Evolution Characteristics of Wetland Landscape Pattern and Its Impact on Carbon Sequestration in Wuhan from 2000 to 2020
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Landscape Pattern Index
3.2.2. CASA Model
3.2.3. Spearman Correlation
4. Results
4.1. Wetland Landscape Pattern
4.2. Spatial and Temporal Patterns of Carbon Sequestration in Wetlands
4.2.1. Verification and Accuracy of NPP Estimation Results
4.2.2. Results Analysis
4.3. Correlation Analysis of Wetland Landscape Pattern and Carbon Sequestration
5. Discussion
5.1. Causes of Wetland Changes
5.2. Urban Planning Proposals for Wetland Management
5.3. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.-Y.; Lu, X.-G. The Wetland Function and Research Tendency of Wetland Science. Wetl. Sci. 2003, 1, 7–11. [Google Scholar]
- Costanza, R.; D’arge, R.C.; Groot, R.d.; Farber, S.B.; Grasso, M.; Hannon, B.M.; Limburg, K.E.; Naeem, S.; O’Neill, R.V.; Paruelo, J.M.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Liu, Z.G.; Zhang, K.M. Wetland soils carbon stock in the Sanjiang plain. J. Tsinghua Univ. Sci. Technol. 2005, 45, 788–791. [Google Scholar]
- Balmford, A.; Bruner, A.; Cooper, P.; Costanza, R.; Farber, S.; Green, R.E.; Jenkins, M.; Jefferiss, P.; Jessamy, V.; Madden, J.; et al. Ecology—Economic reasons for conserving wild nature. Science 2002, 297, 950–953. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Wu, Q.; Liu, Y.; Li, X.; Yao, B.; Zhong, G.; Lu, W. A review of carbon cycle in wetlands. Ecol. Environ. Sci. 2009, 18, 2381–2386. [Google Scholar]
- Festus, O.O.; Ji, W.; Zubair, O.A. Characterizing the Landscape Structure of Urban Wetlands Using Terrain and Landscape Indices. Land 2020, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Rashid, I.; Aneaus, S. Landscape transformation of an urban wetland in Kashmir Himalaya, India using high-resolution remote sensing data, geospatial modeling, and ground observations over the last 5 decades (1965–2018). Environ. Monit. Assess. 2020, 192, 635. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Zhang, Y.; Gong, L.; Zhao, W. Evolution of Wetland Landscape Pattern and Its Driving Factors in Beijing. Acta Geogr. Sin. 2011, 66, 77–88. [Google Scholar]
- Alan, Y.; Jun, W. Quantitative study on spatio-temporal evolution and mechanisms of wetland landscape patterns in Shanghai. Acta Ecol. Sin. 2021, 41, 2622–2631. [Google Scholar]
- Ma, Q.; Yan, H.; Li, W.; Zhao, X.; Chen, L.; Zhang, C.; Li, J. Evaluation of Carbon Sequestration and Oxygen Release Function of Wetland Ecosystem in Jilin Province. Ecol. Environ. Sci. 2021, 30, 2351–2359. [Google Scholar]
- Bian, J.H.; Li, A.N.; Deng, W. In Proceedings of the Estimation and analysis of net primary Productivity of Ruoergai wetland in China for the recent 10 years based on remote sensing, Biennial International Conference on Ecological Informatics and Ecosystem Conservation (ISEIS), Beijing, China, 27–29 August 2010; pp 288–301.
- Wang, S.; Li, S.Z.; Zheng, S.; Gao, W.; Zhang, Y.; Cao, B.; Cui, B.; Shao, D. Estimating Biomass and Carbon Sequestration Capacity of Phragmites australis Using Remote Sensing and Growth Dynamics Modeling: A Case Study in Beijing Hanshiqiao Wetland Nature Reserve, China. Sensors 2022, 22, 3141. [Google Scholar] [CrossRef]
- Li, C.; Cao, H.; Fan, Y.; Han, H.; Sun, H.; Wang, Y. Remote sensing estimation and analysis of net primary productivity (NPP) based on corrected CASA model: A case study of Hexi Corridor. Acta Ecol. Sin. 2019, 39, 1616–1626. [Google Scholar]
- Zhang, M. Modeling net primary productivity of wetland with a satellite-based light use efficiency model. Geocarto Int. 2022, 37, 4028–4052. [Google Scholar] [CrossRef]
- Yuan, Y.; Xue, L.; Li, X. Net primary productivity and carbon sequestration potential of salt marsh vegetation in Chongming Dongtan of the Yangtze Estuary based on CASA model. Chin. J. Ecol. 2022, 41, 334–342. [Google Scholar]
- Li, Z.; Jiang, W.G.; Wang, W.J.; Chen, Z.; Ling, Z.Y.; Lv, J.X. Ecological risk assessment of the wetlands in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2020, 117, 106677. [Google Scholar] [CrossRef]
- Lin, W.P.; Cen, J.W.; Xu, D.; Du, S.Q.; Gao, J. Wetland landscape pattern changes over a period of rapid development (1985–2015) in the ZhouShan Islands of Zhejiang province, China. Estuar. Coast. Shelf Sci. 2018, 213, 148–159. [Google Scholar] [CrossRef]
- Li, Z.; Liu, M.; Hu, Y.M.; Xue, Z.S.; Sui, J.L. The spatiotemporal changes of marshland and the driving forces in the Sanjiang Plain, Northeast China from 1980 to 2016. Ecol. Process. 2020, 9, 358–389. [Google Scholar] [CrossRef]
- Wang, C.; Ma, L.; Zhang, Y.; Chen, N.C.; Wang, W. Spatiotemporal dynamics of wetlands and their driving factors based on PLS-SEM: A case study in Wuhan. Sci. Total Environ. 2021, 806, 151310. [Google Scholar] [CrossRef]
- Jia, Q.Y.; Yu, W.Y.; Zhou, L.; Liang, C.H. Atmospheric and Surface-Condition Effects on CO2 Exchange in the Liaohe Delta Wetland, China. Water 2017, 9, 806. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.; Kang, X.M.; Li, Y.; Zhang, X.D.; Zhang, K.R.; Kang, E.Z.; Yan, Z.Q.; Li, M.; Wang, X.D.; Niu, Y.C.; et al. Alpine wetland degradation reduces carbon sequestration in the Zoige Plateau, China. Front. Ecol. Evol. 2022, 10, 980441. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, H.; Zhou, Z.; Xu, Y.; Teng, M. Landscape changes of Wuhan wetlands in 1978–2007 with the process of urbanization. Chin. J. Ecol. 2009, 28, 1619–1623. [Google Scholar]
- Chen, Y.; Ke, X.; Liu, F.; Min, M. Area, Distribution and Variation of Wetlands in Wuhan for 4 Periods since 1987. Wetl. Sci. 2019, 17, 553–558. [Google Scholar]
- Ma, H.; Ding, Y.; Pang, Q. Utilization Change of Lake and Its Carbon Emission in Wuhan City. Resour. Environ. Yangtze Basin 2020, 29, 369–375. [Google Scholar]
- Chen, Y.; Zheng, J. Study on the impact of Wetland Fragmentation on Ecosystem Service Value in Wuhan. Resour. Dev. Mark. 2021, 37, 257–265. [Google Scholar]
- Cui, X.Y.; Li, H.B.; Wang, T. Structural Evolution and Stability Simulation of Wetland Ecological Network: A Case Study of Wuhan City, China. Wetlands 2022, 42, 73. [Google Scholar] [CrossRef]
- Liu, H.; Lu, X.; Zhang, G. Progress on the Study of Process of Wetland Landscape Changes and Cumulative Environmental Effects. Prog. Geogr. 2003, 22, 60–70. [Google Scholar]
- Bai, J.; Ouyang, H.; Yang, Z.; Cui, B.; Wang, Q. Changes in Wetland Landscape Patterns: A Review. Prog. Geogr. 2005, 24, 36–45. [Google Scholar]
- Yang, Y.; Cao, G.; Hou, P.; Jiang, W.; Chen, Y.; Li, J. Monitoring and evaluation for climate regulation service of urban wetlands with remote sensing. Geogr. Res. 2013, 32, 73–80. [Google Scholar]
- Song, G.H.; Li, L.Q.; Pan, G.X.; Zhang, Q. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 2005, 74, 47–62. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, Y.N. Net primary production estimation by using fusion remote sensing data with high spatial and temporal resolution. J. Remote Sens. 2018, 22, 143–152. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Chen, S.; De Li, W. Range effect of the correlations among landscape metrics. Chin. J. Ecol. 2012, 31, 2091–2097. [Google Scholar]
- CMA Climate Change Centre. Blue Book on Climate Change in China (2021); Science Press: Beijing, China, 2021. [Google Scholar]
- Wang, Z.; Zeng, J.; Chen, W. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 45507–45526. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Luo, T.; Liu, Z.Q.; Kong, X.S.; Li, J.W.; Tan, R.H. A comparative analysis of urban and rural construction land use change and driving forces: Implications for urban-rural coordination development in Wuhan, Central China. Habitat Int. 2015, 47, 113–125. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.Q.; Tang, L. Coupling Relationship between Urban Expansion and Lake Change—A Case Study of Wuhan. Water 2019, 11, 1215. [Google Scholar] [CrossRef] [Green Version]
- Han, Z. Study on the Model of Public Participation in Lakes Protection in Wuhan City, China—An Example of “Love Our 100 Lakes” Volunteer Action. Adv. Environ. Prot. 2018, 08, 1–12. [Google Scholar] [CrossRef]
- Dai, X.; Xu, D.; Wu, J.; Feng, J.; Zhou, S.; Yin, H. Spatiotemporal variations of water quality of lakes in Wuhan from 2015 to 2019. J. Lake Sci. 2021, 33, 1415–1424. [Google Scholar]
- Zhan, C.; Wu, J. Estimation of net primary productivity, carbon fixation, and oxygen release in a wetland of Ezhou, Hubei Province. Bull. Soil Water Conserv. 2022, 42, 321–328. [Google Scholar]
- Yu, H.Y.; Kim, S.H.; Kim, J.G. Carbon sequestration potential in montane wetlands of Korea. Glob. Ecol. Conserv. 2022, 37, e02166. [Google Scholar] [CrossRef]
- Yu, C.L.; Liu, D.; Zhao, H.Y. Evaluation of the carbon sequestration of Zhalong Wetland under climate change. J. Geogr. Sci. 2021, 31, 938–964. [Google Scholar] [CrossRef]
Landscape Pattern Index | Abbreviations | Description | Formula |
---|---|---|---|
Total Landscape Area | TA | Refers to the size of the landscape. | |
Patch Density | PD | Refers to the number of patches per unit area of all heterogeneous landscapes in the region. The higher index means higher degree of landscape fragmentation. | |
Large Patch Index | LPI | Refers to the proportion of the largest patch occupying the entire landscape area. The lower value means higher fragmentation degree of this type of landscape. | |
Landscape Shape Index | LSI | Represents the complexity of landscape patch shape. The value is 1 when the shape is square, and the value is larger when the patch is more irregular. | |
Aggregation Index | AI | Represents the degree of agglomeration of the patch. The larger index means higher overall aggregation degree. | |
Shannon’s Diversity Index | SHDI | Reflects the richness of various types in a landscape system. The value is higher when the diversity of wetland types is higher. |
Year | TA/km2 | PD/(n/km2) | LPI(%) | LSI | SHDI | AI |
---|---|---|---|---|---|---|
2000 | 1841.744 | 0.968 | 13.739 | 60.869 | 1.299 | 95.426 |
2005 | 1785.813 | 1.030 | 14.027 | 61.827 | 1.265 | 95.274 |
2010 | 1764.808 | 1.050 | 12.905 | 61.672 | 1.326 | 95.180 |
2015 | 1715.531 | 1.050 | 13.280 | 58.943 | 1.302 | 95.338 |
2020 | 1682.753 | 1.146 | 13.524 | 63.310 | 1.276 | 95.073 |
Difference | −158.990 | 0.178 | −0.215 | 2.441 | −0.023 | −0.353 |
Average | 1758.130 | 1.049 | 13.495 | 61.324 | 1.294 | 95.258 |
River | Lake | Reservoir | Beach | Marsh | Non-Wetland | 2000 | |
---|---|---|---|---|---|---|---|
River | 256.99 | 5.08 | 2.63 | 9.95 | 0.01 | 13.54 | 288.21 |
Lake | 3.62 | 760.9789 | 68.02 | 30.65 | 3.44 | 67.38 | 934.08 |
Reservoir | 3.49 | 23.55 | 242.68 | 18.34 | 3.52 | 111.80 | 403.38 |
Beach | 10.19 | 2.05 | 4.04 | 49.89 | 2.35 | 24.09 | 92.61 |
Marsh | 0.03 | 40.97 | 5.76 | 1.33 | 60.29 | 15.08 | 123.46 |
Non-wetland | 15.26 | 19.80 | 77.39 | 37.11 | 5.41 | 6581.21 | 6736.17 |
2010 | 289.58 | 852.42 | 400.52 | 147.28 | 75.02 | 6813.11 | 8577.91 |
River | Lake | Reservoir | Beach | Marsh | Non-Wetland | 2010 | |
---|---|---|---|---|---|---|---|
River | 256.53 | 4.54 | 3.23 | 7.89 | 0.09 | 17.30 | 289.58 |
Lake | 1.31 | 765.62 | 24.74 | 6.39 | 12.23 | 42.13 | 852.42 |
Reservoir | 2.72 | 40.15 | 246.41 | 4.22 | 3.98 | 103.04 | 400.52 |
Beach | 12.02 | 19.21 | 11.62 | 53.32 | 1.17 | 49.93 | 147.28 |
Marsh | 0.03 | 3.86 | 2.34 | 6.56 | 51.40 | 10.83 | 75.02 |
Non-wetland | 12.49 | 40.04 | 59.54 | 16.27 | 12.83 | 6671.93 | 6813.11 |
2020 | 285.10 | 873.43 | 347.88 | 94.65 | 81.70 | 6895.16 | 8577.91 |
Year. | TA | PD | LPI | LSI | SHDI | AI |
---|---|---|---|---|---|---|
2000 | 0.827 ** | −0.625 ** | −0.019 | 0.383 ** | 0.337 ** | 0.441 ** |
2005 | 0.865 ** | −0.623 ** | −0.022 | 0.325 ** | 0.358 ** | 0.452 ** |
2010 | 0.793 ** | −0.571 ** | −0.146 ** | 0.450 ** | 0.441 ** | 0.351 ** |
2015 | 0.757 ** | −0.525 ** | −0.186 ** | 0.518 ** | 0.486 ** | 0.304 ** |
2020 | 0.811 ** | −0.604 ** | −0.085 * | 0.493 ** | 0.392 ** | 0.349 ** |
Average | 0.811 | −0.590 | −0.092 | 0.434 | 0.403 | 0.379 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Zhang, R.; Wang, Y.; Huang, J. Evolution Characteristics of Wetland Landscape Pattern and Its Impact on Carbon Sequestration in Wuhan from 2000 to 2020. Land 2023, 12, 582. https://doi.org/10.3390/land12030582
Song J, Zhang R, Wang Y, Huang J. Evolution Characteristics of Wetland Landscape Pattern and Its Impact on Carbon Sequestration in Wuhan from 2000 to 2020. Land. 2023; 12(3):582. https://doi.org/10.3390/land12030582
Chicago/Turabian StyleSong, Jufang, Ruidong Zhang, Yiran Wang, and Jingnan Huang. 2023. "Evolution Characteristics of Wetland Landscape Pattern and Its Impact on Carbon Sequestration in Wuhan from 2000 to 2020" Land 12, no. 3: 582. https://doi.org/10.3390/land12030582
APA StyleSong, J., Zhang, R., Wang, Y., & Huang, J. (2023). Evolution Characteristics of Wetland Landscape Pattern and Its Impact on Carbon Sequestration in Wuhan from 2000 to 2020. Land, 12(3), 582. https://doi.org/10.3390/land12030582