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Abstract: This paper proposes a geo-hazard risk assessment technique to analyze the impacts of
surface subsidence monitored in a major coal mine in Nigeria. In many developing countries,
disaster risk management schemes have mainly focused on traditional singular hazard assessment,
vulnerability assessment, or risk assessment. However, it is difficult to use a singular application to
adequately address hazard assessment due to the variation in data requirements, factors associated
with the hazards, and the various elements at risk. Most times, hazard assessment schemes heavily
rely on data and techniques from different global organizations that collate data on disasters, using
various scales and objectives to make informed decisions. Several challenges seemingly arise from
total reliance on these kinds of data due to standardization, the exact number of potential victims,
and the purpose of the data collection. This makes disaster information collected at the local level
unique and assessment schemes more complete; however, the coverage is limited worldwide. The
proposed approach combines the spatial relationship between vulnerability assessment and elements
at risk to highlight the grave consequences of potential disasters. Thus, the aim is to underscore the
importance of integrating local-level inputs in analyzing risk factors and vulnerability indicators
for hazard assessment. This study was conducted at the Onyeama coal mine in South East Nigeria.
This area has experienced severe negative impacts of subsidence over the years. We exploit data
from Sentinel-1 Synthetic Aperture Radar (SAR) Satellites and Small-Baseline Subset Differential
Interferometric Synthetic Aperture Radar (SBAS-DInSAR) technique to map the study area. The
results generate an elements-at-risk database with a particular focus on population density, road
networks, and building networks identified as indices for loss estimation.

Keywords: surface subsidence monitoring; disaster risk assessment; vulnerability assessment;
elements-at-risk mapping

1. Introduction

Over the past decades, extreme events such as climate change, global warming, and
unsustainable rapid urban development have expedited a significant increase in natural
disasters around the world [1]. In many parts of the world, certain types of disasters are
more prevalent in different regions [2]. Geophysical disasters such as earthquakes mainly
occur within active plate tectonic boundaries. Volcanos are witnessed mainly around
subduction zones, tsunamis occur in active plate margins, tropical cyclones, hurricanes, or
typhoons occur in open waters, with impacts seen along coastlines or coastal areas, and
landslides or subsidence occurs in hilly or mountainous regions with soft soil [1,3,4]. Some
disasters are rapid, while others are quite subtle. Disasters such as hurricanes, earthquakes,

Land 2023, 12, 575. https://doi.org/10.3390/land12030575 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12030575
https://doi.org/10.3390/land12030575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0001-6479-0943
https://orcid.org/0000-0001-5569-153X
https://orcid.org/0000-0002-7753-4751
https://doi.org/10.3390/land12030575
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12030575?type=check_update&version=2


Land 2023, 12, 575 2 of 21

and floods are instant with widespread losses, while others, such as desertification, drought,
surface subsidence, sea level rise, soil erosion, and glacial retreat, are quite slow but may
cause larger impacts over time [1,4]. In Nigeria, the most common disasters are occasional
flooding, subsidence, desertification, drought, sea level rise, and soil erosion [5,6]. These
events may be categorized as slow or negligible, with little media coverage [1]; however,
their long-term impacts are witnessed in environmental degeneration, the degeneration
of surface and underground water conditions, and the destruction of surface structures
and utilities [2,7]. Recent studies have even suggested that Nigeria may not be free from
seismogenic hazards due to recurring incidences of landslides triggered by rain or running
water and ground shaking in various parts of the country [3,5,7].

In the South Eastern states of Nigeria, hazards such as land subsidence and soil erosion
have increasingly become major environmental issues [8]. It is estimated that approximately
500 tons/km2 of soil per year are washed away due to soil erosion [6,8]. Land subsidence
occurs due to both human-induced and natural causes, such as earth motion, excessive
exploitation of groundwater, and indiscriminate exploration of minerals and resources
such as coal, oil, and gas [9]. Soil erosion, on the other hand, is a result of rain on slopes,
floods, and poor stormwater drainage networks [5,8]. The continuous ephemeral flows
along steep slopes during intense rainfall usually cause soil erosion to advance into gully
erosion [10]. The expansion of these gullies has degraded many areas of land and damaged
building infrastructure. This may lead to the splitting of communities and the destruction
of pathways [5,10]. With a booming population, these combined details put significant
pressure on land resources and the safety of the population living around the gullies [5,8].
This problem is more prominent as the country is prone to flooding disasters. In the
year 2022 alone, more than six hundred lives have been lost and hundreds of thousands
of people have been displaced because of flooding (BBC News, 2022). This has become
a perennial occurrence with long-term impacts on the economy, and the destruction of
major infrastructure such as transportation routes, power transmission lines, and water
supply. In addition, top soils are washed off from farmlands, thus, leading to poor food
production [8,10,11].

Traditionally, the singular focus of most operational disaster risk management schemes
has mainly been on either hazard assessment or vulnerability assessment [1,2]. However,
the dynamics of different hazards limit the acceptance of each singular application due
to data requirements, triggering factors, and various elements at risk [12,13]. Moreover,
hazards can be exclusive, successive, or interconnected in their various origins and effects.
Thus, each hazard is characterized by its location, the area affected (size or magnitude),
intensity, speed of onset, duration, and frequency [2,14–16]. This ambiguity renders the
application of each singular assessment inadequate for operational environmental disaster
risk management schemes [16–18]. Again, for most operational disaster risk management
schemes, emphasis is laid on data collection, rate of occurrence, effect on people, and po-
tential cost to countries [1,19,20]. As such, most developing countries rely on organizations
that collect information on disasters at different scales and with different objectives to make
informed decisions [13,21–23]. However, several challenges arise from total reliance on
data from these organizations. The issue of standardization, the exact number of people
affected, triggering factors, and the purpose of data collection is usually a subjective deci-
sion, especially when insurance companies need to pay premiums [2,24,25]. Moreover, the
spatial distribution of risks solely based on information from global databases is vague and
cannot guide local disaster safety reduction work [8,10,11]. This makes disaster information
collected at local levels unique and more complete; however, the coverage is limited world-
wide [1,2]. Currently, many industrialized countries develop their own national disaster
risk assessment schemes by integrating local-level inputs (data collection and appropriate
assessment techniques) as a key part of the process [1,4]. Others collaborate to establish na-
tional or regional disaster risk databases, such as the Natural Disaster Database (Nat-Cat) of
the Munich Reinsurance Company in Germany, the Swiss Reinsurance Company (Sigma),
and the Emergency Disaster Database (EM-DAT) of the National Centre for Research on
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the Epidemiology of Disasters of the University of Leuven in Belgium, etc. [5,7,9]. In
developing countries such as Nigeria, the local level inputs for appropriate assessment
of disasters are hugely undervalued and in most cases ignored [12–14]. Unfortunately,
the overlooked historical disaster data collected at local and small-scale regional units are
effective statistical indicators for complete disaster risk assessment schemes [9,14]. Ignoring
them renders disaster assessment response efforts inadequate.

This paper proposes a geo-hazard risk assessment technique for analyzing the impacts
of surface subsidence monitored in a major coal mine in Nigeria. The technique combines
the spatial relationship between vulnerability assessment and elements at risk to highlight
the grave consequences of a potential disaster [1,3]. The aim is to underscore the importance
of integrating local-level inputs in analyzing elements at risk and vulnerability indicators
for hazard assessment. By integrating expert knowledge combined with “citizen science”,
the technique analyzes various risk elements and vulnerability indices for decision-makers
and practitioners [1,13,14]. The study area, the Onyeama mine in South East Nigeria, has
experienced severe negative impacts of subsidence over the years. Largely, the severe
effects of land subsidence around the Onyeama mine and its environment are due to the
disproportionate extraction of groundwater for both agricultural and commercial purposes,
the effect of overlying rock changes due to past coal exploration activities, and rapid urban
population expansion that has encroached into the area [9]. The relatively cheap cost
of obtaining water by sinking boreholes in many locations is the major factor that has
made groundwater use quite attractive for various purposes [5,9]. We exploit data from
Sentinel-1 Synthetic Aperture Radar (SAR) Satellites and Small-Baseline Subset Differential
Interferometric Synthetic Aperture Radar (SBAS-DInSAR) technique for mapping the
study area. The results generate an elements-at-risk database with a particular focus on
population density, road networks, and building networks, identified as indices for loss
estimation [2,4,14].

2. The Study Area

The study is carried out in the Onyeama Mine Field, Enugu State, Nigeria. The area is
bounded by latitudes 6◦25′ N and 6◦29′ N and longitudes 7◦25′ E and 7◦30′ E, South East
Nigeria (Figure 1). The total area is approximately 67,000 square kilometers (area bounded
in red). Hills and lowlands with minor streams and rivers characterize the area. The River
Ekulu and Asata River drain toward the northern and southern parts, respectively. Three
geological formations characterize the area, namely Ajali sandstone, Mamu formation,
and Enugu shale [26]. Toward the hilly and western part of the area, Ajali sandstone and
Mamu formation are situated, while Enugu shale underlies the lowlands. Ajali sandstone is
whitish to faint brown with patches of iron stains. According to [26], Enugu shale, which is
visible at the extreme eastern part of the area, is fissile grey shale having a dipping direction
of 2500 SW, striking 1500ES-3300 NW. The four major lithology units that characterize the
area are shale, sandstone, coal, and siltstone. The sandstone is of fine to medium grade
with a moderately weak consolidation quality. The coal, which comprises three thin coal
seams that vary in thickness from 0.1 m to 0.9 m, is black in color. Grains of sandstone
beds intercalate with flakes of pyrite mineral and make contact with the coal seams. The
three geological formations (Ajali sandstone, Mamu formation, and Enugu shale) all have a
normal fault with other associated fractures.
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3. Methodology

The methodology is structured into two parts, data processing and geo-hazard risk
assessment of the results (Figure 2).
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3.1. Preparation of the Data

The Copernicus Sentinel-1 Earth Observation Satellite SAR Data Archives was the
primary source of the dataset used in this research for measuring, monitoring, and mapping
the surface subsidence over the study area (Figure 3). Sentinel-1 SAR satellites possess
some favorable advantages over other SAR satellites. Some of the advantages include
regional-scale mapping capability, systematic and regular SAR observations, and rapid
product delivery (typically in less than 3 h from data acquisition) [9,27]. Over a period of
5 years, from January 2016 to December 2020, we acquired a total of 60 SLC Sentinel 1 SAR
images of the study area. The size of each image is about 4.6 GB, totaling approximately
276 GB for all images used [9]. We also acquired a secondary dataset for validation purposes
from two different sources, (1) GPS (X, Y, Z) field data of fourteen investigation locations
and (2) vector shapefiles of buildings and road networks, digitized from georeferenced
high-resolution Google Earth Image of 2020.
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Figure 3. Coherence image of the study area acquired 06-03 2016 (source: [9]).

3.2. SBAS-DInSAR Processing Technique

We adopted the parallel computing solution in [28] for the processing of the archived
Sentinel-1 SAR images. This technique, known as the Small-Baseline Subset Differential
Interferometric Synthetic Aperture Radar (SBAS-DInSAR) technique, is applied to generate
Earth surface subsidence time series (TS) maps along the satellite line of sight (LOS) and to
estimate the mean yearly velocity in millimetric accuracy (mm/yr). According to [28,29],
the workflow of the SBAS-DInSAR technique makes use of raw SAR data acquired from
the same region and with the same look angle (same acquisition geometry). The data
should also have the same orbital information indicating the position of the satellite during
the acquisition time and the digital elevation model (DEM) of the investigated area. In
Block A of Figure 4, the raw SAR data pass a specific processing (SAR focusing) in order
to be converted into a corresponding radar image, referred to as Single Look Complex
(SLC). Next, co-registration is performed by geometric considerations of satellite orbital
information and the topography of the area using the DEM from Shuttle Radar Topography
Mission (SRTM). At this stage, the DEM has to be converted into the SAR geometry
(Block B of Figure 4). This is necessary for the correct application of the co-registration
step (Block C). In the next phase, the SLCs are intercalated as interferometric pairs, using a
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minimum baseline criterion (spatial and temporal baselines and orbital and time separations
between two SAR images). The outcome of such image pairs is used for the differential
interferometric phase (to generate an interferogram) (Block D). Studies have suggested that
such phase difference is directly related to the ground displacement occurring between the
two SAR images in such a time-space [13]. The next step is to perform the phase differencing
(unwrapping the phase result to retrieve its full evolution of the displacement) (Block E).
This is achieved by applying the Extended Minimum Cost Flow (EMCF) phase unwrapping
algorithm [28,29]. In Block F, the residual topography estimation step is performed at a
pixel level for the final retrieval of the displacement time series. The phase velocities
between adjacent acquisitions are determined by the number of SAR acquisitions used for
the interferometric analysis. In general, the quality and reliability of generated DInSAR
results from DInSAR processing are dependent on the skill of the user and evaluation
capacity [29].
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The software is used for applying the SBAS-DInSAR processing chain, including
Sentinel Toolbox (SNAP—Open Source), ArcGIS (Licensed), R for Spatial Statistics (Open
Source), and Virtual Machine Player (VMware—Open Source). According to [28], some
general notes are in order for the SBAS-DInSAR procedure. First, the processing steps from
block A to D (Figure 4) are performed at full spatial resolution, whereas the subsequent steps
work on multi-looked data (block E to F of Figure 4). This first step was performed using the
SNAP software. Second, a common storage is assumed to be available to all the processing
phases, i.e., each step gains access to the same common storage for reading inputs and
writing outputs. This second phase was performed using SNAP and VMware software.
ArcGIS and R were both used for visualization and statistical analysis, respectively. The
full sequential steps of the SBAS-DInSAR processing chain through widely used metrics
(such as speedup, efficiency, and load balance) are shown in Figure 4. The SBAS-DInSAR
processing was performed stand-alone (Figure 4), while statistical analysis and prediction
were performed using Holt–Winter (Figure 2). The ascending satellite track was used for
the SBAS-DInSAR measurement.

3.3. The Geo-Hazard Risk Assessment Technique

Risk is defined as the possibility of loss or injury and may have different degrees
of effects and chances of occurrence [13]. Usually, risk assessment begins with a hazard
assessment, which is accompanied by vulnerability estimations and elements at risk map-
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ping [12,14]. This composition suggests risk as a function of hazard, vulnerability, and
exposure [30]. Several frameworks have been developed to measure disaster risks, and
their outcome has expanded, evolved, and characterized new disciplines [14,31]. Risk
assessment is, therefore, a mandatory pre-disaster activity that supports preparedness and
provides adaptation response to mitigate potential disasters [2,4,31]. In this study, we are
dealing with a single hazard component (surface subsidence) with multiple vulnerability
dimensions and different elements at risk [9,32]. Therefore, we combine the spatial rela-
tionship between vulnerability assessment and elements at risk to develop our approach
(Figures 2 and 5). The probability that an incident would occur is termed likelihood, while
the severity of occurrence is consequence.
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3.3.1. Horizontal Deformation and Vertical Subsidence Risk Assessment

We performed a risk assessment analysis for horizontal deformation and vertical
subsidence through the following steps.

i. Calculate the summary of minimum, maximum, and average forecasted or predicted
horizontal deformation and vertical subsidence across the fourteen investigation
locations from 2021 to 2024. Use it to rank the scale of likelihood.

ii. The scale of likelihood is ranked: Minimum = Not Likely; Average = Possible; Maxi-
mum = Probable.

iii. Calculate the summary of minimum, maximum, and average original or processed
horizontal deformation and vertical subsidence across the fourteen investigation
locations from 2016 to 2020. Use it to rank the scale of severity.



Land 2023, 12, 575 9 of 21

iv. The scale of severity is ranked: Minimum = Acceptable; Average = Tolerable; Maxi-
mum = Generally Unacceptable.

v. Design the risk assessment matrix based on the scale of likelihood and scale of severity.
vi. Summarize the level of risk as Low, Medium, and High by matching the scale of

severity against the scale of likelihood.

To analyze the risk due to the horizontal deformation and vertical subsidence over the
years, we adopted a risk assessment matrix [1,14] which is seen in Equation (1) below.

Risk = f (Likelihood, Consequence) (1)

where likelihood = the summary of minimum, maximum, and average forecasted or
predicted subsidence outcomes from 2021 to 2024. Since the forecasted or predicted values
are tentative, they were associated with the likelihood of occurrence. Consequence = the
summary of minimum, maximum, and average original extracted subsidence outcome
from 2016 to 2020. Similarly, since the original extracted subsidence values are actual, they
were associated with the severity of occurrence. Looking at the above, a new risk matrix is
formulated in Equation (2) below.

Risk = f (Likelihood = Summary of minimum, maximum, and average forecasted or
predicted subsidence 2021-2024, Consequence = Summary of minimum, maximum,
and average original or processed subsidence 2016–2020)

(2)

Note: Equation (2) formed the basis of our risk assessment analysis for horizontal and
vertical subsidence across the fourteen investigation locations within our study area.

3.3.2. Vulnerability Assessment

Vulnerability refers to the diverse and sensitive aspects that make up human living
conditions (social, economic, physical, institutional, environmental, and cultural) that
are susceptible to protection in the event of potential hazard [13]. Six dimensions of
vulnerability were outlined [14,31].

i. Physical dimension: Physical properties that are likely to be affected include physical
infrastructures such as roads, built-up environments, utilities, and open spaces.

ii. Social dimension: This is specific to the people or organizations in the social system
that may be exposed to disaster.

iii. Institutional dimension: This includes governance and organizational structures,
formal legal process, operations and directions, as well as informal customary laws,
which may be affected by a disaster.

iv. Environmental dimension: This involves the general ecosystem (ecological and bio-
physical processes) that may be degraded and polluted in the event of a disaster.

v. Economic dimension: This refers to the destruction of production capacity and eco-
nomic losses to people in the event of a disaster.

vi. Cultural dimension: This refers to the damaging impacts of disasters on beliefs and
value systems.

To analyze vulnerability due to horizontal deformation and vertical subsidence over
the years, we adopt the vulnerability matrix, which is seen in Equation (3) below [1,14].

Vulnerability = f (Potential damage, Hazard Intensity) (3)

where potential damage is measured by = the degree of loss across the six dimensions
of human living conditions (social, economic, physical, institutional, environmental, and
cultural) in case of a potential disaster from 2021 to 2024. Hazard intensity is measured by
the = summarizing level of potential hazard by matching the scale of severity against the
scale of likelihood.
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3.3.3. Mapping the Elements at Risk

In this study, the various elements at risk are mapped, mainly the physical vulnerability
dimension. Physical infrastructures that may be likely affected include roads, buildings,
and open spaces. These elements are paramount and visible, and they are of interest in
this study (Figure 1). The outcome of this process, which was stored in a database, has a
particular focus on population density, road networks, and building networks, identified as
indices for loss estimation (Figures 2 and 6). The level of impact on these identified indices
for loss estimation (roads and building networks) may vary across the study area due to
the rate of extraction of groundwater over time, the geography and geological conditions
over the years, and the population growth within the area [3,26,32].
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Figure 6. Showing the various indices for loss estimation (roads and building networks) mapped in
the study area (source: [9]).

4. Results

The proposed technique was illustrated by monitoring the surface subsidence within
our study area (a major coal mine in Nigeria known as Onyeama Mine Field). In general,
the severe effects of land subsidence in this environment (Figure 1) are mostly due to past
underground hard coal exploration activities, exponential rapid urban population growth,
and disproportionate extraction of underground water [9]. The subsidence of rock mass
within this area due to subsidence is in multidimensional form. Usually, it is either elastic,
brittle, or a combination of both processes [9].

4.1. Horizontal Deformation and Vertical Subsidence

The results of horizontal deformation and vertical subsidence were obtained for every
InSAR combination after the application of Block A to F (Figure 4). The absolute defor-
mation results were calculated using quantitative comparative analysis, and a detailed
procedure can be found in [9]. The accuracy of monitored ground subsidence values is
directly related to the coherence of the subsidence zones [9]. Hence, the coherence between
the reference and the secondary image is estimated as an indicator of the quality of the
phase information [9]. If the images have strong similarities, they are, therefore, usable
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for interferometric processing. We averaged the coherence coefficient of each map (based
on level of risk) to determine the spatial distribution and variations in the subsidence
values monitored [9]. The average coherence level for both horizontal and vertical de-
formation ranges between 0.45 and 0.47 across the time series image. We proceeded to
mask out areas of low coherence using band maths and some logical expressions. For
each yearly coherence image, we subtracted the minimum value from the maximum
value and divided the outcome by two [9]. Next, we applied a logical Expression: IF
(Coherence_Image >= outcome) THEN 1 ELSE NaN. This helps eliminate the areas of low coher-
ence while leaving areas of high coherence. The outcome was a Coherence_Masked_Image.
Finally, we multiplied the horizontal and vertical deformation image in millimeters in SNAP
software band maths using the Expression: Horizontal_Displacement x Coherence_Masked_Image
and Vertical_Displacement x Coherence_Masked_Image. After masking out areas of low co-
herence and final geo-coding, we obtain the results, which have absolute geographical
coordinates. According to the amount of subsidence within each pair, the settlement is
classified with three different colors (red, white, and blue), representing (high-risk, medium-
risk, and low-risk) subsidence, respectively. The final deformation results of both horizontal
and vertical components are shown in Figure 7A,B, respectively.

Land 2023, 12, x FOR PEER REVIEW 11 of 21 
 

we multiplied the horizontal and vertical deformation image in millimeters in SNAP soft-
ware band maths using the Expression: Horizontal_Displacement x Coherence_Masked_Image 
and Vertical_Displacement x Coherence_Masked_Image. After masking out areas of low co-
herence and final geo-coding, we obtain the results, which have absolute geographical 
coordinates. According to the amount of subsidence within each pair, the settlement is 
classified with three different colors (red, white, and blue), representing (high-risk, me-
dium-risk, and low-risk) subsidence, respectively. The final deformation results of both 
horizontal and vertical components are shown in Figure 7A,B, respectively. 

 

 

 

 

 

 

 

 

 

Figure 7. (A) Average horizontal deformation (mm) 2016 and (B) average vertical subsidence (mm) 
2020 (source: [9]). 

Figure 7A shows the average horizontal deformation (mm) for 2016, while Figure 7B 
shows the average vertical subsidence (mm) for 2020. The yearly cumulative amount of 
horizontal deformation for the year 2016 ranges from (−25.487 mm = low-risk, −35.126 mm 
= medium-risk, to −44.775 mm = high-risk), respectively, while the yearly cumulative 
amount of vertical subsidence for the year 2020 ranges from (−27.791 mm = low-risk, 
−42.476 mm = medium-risk, to −57.161 mm = high-risk), respectively [9]. 

Table 1 summarizes the yearly average horizontal deformation (mm), with the asso-
ciated level of risks over the period of study (2016–2020). The low-risk level ranges from 
−20.893 mm to −28.134 mm, the medium-risk level ranges from −33.072 mm to −39.539 
mm, and the high-risk level ranges from −44.775 mm to −51.115 mm. The year with the 

Figure 7. (A) Average horizontal deformation (mm) 2016 and (B) average vertical subsidence (mm)
2020 (source: [9]).

Figure 7A shows the average horizontal deformation (mm) for 2016, while Figure 7B
shows the average vertical subsidence (mm) for 2020. The yearly cumulative amo-
unt of horizontal deformation for the year 2016 ranges from (−25.487 mm = low-risk,
−35.126 mm = medium-risk, to −44.775 mm = high-risk), respectively, while the ye-
arly cumulative amount of vertical subsidence for the year 2020 ranges from
(−27.791 mm = low-risk, −42.476 mm = medium-risk, to −57.161 mm = high-risk), respec-
tively [9].

Table 1 summarizes the yearly average horizontal deformation (mm), with the as-
sociated level of risks over the period of study (2016–2020). The low-risk level ranges
from −20.893 mm to −28.134 mm, the medium-risk level ranges from −33.072 mm to
−39.539 mm, and the high-risk level ranges from −44.775 mm to −51.115 mm. The year
with the lowest level of risk is 2020, with −28.134 mm, while the year with the highest level
of risk is 2016, with −44.775 mm [9].
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Table 1. Summary of yearly average rate of horizontal deformation (mm) from 2016 to 2020 (source: [9]).

S/N Yearly Image of Study Area Average Rate of Horizontal Deformation (mm)

1 Sentinel-1 SLC SAR 2016 −25.487 = low −35.126 = medium −44.775 = high

2 Sentinel-1 SLC SAR 2017 −20.893 = low −33.072 = medium −45.251 = high

3 Sentinel-1 SLC SAR 2018 −27.596 = low −37.660 = medium −47.722 = high

4 Sentinel-1 SLC SAR 2019 −24.636 = low −37.778 = medium −51.115 = high

5 Sentinel-1 SLC SAR 2020 −28.134 = low −39.539 = medium −50.945 = high

Table 2 summarizes the yearly average vertical subsidence (mm), with the asso-
ciated level of risks over the period of study (2016–2020). The low-risk level ranges
from −18.665 mm to −28.008 mm, the medium-risk level ranges from −34.308 mm to
−43.785 mm, and the high-risk level ranges from −49.312 mm to −60.750 mm. The year
with the lowest level of risk is 2018, with −28.008 mm, while the year with the highest level
of risk is 2016, with −49.312 mm [9].

Table 2. Summary of yearly average rate of vertical subsidence (mm) from 2016 to 2020 (source: [9]).

S/N Yearly Image of Study Area Average Rate of Vertical Subsidence (mm)

1 Sentinel-1 SLC SAR 2016 −24.532 = low −36.922 = medium −49.312 = high

2 Sentinel-1 SLC SAR 2017 −18.665 = low −34.308 = medium −49.950 = high

3 Sentinel-1 SLC SAR 2018 −28.008 = low −40.927 = medium −53.846 = high

4 Sentinel-1 SLC SAR 2019 −26.821 = low −43.785 = medium −60.750 = high

5 Sentinel-1 SLC SAR 2020 −27.791 = low −42.476 = medium −57.161 = high

4.2. Geo-Hazard Risk Assessment Results for Horizontal Deformation

Geo-hazard risk assessment for horizontal deformation was performed using a risk
assessment matrix of Equation (2). The risk assessment matrix was based on a scale of
likelihood and a scale of severity. By matching the scale of severity against the scale of
likelihood, the level of risk is summarized as low, medium, and high. If the minimum scale
of likelihood (dependent factor) for each investigation location is within the bounds of the
scale of severity (assessment factor), then the result is low-risk. Similarly, if the maximum
of the scale of likelihood (dependent factor) for each investigation location is within the
bounds of the scale of severity (assessment factor), then the result is medium-risk. Finally,
if the average of the scale of likelihood (dependent factor) for each investigation location is
within the bounds of the scale of severity (assessment factor), then the result is high-risk.

4.3. Geo-Hazard Risk Assessment Results for Vertical Subsidence

Similarly, geo-hazard risk assessment for vertical subsidence was analyzed using a
risk assessment matrix. The risk assessment matrix was based on the scale of likelihood
and scale of severity. By matching the scale of severity against the scale of likelihood,
the level of risk was summarized as low, medium, and high. If the minimum scale of
likelihood (dependent factor) for each investigation location is within the bounds of the
scale of severity (assessment factor), then the result is low-risk. Similarly, if the maximum
scale of likelihood (dependent factor) for each investigation location is within the bounds
of the scale of severity (assessment factor), then the result is medium-risk. Finally, if the
average of the scale of likelihood (dependent factor) for each investigation location is within
the bounds of the scale of severity (assessment factor), then the result is high-risk.

4.4. Vulnerability Assessment Results

A vulnerability assessment was performed using the vulnerability matrix of
Equation (3). We estimate the potential damage using weighting criteria from the forecasted
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horizontal deformation and vertical subsidence across the fourteen investigation locations.
The weighting criteria were computed by dividing the forecasted subsidence values for
each investigation location by the sum of subsidence values for each particular year and
multiplying by 100%. The hazard intensity is the outcome of the summarized level of
potential hazard by matching the scale of severity against the scale of likelihood. Values of
1 and 2 are allocated to the outcomes corresponding to (low–medium) and (medium–high)
intensities, respectively. The six indices of vulnerability dimensions (social, economic,
physical, institutional, environmental, and cultural) were rated based on the impact of
exposure [2,4]. The dimensions vary across each investigation location based on the level
of human development index (HDI) [14,31]. Impact on exposure was computed using a
buffer zone radius of 1 km from each investigative location. The total number of buildings,
road networks, and population density within such buffer zones determined the degree
of exposure. The degree of exposure was summarized according to a severity score as fol-
lows: none (0%); low (1–39%); medium (40–69%); high (70–89%); critical (90–100%) [14,31].
A total of 19,781 buildings (both old and new) and 1434 roads (tarred and untarred)
were used for our assessment [9]. The population density within Enugu State is about
584.49 km2 [5,9].

5. Discussion

The impact of surface subsidence within the Onyeama coal mine and environment
was measured using the SBAS-DInSAR technique from 2016 to 2020 (Figure 4) [9]. TOPSAR
Sentinel-1 SLC time series SAR data were employed for the study (Figure 1). The absolute
subsidence results were calculated using a quantitative comparative analysis [9,33]. The
detailed procedure can be found in [9]. The accuracy of geo-hazard assessment schemes is
relative to the type of hazard, the available data, the size and characteristics of the study
area, and the required accuracy [1,14]. Based on the available data, this study is limited to
surface subsidence and characteristics of the study area (Figure 1).

Figure 7A,B shows the yearly absolute horizontal deformation and vertical subsidence
(mm) for 2016 and 2020, respectively. The rate of subsidence varies across the study area
largely due to triggering factors such as disproportionate extraction of groundwater over
the years, the geography and geological conditions of the environment, the effect of over-
lying rock changes due to past coal exploration activities, and rapid urban population
expansion that encroached into the area [3,26,33]. It is possible that these triggering factors
likely disturbed the overlying strata of goaf formed by past mining activities over the
years, destroyed the in situ stress distributions within the study area, and thus affected the
overall structure of the surrounding rock [9]. The implication is that the aquifer in the thick
surface soil may have lost water and the overlying stratum may have been compacted,
thus, resulting in an increase in vertical ground subsidence and nonlinear horizontal de-
formations of the ground [9]. To minimize the potential risks [3,9], monitoring procedures
may be combined with planned adaptation response to identify key risk areas and mitigate
potential disasters in such fast-changing environments [3,9,26,27,33]. With the various
available differential interferometric synthetic aperture radar (DInSAR) techniques and
online processing platforms, the potentials of synthetic aperture radar (SAR) constellations
can be fully exploited to provide cutting-edge solutions for disaster monitoring appli-
cations [3,27,34–36]. This is fundamental because to mitigate and reduce the impacts of
disasters, the outcome of various DInSAR monitoring solutions and applications is usually
employed for further analysis in disaster risk management [3,27,36].

The geo-hazard risk assessment for horizontal deformation was analyzed using the
risk assessment matrix of Equation (2). The risk assessment matrix is based on a scale of
likelihood and a scale of severity. By matching the scale of severity against the scale of
likelihood, the level of risk was summarized as low, medium, and high. Figure 8 shows
the horizontal deformation risk assessment matrix for investigation location Abor. Based
on the key assessment factor, the perceived risk of horizontal deformation between 2021
and 2024 ranges from low to medium. This implies that the likelihood of the horizontal
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deformation turning into a disaster at these locations is possible. However, this potential
disaster, based on the scale of severity, would still be tolerable.
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Table 3 summarizes the horizontal deformation risk assessment analysis showing
elements-at-risk, vulnerability parameters, and consequences in the event of a likely disaster.
From the risk assessment columns and based on key assessment factors, the perceived
risk of horizontal deformation for investigation locations Ngwo, Asata, GRA, Trans-Ekulu,
Coal Camp, Ogbete, Akama, and Umuase is low to medium. Thus, the likelihood of the
horizontal deformation turning into a disaster is possible, while the scale of severity is
tolerable. For investigation locations Okwojo-Ngwo, Hill-Top, Ukaku, Okwe, and Ngwo-
Asa, respectively, the perceived risk of horizontal deformation is medium to high. This
implies that the likelihood of the horizontal deformation turning into a disaster at these
locations is probable, and the scale of severity is unacceptable.

Figure 9 shows the results of the forecast for horizontal deformation made using
the Holt–Winters model across the fourteen investigation locations within the study area.
We made use of data on the yearly rate of horizontal deformation from January 2016 to
December 2020. The prediction is for January 2021 to December 2024 (48 months). On
average, there is a gradually increasing trend of potential hazards across all investigation
locations over the years. This increase in the horizontal dimension may worsen due to the
adverse effects of global warming, climate change, increased poverty rate, ever-growing
population, and fast-growing urbanization with a disregard for sustainability [9].

Figure 10 shows the vertical subsidence risk assessment matrix for the investigation
location Okwe. Similarly, based on the key assessment factor, the perceived risk of vertical
deformation between 2021 and 2024 ranges from medium to high. This implies that the
likelihood of the vertical subsidence turning into a disaster at this location is likely. The
potential disaster based on the scale of severity is unacceptable. Table 4 summarizes
the vertical subsidence risk assessment analysis showing elements at risk, vulnerability
parameters, and consequences in the event of a likely disaster. From the risk assessment
columns and based on key assessment factors, the perceived risk of vertical subsidence for
investigation locations Abor, Ngwo, Okwojo-Ngwo, Asata, GRA, Trans-Ekulu, Hill-Top,
Coal Camp, Ogbete, Akama, and Umuase is low to medium. Thus, the likelihood of
the vertical subsidence turning into a disaster is possible, while the scale of severity is
tolerable. For the investigation location Ngwo-Asa, the perceived risk of vertical subsidence
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is medium. This implies that the likelihood of the vertical subsidence turning into a disaster
is possible; however, the scale of severity will still be tolerable.

Table 3. Summary of horizontal deformation risk assessment analysis for the fourteen investigation
locations within our study area.

S/N Investigation Location Risk Assessment Matrix Elements at Risk Consequence of Potential
Hazard

1 Abor Low–Medium

The main elements at risk of
possible hazards include:

1. Population;
2. Properties (roads,
buildings, utilities);

3. Economic activities
(markets, schools, public

offices, etc.);
4. Environmental

degradation (pollution,
waste discharge, etc.).

There is a likelihood of
harmful consequences and

losses which may arise
through deaths, injuries,

damage to properties and
livelihoods, disruption of

economic activity, and
degradation of the

environment. This may
result from interactions

between (natural,
anthropogenic) hazards and
vulnerable conditions within

the area and time period.

2 Ngwo Low–Medium

3 Okwojo-Ngwo Medium–High

4 Asata Low–Medium

5 GRA Low–Medium

6 Trans-Ekulu Low–Medium

7 Hill-Top Medium–High

8 Coal Camp Low–Medium

9 Ogbete Low–Medium

10 Akama Low–Medium

11 Umuase Low–Medium

12 Ukaku Medium–High

13 Okwe Medium–High

14 Ngwo-Asa Medium–High
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Table 4. Summary of vertical subsidence risk assessment analysis for the fourteen investigation
locations within our study area.

S/N Investigation Location Risk Assessment Matrix Elements at Risk Consequence of Potential
Hazard

1 Abor Low–Medium

The main elements at risk of
possible hazards include:

1. Population;
2. Properties (roads,
buildings, utilities);

3. Economic activities
(markets, schools, public

offices, etc.);
4. Environmental

degradation (pollution,
waste discharge, etc.).

There is a likelihood of
harmful consequences and

losses which may arise
through deaths, injuries,

damage to properties and
livelihoods, disruption of

economic activity, and
degradation of the

environment. This may
result from interactions

between (natural,
anthropogenic) hazards and
vulnerable conditions within

the area and time period.

2 Ngwo Low–Medium

3 Okwojo-Ngwo Low–Medium

4 Asata Low–Medium

5 GRA Low–Medium

6 Trans-Ekulu Low–Medium

7 Hill-Top Low–Medium

8 Coal Camp Low–Medium

9 Ogbete Low–Medium

10 Akama Low–Medium

11 Umuase Low–Medium

12 Ukaku Medium

13 Okwe Medium–High

14 Ngwo-Asa Medium

Figure 11 shows the results of the forecast for vertical subsidence made using the
Holt–Winters model across the fourteen investigation locations. We made use of data on
the yearly rate of vertical subsidence from January 2016 to December 2020. The prediction
is for January 2021 to December 2024 (48 months). On average, there is also a gradually
increasing trend of potential hazards over the years. Similarly, this increase in the vertical
dimension may worsen due to adverse effects of global warming, climate change, increased
poverty rate, ever-growing population, and fast-growing urbanization with a disregard for
sustainability [9].
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Figure 11. Result of yearly absolute vertical subsidence (mm) forecast from January 2021 to December
2024 for the fourteen investigation locations using Holt–Winters.

Table 5 summarizes the vulnerability assessment analysis from 2023 to 2024 over the
fourteen investigation locations within our study area. A vulnerability assessment was per-
formed using the vulnerability matrix of Equation (3). The six dimensions of vulnerability
(social, economic, physical, institutional, environmental, and cultural) were rated based on
the impact of exposure. The hazard intensity across the fourteen investigation locations
ranges from 1 to 2. Values of 1 and 2 are allocated for the outcome corresponding to (low–
medium) and (medium–high) intensities, respectively. The impact on exposure showed
that the degree of exposure was within the severity score of low (1–39%). This highlights
an increasing trend with the possibility of potential disaster with grave consequences.
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Table 5. Summary of vulnerability assessment analysis from 2023 to 2024 over the fourteen investiga-
tion locations within our study area.

Investigation
Locations

Dimension of
Vulnerability

Potential Damage (%) Hazard Intensity (1–2)
Severity Score

(None, Low, Medium, High,
Critical) %

Average
Horizontal

Deformation

Average
Vertical

Subsidence

Average
Horizontal

Deformation

Average
Vertical

Subsidence

Abor

1. Physical
vulnerability

impact
2. Social

vulnerability
impact

3. Institutional
vulnerability

impact.
4. Economic
vulnerability

impact.
5. Environmental

vulnerability
impact.

6. Cultural
vulnerability

impact.

−6% −8% 1 1
Road—1.1% (Low)

Building—1.1% (Low)
Population Density—1.1% (Low)

Ngwo −5% −7% 1 1
Road—6.1% (Low)

Building—1.5% (Low)
Population Density—2% (Low)

Okwojo-Ngwo −5% −5% 1 2
Road—3.9% (Low)

Building—1.1% (Low)
Population Density—1.6% (Low)

Asata −11% −9% 1 1
Road—11.2% (Low)

Building—22.5% (Low)
Population Density—5.8% (Low)

GRA −10% −9% 1 1
Road—11.8% (Low)

Building—12.4% (Low)
Population Density—5% (Low)

Trans-Ekulu −8% −4% 1 1
Road—11% (Low)

Building—13.6% (Low)
Population Density—5.6% (Low)

Hill-Top −3% −9% 1 2
Road—2.3% (Low)

Building—1.4% (Low)
Population Density—1.4% (Low)

Coal Camp −13% −15% 1 1
Road—3.8% (Low)

Building—5.5% (Low)
Population—2.5% (Low)

Ogbete −10% −9% 1 1
Road—7.9% (Low)

Building—10.3% (Low)
Population Density—2.1% (Low)

Akama −11% −9% 1 1
Road—7.1% (Low)

Building—1.6% (Low)
Population Density—1.1% (Low)

Umuase −9% −7% 1 1
Road—5.1% (Low)

Building—1.3% (Low)
Population—1.5% (Low)

Ukaku −2% 0% 2 2
Road—3.5% (Low)

Building—1.1% (Low)
Population Density—1.1% (Low)

Okwe 4.5% 4.5% 2 2
Road—4.1% (Low)

Building—1.1% (Low)
Population Density—1.1% (Low)

Ngwo-Asa −2% −2% 2 2
Road—2.3% (Low)

Building—1.2% (Low)
Population Density—1.3% (Low)

6. Conclusions

In order to respond to physical and social forces that trigger disasters across the world,
historical disaster data collected at local and small-scale regional units are effective statis-
tical indicators for complete disaster assessment schemes. Regrettably, most developing
countries ignore this useful information during operational disaster risk management
operations. Consequently, in this era of global warming and rapid urbanization, ignoring
these forces can have a huge impact that can affect the well-being of people living in cities.
In Nigeria, disaster risk management schemes have mainly focused on traditional singular
hazard assessment, vulnerability assessment, or risk assessment. However, the dynamics
of different hazards limit the acceptance of a singular application due to data requirements,
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triggering factors, and various elements at risk. Most times, the hazard assessment heavily
relies on data from different global organizations that collect information on disasters at
different scales and with different objectives to make informed decisions. Several challenges
seemingly arise from total reliance on these kinds of data due to standardization, the exact
number of people affected, local factors, and the purpose of data collected. Moreover, the
spatial distribution of risks solely based on information from global databases is vague
and cannot guide local disaster safety reduction work. This makes disaster information
collected at the local level unique and more representative. However, the coverage is
limited worldwide. In this study, we proposed a geo-hazard risk assessment technique for
analyzing the impacts of surface subsidence monitored in a major coal mine in Nigeria. The
developed approach combines the spatial relationship between vulnerability assessment
and elements at risk to highlight the grave consequences of potential disasters. The results
of our efforts underscore the importance of integrating local-level inputs in analyzing risk
factors and vulnerability indicators for potential geo-hazard assessment and management.
The novelty in this research is the evaluation of the impact on exposure over the investiga-
tion locations based on the level of human development index (HDI) and using historical
disaster information collected at the local level. Due to a lack of data, this research did not
examine the influences of ecological change, climate conditions, overlying rock changes in
the mining area, construction safety, and urban expansion speed on surface subsidence as
indicators for vulnerability assessment [9]. Therefore, a multi-hazard dimension with more
robust indicators would be ideal and highly recommended for improved assessment in
further studies.
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