rate can be built
using the AdaBoost algorithm based on the multi-vegetation index, which provides a crop growth
information acquisition and processing method for determining the timing of rice tassel control.

Keywords: diseases; inversion model; heading rate; vegetation index

1. Introduction

Rice (Oryza sativa), one of the most important food crops in the world, is a staple
food for about 50% of the global population [1]. Rice blast, a fungal disease of rice caused
by Magnaporthe oryzae with the characteristics of wide distribution and high infectivity, is
one of the most damaging diseases that occur in the northern and southern rice regions
of China [2,3]. Rice blast usually causes a 10–30% yield reduction in rice and can induce
total crop failure within 15–20 days in severe cases [4–6]. Panicle blast, a type of rice blast,
usually occurs in the neck and grain of the panicle, which directly affects the yield and
quality of rice and causes immeasurable economic losses to farmers. According to the
Opinions on the Pest Occurrence Trends and Control Technologies at the rice heading
stage issued by the Department of Agriculture and Rural Affairs of Jiangsu Province, the
optimal period for panicle blast control is from the panicle opening/heading stage to the
full heading stage, and pesticide spraying is currently the main method for panicle blast
control. Hence, a quick and timely grasp of the rice heading rate and the rice canopy growth
state can provide a crop data basis for plant protection operations such as spraying and
assist farmers and other business entities to put forward scientific application decisions, to
avoid environmental pollution and ecological balance destruction caused by an excessive
use of pesticides. This is an extremely important part in the future development of precision
agriculture [7,8]. It is of great significance to guarantee food security and the realization of
high-quality development of green agriculture.

Traditional methods for monitoring rice physiological indices include a statistical
survey and crop growth model [9,10]. A statistical survey is labor intensive and time
consuming. It cannot obtain detailed temporal and spatial information of large-scale crops
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quickly and is highly subjective. Crop growth models have problems such as parame-
terized complexity and difficulty in acquiring spatial information for farm management,
with inevitable simulation errors in practical applications [11]. Remote sensing (RS) is a
non-contact, long-range detection technology that can efficiently acquire vegetation canopy
spectral data. Compared with the data acquisition methods of satellite and aerial RS,
unmanned aerial vehicles (UAVs) have the advantages of mobility, flexibility, low data
acquisition costs, and a high spatial and temporal resolution of RS images acquired [12,13].
Currently, the spectral information obtained from UAV multispectral data has been exten-
sively used for field-scale crop growth monitoring [14,15]. In the future, various aerial
survey techniques with a UAV as the piggyback platform will be applied at high frequency
in precision agriculture [16].

A vegetation index (VI) is calculated by combining different spectral bands. Studies
indicate that canopy spectra and VI are closely related to crop growth; the canopy spectral
reflectance presents a certain variation pattern at the growth and development stages
of rice, with more evident regularity of VI. Most of the current monitoring studies on
rice use spectral data and VI to obtain growth parameters such as chlorophyll content,
leaf area index (LAI), and nitrogen content by quantitative inversion [17–19] and focus
on monitoring the whole rice reproductive stage. As the time interval of research data
collection is long, there are obvious changes in crop growth status. Current studies have
deficiencies of continuous monitoring of a certain stage of rice growth and development,
such as heading stage and maturity stage, which are important periods affecting rice yield
and quality. This makes it difficult to provide accurate management decisions for crop
growth. The simplest regression methods for spectral variables and VIs are linear and
nonlinear regressions, which are easy to establish but less robust. In comparison, machine
learning is interpretable [20] and can establish the connection between variables more
effectively. Common machine learning methods such as neural networks and decision trees
can make full use of spectral information to characterize their complex relationships with
physiological variables. For example, Chen et al. [21] built inversion models of rice moisture
content and thousand-grain weight (TGW) using neural networks and decision trees by
extracting multispectral canopy information from rice UAV to implement the monitoring of
a suitable harvest period of rice. In recent years, due to the great generalization capacity and
robustness of ensemble learning, ensemble learning algorithms represented by methods
such as random forest and AdaBoost have been applied by more and more scholars in crop
growth monitoring. For example, Wan et al. [22] extracted rice VI and canopy spectral
information from UAV RS images to build a random forest prediction model for grain yield
and achieved an optimal prediction.

In summary, in order to solve problems such as low efficiency and strong subjectivity
in information collection during the determination of time for the prevention and control of
diseases such as panicle blast during the rice heading stage, the use of an unmanned aerial
vehicle (UAV)-mounted multispectral camera was proposed to collect canopy spectral
information during the rice heading stage. Assisted with five algorithms, namely, neural
network (NN), support vector regression (SVR), random forest (RF), gradient boosting
decision tree (GBDT), and adaptive boosting (AdaBoost), spectral variables and vegetation
index were used to establish the prediction model of rice growth information respectively,
and then the optimal model was selected. According to the requirement of pest control
in the heading of rice, the fast identification method of crop status was provided for
determining the unified control time and operation strategy of intelligent plant protection
equipment.

2. Materials and Methods
2.1. Field Experiment

The rice field experiment was conducted at Taiping Village, Qixia District, Nanjing
(E119◦16′18”, N32◦20′47”). Located in the lower reaches of the Yangtze River, Nanjing has
a typical north subtropical temperate climate with four distinct seasons, sufficient rainfall,
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abundant sunshine, 2100 h of sunshine per year, an average annual temperature of 15.4 ◦C,
a frost-free period of 237 d, and an average annual precipitation of about 1100 mm. Such
an excellent climate, with abundant rainfall and sunshine, provides a warm and humid
growing environment for the experimental rice varieties. With flat and continuous arable
lands, the agricultural cropping of this area is one crop per annum. The three rice varieties
tested were Nanjing 5055, Changxiangjing 1813, and Zixiangnuo. In this experiment, a
randomized block design was used, in which 20 test plots were set up for each variety
with a plot area of 0.5 × 0.5 m; 10 rice plants were selected from each plot, with a total of
60 test plots, marked with numbers 1–60, respectively. This UAV observation experiment
was conducted from 11 September 2022 to 2 October 2022, during which multispectral
RS information of the rice canopy at the rice heading stage in each region was collected
continuously. The collection was suspended in rainy weather. The stems and panicles
started to grow on 11 September; panicle differentiation was completed on 2 October. The
data in a total of 12 periods were collected. The rice experiment area is shown in Figure 1.
Meanwhile, to determine the correlation of canopy spectral information with a rice heading
rate and other indices, RS images were collected to conduct field sampling experiments
synchronously. In this experiment, rice data of three varieties were collected, one plot
for each variety, and 20 sampling spots were randomly selected in each plot. In addition,
10 rice plants were selected as the ROI in each sampling spot, and the rice heading in each
ROI was measured by the counting method. The average heading rate of 20 sampling spots
was taken as the rice heading rate in the plot on that day.
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2.2. Acquisition and Pre-Processing of UAV Image Data
2.2.1. Acquisition of UAV Image Data

The multispectral RS images were acquired using DJI Phantom 4-M (P4M), a small
multi-rotor, high-precision, aerial survey UAV produced by DJI. It was equipped with
a multispectral camera with six 1-inch, 2.08 million pixel CMOS, including one color
sensor for visible imaging and five monochrome sensors for multispectral imaging, in
which multispectral imaging covered 450, 560, 650, 730, and 840 nm spectral bands. The
multispectral image acquisition time was 10 a.m.–12 p.m. (noon) every day with clear and
cloudless or less cloudy weather and an open field of view. The P4M supporting software
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DJI GS Pro V2.0.17 was used in the experiment for mapping selection. The UAV flew
according to the route trajectory automatically planned by the flight control system, with
a flight height of 12 m, set speed of 5 m/s, forward overlap of 80%, side overlap of 70%,
its lens vertically downward, and an image resolution of 1600 × 1300 pixel. The ground
sampling distance (GSD) was 0.63 cm/pixel. Meanwhile, a standard white board was
placed in the experiment area. The size of the standard white board was 1 × 1m and made
of PTFE material. The diffuse reflection rate can be regarded as a fixed value, convenient
for subsequent radiation correction of the acquired image and elimination of the sunshine
difference. The UAV RS experiment is shown in Figure 2.
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2.2.2. Pre-Processing of Multispectral Data

Sixty groups of data were collected each day, and a total of 720 groups of multispectral
aerial raw images were obtained. The raw images were recorded as TIF, which recorded
a digital number (DN) and needed to be converted to reflectance data. The collected rice
canopy multispectral data were pre-processed by concatenation correction, radiometric
correction, etc., and square selection was delineated as regions of interest (ROI) at the center
of the experimental plot, with a size of 50 × 50 pixels of each square selection [23]. For
the images acquired each day, 20 ROIs were cropped out for each variety of rice, and the
average value of pixels in each ROI was taken as the spectral value of that region. At the
same time, the white correction area of the standard white board was selected. The spectral
mean of the white correction area was taken to perform a band operation on the RS images.
The calculation method is shown in Equation (1).

CI =
I − B

W − B
, (1)

where CI is the spectral reflectance after radiation correction, I denotes the spectral mean of
ROI in that band, W denotes the spectral mean of the standard white correction area in that
band on that day, and B denotes the pixel mean in that band when the UAV lens is covered
on that day.

2.3. Selection of VIs

VIs are indices composed of linear or nonlinear combinations between different bands,
which can be used to diagnose the vegetation growth state or obtain various vegetation
parameters by inversion. Currently, research results of UI have been achieved in the
inversion studies of crop LAI, chlorophyll content, yield, etc. For this paper, 10 commonly
used VIs were selected, with the specific calculation expressions and sources shown in
Table 1.
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Table 1. VI and calculation formula.

Vegetation Index Calculation Formula Reference

Normalized Difference Vegetation Index
(NDVI) (NIR − R)/(NIR + R) Tucker et al. [24]

Green Normalized Difference Vegetation Index
(GNDVI) (R − G)/(R + G) Gitelson et al. [25]

Normalized Difference Red-Edge Index
(NDRE) (NIR − RE)/(NIR + RE) Daughtry et al. [26]

Modified Nonlinear Vegetation Index
(MNVI) 1.5 (NIR2 − R)/(NIR2 + R + 0.5) Gong et al. [27]

Red-Edge Chlorophyll Index
(CIred edge) NIR/RE − 1 Gitelson et al. [28]

Difference Vegetation Index
(DVI) NIR − R Jordan. [29]

Triangular Vegetation Index
(TVI) 60(RE − G) − 100(R − G) Broge et al. [30]

Ratio Vegetation Index
(RVI) NIR/R Birth et al. [31]

Enhanced Vegetation Index
(EVI) 2.5(NIR − R)/(NIR + 6NIR − 7.5B + 1) Huete et al. [32]

Optimized Soil Adjusted Vegetation Index
(OSAVI) 1.16(NIR − R)/(NIR + R + 0.16) Roujean et al. [33]

Note: R is red band, G is green band, B is blue band, RE is red-edge band, NIR is near infrared band.

In the subsequent model evaluation, the accuracy of the prediction model was evalu-
ated using the fitting coefficient of determination (R2) and root mean square error (RMSE)
of the measured and predicted values, with the calculation formula as follows:

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(ŷi − y)2

, (2)

RMSE =

√√√√√ n
∑

i=1
(ŷi − yi)

2

n
, (3)

where ŷi denotes the predicted value, yi denotes the measured value, y denotes the mean
value, and n denotes the number of samples. The larger the coefficient of determination
(R2) is, the smaller the root mean square error (RMSE) and the higher the model accuracy
are.

2.4. Data Processing Methods
2.4.1. NN and SVR

With features such as nonlinear mapping and adaptive learning, NN can implement
arbitrary nonlinear mapping of input and output data and adjust the connection weights
between the connected input and output data by error back propagation to obtain a good
fit. SVR is a supervised machine learning algorithm developed based on the theory of
structural risk minimization. SVR implements nonlinear mapping to a high-dimensional
space through a kernel function that transforms nonlinear processes in low dimensions into
linear processes in high dimensions and finally solves the maximum marginal hyperplane
(MMH) issue.

2.4.2. RF

RF is a machine learning model that integrates multiple regression and classification
tree algorithms; it has the advantages of a great generalization capacity, fast training, and
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high accuracy. The RF regression model consists of multiple regression trees, and its output
is the mean of the predictions of all decision trees. Based on the idea of bagging, the
algorithm performs random sampling of the data set using the bootstrap sampling method.
A total of two-thirds of the training samples are used to obtain the regression results; the
remaining samples are used as the validation set to test the prediction accuracy of the
model.

2.4.3. GBDT

GBDT regression is an iterative decision tree algorithm consisting of multiple decision
trees. Based on the boosting iteration idea, the algorithm first initializes a weak model
and proceeds towards the goal of reducing the residuals of the previous weak model in
each subsequent round of iteration. Aiming at minimizing the loss function of the current
learner, the GBDT model ultimately sums the results of all trained regression trees to obtain
the final prediction results.

2.4.4. AdaBoost Algorithm

AdaBoost is an ensemble learning algorithm. Starting with a weak learning algorithm,
its core idea is to obtain a series of weak learners through repeated training and build a
strong learner with these weak ones by weighted voting [34]. Its regression steps are shown
in Figure 3.
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2.5. Data Strategy Analysis

In the experiment, the statistics of three rice varieties were collected, and the statistics
of the heading rate were collected by a counting method in the experimental plot. When all
rice varieties’ ears were out completely, within a certain sampling point, “A” represented
the maximum of the collected ear emergence number in a test day, and “a” represented the
ear emergence number collected every day. The daily rate of ear emergence of rice in this
region can be calculated by the following formula:

X =
a
A

(4)

The average heading rate of 20 sampling points was taken as the rice heading rate of
this day in this plot.

Meanwhile, a total of 720 sets of multispectral statistics were obtained in the experi-
ment, among which 600 sets of statistics were randomly selected as training statistics and
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120 sets of statistics were selected as test data. Using the method mentioned in Section 2.4,
the reflectance value of each band of the rice canopy spectrum, single vegetation index,
and multi-vegetation index were respectively taken as input statistics of the model, and the
heading rate was taken as output statistics. With the determination coefficient (R2) and root
mean square error (RMSE) as the discrimination criteria, the optimal model was selected to
obtain the heading situation of rice at the heading stage.

3. Research Results
3.1. Rice Heading Rate

The whole growth process of rice is divided into six stages: tillering stage, nodulation
stage, jointing stage, heading stage, grain filling stage, and maturity stage. The optimal pe-
riod to control pests and diseases such as panicle blast is from the panicle opening/heading
stage to the full heading stage (heading rate up to 80%), and the whole cycle lasts about
20 days. The different phases of the rice heading stage are shown in Figure 4.
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The variation of rice heading rates over time is shown in Figure 5.
Figure 5 indicates that each variety of rice has a similar variation trend of heading

rates but slightly different heading speeds. Changxiangjing 1813 showed rapid growth
at 1–4 d, with the heading rate increasing rapidly from 0 to 42% before it slowed down
and then increasing from 42 to 73% at 4–10 d. Nanjing 5055 showed a uniform heading
rate at 1–7 d, with the heading rate varying from 0 to 51%, slowing down in the following
2 days, and increasing slowly from 51 to 56%. Although Zixiangnuo grew quickly in the
heading rate at 6–7 d and 10–11 d, its overall heading rate was relatively uniform at the
heading stage. In the last 2 days, the heading rates of the above three rice varieties showed
accelerated increase by 27, 31, and 36%, respectively.
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Figure 5. Rice experiment area.

3.2. Spectral Reflectance

The multispectral RS test method for the rice canopy and the multispectral RS image
processing and spectral reflectance extraction method described in Section 2.2.2 were used
to obtain the spectral reflectance of three rice varieties (Nanjing 5055, Changxiangjing 1813,
and Zixiangnuo) at five bands from 11 September 2022 to 2 October 2022, as detailed in
Table 2.

As shown in Table 2, the spectral reflectance at the 840 and 730 nm bands was relatively
high, fluctuating around 50 and 40%, respectively; the variation trends at the five bands
were almost identical. In the first 5 days of the observation period, the spectral reflectance
of the three rice varieties at all bands presented an upward trend, while, in the last 2 days of
the observation period, the spectral reflectance at each band presented a downward trend.
Nanjing 5055 and Zixiangnuo showed similar variation trends at all bands; the spectral
reflectance of Changxiangjing 1813 varied in individual days and fluctuated sharply in the
middle of the observation period.

3.3. Regression Models of Different Bands, Different VIs, and Heading Rates

For this paper, the multispectral information of the rice canopy at the heading stage
was collected by a UAV equipped with a multispectral camera, and the rice heading rate in
each plot was measured by the counting method at the same time. The VI was obtained by
band combination operation, and regression analysis was performed on the variables using
the traditional algorithms (NN, SVR, RF, GBDT, and AdaBoost) with the reflectance and VI
of each band as the model input data and the heading rate as the output data, respectively.
A total of 720 groups of data were collected in this experiment; 600 groups of data were
randomly selected as the training data, and the remaining 120 groups of data were selected
as the test data of the model.
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Table 2. Average spectral reflectance in different bands during the experiment period.

Date Varieties
Band

450 560 650 730 840

11 September

Nanjing 5055 27.03% 26.15% 17.92% 38.65% 48.52%
Changxiangjing

1813 31.84% 33.28% 26.15% 43.15% 50.14%

Zixiangnuo 24.25% 23.81% 14.54% 38.15% 46.58%

12 September

Nanjing 5055 27.12% 27.46% 18.08% 39.78% 47.97%
Changxiangjing

1813 32.60% 33.93% 26.04% 44.42% 50.26%

Zixiangnuo 24.66% 23.67% 15.02% 39.27% 46.74%

16 September

Nanjing 5055 29.26% 29.19% 21.08% 41.23% 50.75%
Changxiangjing

1813 35.45% 34.16% 27.48% 47.28% 55.67%

Zixiangnuo 25.16% 24.49% 15.58% 41.25% 50.53%

17 September

Nanjing 5055 30.66% 29.79% 21.17% 41.92% 51.06%
Changxiangjing

1813 36.16% 32.14% 24.85% 47.21% 56.58%

Zixiangnuo 25.78% 25.47% 14.99% 42.82% 51.37%

18 September

Nanjing 5055 28.86% 28.83% 21.00% 38.84% 54.32%
Changxiangjing

1813 40.04% 36.14% 30.44% 47.12% 63.43%

Zixiangnuo 25.47% 26.59% 15.89% 42.31% 60.97%

19 September

Nanjing 5055 28.54% 27.84% 20.66% 37.71% 56.81%
Changxiangjing

1813 33.70% 31.43% 24.44% 43.36% 62.22%

Zixiangnuo 21.78% 23.06% 13.62% 38.70% 56.24%

20 September

Nanjing 5055 27.22% 27.34% 19.78% 35.98% 47.68%
Changxiangjing

1813 37.56% 34.06% 28.78% 42.23% 53.42%

Zixiangnuo 26.63% 28.47% 17.21% 40.70% 52.93%

21 September

Nanjing 5055 29.08% 28.54% 21.08% 38.40% 49.99%
Changxiangjing

1813 37.31% 35.64% 28.55% 46.73% 58.96%

Zixiangnuo 26.08% 29.98% 16.71% 48.36% 57.62%

22 September

Nanjing 5055 25.90% 25.94% 18.56% 34.83% 46.33%
Changxiangjing

1813 36.04% 33.74% 25.96% 46.25% 56.84%

Zixiangnuo 25.22% 27.84% 16.51% 44.50% 55.63%

25 September

Nanjing 5055 30.95% 32.12% 24.10% 39.67% 49.67%
Changxiangjing

1813 38.48% 36.64% 29.03% 47.26% 58.03%

Zixiangnuo 24.28% 25.66% 16.35% 41.90% 58.73%

29 September

Nanjing 5055 31.94% 33.29% 25.80% 41.90% 54.78%
Changxiangjing

1813 36.58% 35.02% 28.40% 46.84% 64.04%

Zixiangnuo 26.88% 23.80% 18.90% 37.38% 62.24%

2 October

Nanjing 5055 27.79% 28.19% 20.98% 39.87% 46.93%
Changxiangjing

1813 31.10% 30.79% 25.01% 41.41% 49.71%

Zixiangnuo 24.67% 24.26% 17.69% 34.59% 46.02%
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3.3.1. Regression Models of Rice Canopy Spectral Information and Heading Rates at
Different Bands

From the fitting effect of each band, the 650 and 730 nm bands had a relatively good
fit, in which the 730 nm band had the best fit, with the highest coefficient of determination
(R2) up to 0.79, corresponding to a good correlation between the model input and output
variables; the model had a good prediction effect. The fitting effects of the 450, 560, and
840 nm bands were slightly inferior, and most of the fitting correlation coefficients for the
heading rate were below 0.5, in which the 450 nm band had the worst fitting effect and
the lowest fitting coefficient of only 0.31; the model had a relatively poor prediction effect.
From the regression results of each band, the two red-edge bands had the best regression
effects on the heading rate. This is because rice panicles are yellow at the heading stage,
making it possible to distinguish yellow panicles from green leaves by color as the heading
proportion increases. Thus, the rice was more sensitive to changes at the 650 and 730 bands
at the heading stage. Hence, variables related to the 650 and 730 nm bands can be selected
as input variables for the model in subsequent studies.

As shown in Table 3, from the regression methods, RF, GBDT, and AdaBoost all had
relatively good regression effects and the overall RMSE was also small. Although NN
showed a good fit at some bands, the fitting effect fluctuated significantly among the bands
in general and the RMSE was slightly higher than the other methods, indicating that the
NN model was more unstable than the other models. The RF fitting effect was relatively
stable, and the fitting results were in the middle level of the regression methods. The SVR
fitting effect was the worst, with the coefficient of determination generally lower than the
other regression methods and the highest RMSE.

Table 3. Fitting results of single-band information input model.

Input Band Fitting Model
Fitting Result

R2 RMSE

450

NN 0.40 0.30
SVR 0.31 0.30
RF 0.52 0.28

GBDT 0.59 0.24
AdaBoost 0.63 0.27

560

NN 0.43 0.30
SVR 0.33 0.35
RF 0.53 0.27

GBDT 0.51 0.34
AdaBoost 0.65 0.18

650

NN 0.39 0.33
SVR 0.40 0.33
RF 0.67 0.34

GBDT 0.63 0.37
AdaBoost 0.72 0.29

730

NN 0.68 0.27
SVR 0.51 0.25
RF 0.63 0.21

GBDT 0.66 0.18
AdaBoost 0.79 0.20

840

NN 0.36 0.26
SVR 0.56 0.29
RF 0.43 0.24

GBDT 0.48 0.21
AdaBoost 0.53 0.17
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3.3.2. Regression Modes of Rice Single VIs and Heading Rate

Six VIs with high correlation with the 650 and 730 nm bands were selected: NDVI,
GNDVI, NDRE, MNVI, CIred edge, and DVI. Regression analysis models of the heading
rates were established using the above regression methods, respectively. The results are
shown in Table 4.

Table 4. Fitting effect of single VI and heading rate.

Input VI Fitting Model
Fitting Result

R2 RMSE

NDVI

NN 0.59 0.31
SVR 0.76 0.32
RF 0.70 0.29

GBDT 0.75 0.22
AdaBoost 0.83 0.19

GNDVI

NN 0.41 0.33
SVR 0.60 0.31
RF 0.44 0.27

GBDT 0.51 0.41
AdaBoost 0.54 0.37

NDRE

NN 0.25 0.24
SVR 0.43 0.26
RF 0.39 0.25

GBDT 0.52 0.19
AdaBoost 0.64 0.11

MNVI

NN 0.52 0.26
SVR 0.61 0.28
RF 0.47 0.27

GBDT 0.44 0.35
AdaBoost 0.63 0.30

CIred edge

NN 0.34 0.26
SVR 0.42 0.29
RF 0.39 0.25

GBDT 0.46 0.28
AdaBoost 0.41 0.37

DVI

NN 0.27 0.19
SVR 0.35 0.30
RF 0.54 0.24

GBDT 0.51 0.33
AdaBoost 0.63 0.31

As shown in Table 4, from the regression methods, SVR showed a good fit, with the
coefficients of determination mostly above 0.6; however, its RMSE was generally higher
than the other four methods, with instability in the regression of VI and heading rate.
RF and GBDT had good fitting effects, with strong inversion capacity of the model. NN
showed the worst comprehensive fitting effect. The AdaBoost algorithm based on ensemble
learning had the best fitting effect of the VIs and heading rate, with the highest fitting
coefficient of determination (R2) of 0.83. This is because AdaBoost can improve the feature
extraction capacity of the model by building multiple regression models and assigning
different weights to them.

From the VIs, NDVI had the best fitting effect. Except for NN (0.59), the fitting
coefficients of determination of the other four methods were all above 0.7, which was
evidently better than the other VIs; at this point, the model had a good prediction effect.
In addition, GNDVI, MNVI, and NDRE also presented good fitting effects, indicating
that these four VIs can be used for the prediction of a rice heading rate. The coefficients
of determination of CIred edge and DVI were mostly around 0.4 based on each regression
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method, and the inverse performance of these two indices was insufficient for the prediction
of heading rates.

In brief, rice heading rates can be properly predicted by using four VIs (NDVI, GNDVI,
MNVI, and NDRE) through the regression analysis of data based on AdaBoost, and the
model had a significant inversion capacity.

3.3.3. Regression Models of Rice Heading Rate Based on Multi-VIs

To determine the significance of monitoring rice heading rates, multi-VIs were input
into different monitoring models. Based on four VIs (NDVI, GNDVI, MNVI, and NDRE),
the inversion model of the rice heading rate was constructed by five methods (NN, SVR,
RF, GBDT, and AdaBoost). In addition, the model parameters were adjusted to identify the
optimal model.

Table 5 indicates that, for the inversion models of heading rates based on four VIs,
the coefficients of determination (R2) of all five models were above 0.79, indicating a good
prediction capacity. Compared with the traditional methods, the ensemble learning-based
RF, GBDT, and AdaBoost showed good inversion capacity because the ensemble learning
algorithm increased the generalization capacity of the model by homogenizing the bias.
Combined with the two evaluation indices (R2 and RMSE), the AdaBoost model was
the optimal model, with the coefficient of determination (R2) of 0.94 and RMSE of 0.12.
Compared with the optimal model fitted by single-band and single VI, the coefficient of
determination (R2) was increased by 0.15 and 0.11, respectively; RMSE was decreased by
0.08 and 0.07, respectively, indicating that the multi-VI inversion performance of heading
rates can improve the prediction accuracy and robustness of the model. Hence, AdaBoost
based on ensemble learning had better inversion capacity for the rice heading rate, which
can provide a temporal reference for panicle blast control and plant protection operations
around the heading stage. The inversion results of the optimal model are shown in Figure
S1 of the Supplementary Material.

Table 5. Inversion results based on four VIs and heading rate.

Fitting Model
Fitting Result

R2 RMSE

NN 0.81 0.17
SVR 0.79 0.15
RF 0.89 0.33

GBDT 0.91 0.25
AdaBoost 0.94 0.12

4. Discussion

In recent years, UAV-based multispectral RS technology has been increasingly used
for monitoring the growth status and physiological indices such as nitrogen content,
chlorophyll content, LAI, and yield of crops. It has made up for the defect of RS technology
in crop monitoring with a single data type [35,36] and improved the accuracy and stability
of crop growth information and physiological index estimation. In this paper, the spectral
information of the rice canopy at the heading stage was continuously collected using UAV
RS technology. Combined with the spectral reflectance and VI at different bands, inversion
models of heading rates were established based on five algorithms (NN, SVR, RF, GBDT,
and AdaBoost). The rice heading rate estimated based on the AdaBoost algorithm was the
optimal model to acquire an accurate rice heading situation, which preliminarily verified
the significant role of UAV multispectral RS in the unified control of rice panicle blast.

The three rice varieties tested in this study all fall into early-maturing late japonica rice,
which is a common rice cultivar in the regions south of the Yangtze River in China. Previous
studies indicated that, at the heading stage, rice panicles gradually grow and cover the
whole canopy, resulting in differences in the growth status of each rice variety [37], as
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manifested by differences in physiological indices such as the heading rate and spectral
reflectance. However, the area selected for this experiment has the same spatial and
temporal dimensions, where the environmental variables such as light intensity, sunshine
duration, and rainfall amount are almost identical. In the short-term continuous monitoring,
it can be seen from the results of Figure 5 and Table 2 that indicators such as heading rate
and spectral reflectance did not show significant differences. From this experiment alone,
the intrinsic physiological properties of each rice variety are the most important factors
affecting the heading rate and spectral reflectance of the canopy. This research lacked
the investigation and analysis of intrinsic factors of each rice variety. In future studies,
quantitative measurements of the rice heading rates of different varieties in different
planting regions can be made to develop applicable strategies of plant protection operations
for panicle blast control of different varieties in different regions.

This study indicated that, among the five spectral bands, the best fitting regression
models for the heading rate were established at the 650 and 730 nm bands, suggesting that
the red-edge band was more associated with the growth status of rice at the heading stage.
This corroborated the studies by Miao et al. [38] and Yang et al. [39], which screened six VIs
with high correlation with the red-edge band. Among them, NDVI, GNDVI, MNVI, and
NDRE had better fit and prediction effects than the single band, indicating that the growth
status of rice at the heading stage could be better characterized based on these four VIs,
which was also verified by the final inversion model of the heading rate based on four VIs.
The prediction analysis of the models showed that the estimation results based on various
algorithms differed significantly, and the traditional machine learning methods could not
estimate the rice heading rate effectively by using spectral information. The AdaBoost
regression based on ensemble learning could predict the heading rate better than the other
algorithms and was also more stable because the ensemble learning algorithm homogenized
the bias and obtained better decision edges by weighting the edge components, which
increased the generalization capacity of the model [40,41].

In this paper, we proposed a method to construct the inversion model of the rice
heading rate by using UAV multispectral images and a multi-vegetation index, and the
inversion results were good. The physiological state of rice at the heading stage can
be determined based on this method, which provides theoretical support for pesticide
precision spraying and intelligent plant protection machinery operation in rice panicle blast
prevention and control. In the future, we will further set up more dispersed experimental
areas and more diversified rice varieties’ experimental groups to perform a more detailed
grading analysis. At the same time, this method can also be applied to other crops, so that
more large areas of crop phenology and growth can be rapidly and accurately monitored.

5. Conclusions

1. The rice canopy color changed at the heading stage and further affected canopy
reflectance. The fitting results of the regression models for single band and heading
rate indicated that the 650 and 730 nm bands were more sensitive at the rice heading
stage.

2. The inversion models of single band, single VI, multi-VIs, and multi-VI combinations
were superior to the inversion models of single band and single VI. The AdaBoost-
based inversion model of the rice heading rate was the best, with an R2 of 0.94 and
RMSE of 0.12. Among the several methods, the ensemble learning-based algorithm
could further improve the accuracy and robustness of the inversion model compared
with the traditional machine learning algorithm.

The data acquisition and processing model established in this study can provide data
support for the unified control of panicle blast and other pests during the heading period
of rice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land12020469/s1, Figure S1: Best inversion model results.

https://www.mdpi.com/article/10.3390/land12020469/s1
https://www.mdpi.com/article/10.3390/land12020469/s1
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