Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta
Abstract
:1. Introduction
2. The Coupling Mechanism
3. Study Area, Materials and Methods
3.1. Study Area and Data Sources
3.2. Study Methods
3.2.1. Indicator System Construction
3.2.2. CRITIC + Entropy Weight Method
3.2.3. Modified Coupled Coordination Model
3.2.4. Kernel Density Estimation
3.2.5. PVAR Model
3.2.6. Spatial Panel Model
4. Empirical Analysis
4.1. Time Evolution Analysis of the Overall Coupling Coordination Development of the Yangtze River Delta
4.2. Spatial and Temporal Evolution Characteristics of DE–NU–LE and Coupling Coordination Degree in the Yangtze River Delta Prefecture-Level Cities
4.2.1. The Foundations for Coordinated Development of Each City Have Begun to Form, and the Trend of DE Polarization Is Obvious
4.2.2. The Spatial Evolution Characteristics of Subsystems Are Different, and the Spatial Pattern of “High in the East and Low in the West” Is Gradually Strengthened
4.2.3. The Tailing of the Right Side Is Apparent, and Regional Development Gradually Converges
5. Identification of the Interaction Mechanisms and Spatial Effects of DE, NU, and LE
5.1. Interactive Response Identification of DE, NU, and LE
5.2. Spatial Effects Identification of DE–NU–LE Coordinated Development
6. Conclusions and Suggestions
6.1. Main Conclusions
6.2. Related Suggestions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, C.; Yang, J.; Fang, J.; Huang, X.; Zhou, Y. Optimization transmission theory and technical pathways that describe multiscale urban agglomeration spaces. Chin. Geogr. Sci. 2018, 28, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikov, A.; Zernova, L.; Degtyareva, V.; Panko, I.V.; Sigidov, Y.I. Global trends of the digital economy development. Opción Rev. Cienc. Hum. Soc. 2020, 26, 523–540. [Google Scholar]
- Tapscott, D. The digital economy: Promise and peril in the age of networked intelligence. Educom Rev. 1996, 31, 52–54. [Google Scholar]
- Lane, N. Advancing the digital economy into the 21st century. Inf. Syst. Front. 1999, 1, 317–320. [Google Scholar] [CrossRef]
- Moulton, B.R. GDP and the Digital Economy: Keeping up with the Changes. In Understanding the Digital Economy: Data, Tools, and Research; MIT Press: Cambridge, MA, USA, 2000; pp. 34–48. [Google Scholar]
- Dahlman, C.; Mealy, S.; Wermelinger, M. Harnessing the Digital Economy for Developing Countries; OECD Publishing: Paris, France, 2016; p. 334. [Google Scholar]
- Qian, W.; Liu, H.; Pan, F. Digital economy, industry heterogeneity, and service industry resource allocation. Sustainability 2022, 14, 8020. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, H.; Zhong, K. Digital economy development, industrial structure upgrading and green total factor productivity: Empirical evidence from China’s cities. Int. J. Environ. Res. Public Health 2022, 19, 2414. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Su, K.; Wang, S. Does the digital economy promote industrial structural upgrading?—A test of mediating effects based on heterogeneous technological innovation. Sustainability 2021, 13, 10105. [Google Scholar] [CrossRef]
- Ciocoiu, C.N. Integrating digital economy and green economy: Opportunities for sustainable development. Theor. Empir. Res. Urban Manag. 2011, 6, 33–43. [Google Scholar]
- Jiang, Q.; Li, Y.; Si, H. Digital Economy Development and the Urban–Rural Income Gap: Intensifying or Reducing. Land 2022, 11, 1980. [Google Scholar] [CrossRef]
- Quimba, F.M.A.; Calizo, S.C. Going Digital: From Innovation to Inclusive Growth in the Philippines; Presented at PIDS Discussion Paper Series; Philippine Institute for Development Studies (PIDS): Quezon, Philippines, 2018. [Google Scholar]
- Xiang, X.; Yang, G.; Sun, H. The impact of the digital economy on low-carbon, inclusive growth: Promoting or restraining. Sustainability 2022, 14, 7187. [Google Scholar] [CrossRef]
- Siddik, M.N.A.; Kabiraj, S. Digital finance for financial inclusion and inclusive growth. In Digital Transformation in Business and Society: Theory and Cases; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 155–168. [Google Scholar]
- Xun, Z.; Guanghua, W.; Jiajia, Z.; Zongyue, H. Digital economy, financial inclusion and inclusive growth. China Econ. 2020, 15, 92–105. [Google Scholar]
- Guan, X.; Wei, H.; Lu, S.; Dai, Q.; Su, H. Assessment on the urbanization strategy in China: Achievements, challenges and reflections. Habitat Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, B. How does new-type urbanization affect air pollution? Empirical evidence based on spatial spillover effect and spatial Durbin model. Environ. Int. 2022, 165, 107304. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Impact of China’s new-type urbanization on energy intensity: A city-level analysis. Energy Econ. 2021, 99, 105292. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Yuan, H. The spatial threshold effect and its regional boundary of new-type urbanization on energy efficiency. Energy Policy 2022, 164, 112866. [Google Scholar] [CrossRef]
- Yu, B. Ecological effects of new-type urbanization in China. Renew. Sustain. Energy Rev. 2021, 135, 110239. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, S.; Zhou, P.; Peng, L.; Liu, Y.; Wan, J. Spatiotemporal characteristics of rural labor migration in China: Evidence from the migration stability under new-type urbanization. Chin. Geogr. Sci. 2020, 30, 749–764. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Huang, X.; Ye, C. The integration of new-type urbanization and rural revitalization strategies in China: Origin, reality and future trends. Land 2021, 10, 207. [Google Scholar] [CrossRef]
- Li, C.; Yan, J.; Xu, Z. How does new-type urbanization affect the subjective well-being of urban and rural residents? Evidence from 28 provinces of China. Sustainability 2021, 13, 13098. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Zhang, Y.; Shen, J.; Han, W.; Zhang, W.; Christie, P.; Goulding, K.; Vitousek, P.; Zhang, F. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Li, X.G.; Jia, B.; Lv, J.; Ma, Q.; Kuzyakov, Y.; Li, F.-m. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol. Biochem. 2017, 112, 47–55. [Google Scholar] [CrossRef]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–54. [Google Scholar]
- Zhang, Y.; Dai, Y.; Chen, Y.; Ke, X. Coupling coordination development of new-type urbanization and cultivated land low-carbon utilization in the Yangtze River Delta, China. Land 2022, 11, 919. [Google Scholar] [CrossRef]
- Wu, C.F.; Chen, M.Q. Complexity of land ecosystem. Chin. J. Appl. Ecol. 2002, 6, 753–755. [Google Scholar]
- Tong, S.; Zhiming, F.; Yanzhao, Y.; Yumei, L.; Yanjuan, W. Research on land resource carrying capacity: Progress and prospects. J. Resour. Ecol. 2018, 9, 331–340. [Google Scholar] [CrossRef]
- Stewart, N. The Value of Land; Economics of Land Degradation Initiative (ELD): Bonn, Germany, 2015. [Google Scholar]
- Rondhi, M.; Pratiwi, P.A.; Handini, V.T.; Sunartomo, A.F.; Budiman, S.A. Agricultural land conversion, land economic value, and sustainable agriculture: A case study in East Java, Indonesia. Land 2018, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.M.L. The Economic Valuation of Landscape Change: Theory and Policies for Land Use and Conservation; Edward Elgar Publishing: Cheltenham, UK, 1998. [Google Scholar]
- Cheng, H.; Zhu, L.; Meng, J. Fuzzy evaluation of the ecological security of land resources in mainland China based on the Pressure-State-Response framework. Sci. Total Environ. 2022, 804, 150053. [Google Scholar] [CrossRef]
- Bardgett, R.D.; McAlister, E. The measurement of soil fungal: Bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 1999, 29, 282–290. [Google Scholar] [CrossRef]
- Hua, Y.; Yan, M.; Limin, D. Land ecological security assessment for Bai autonomous prefecture of Dali based using PSR model--with data in 2009 as case. Energy Procedia 2011, 5, 2172–2177. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Yin, H.; Li, Z.; Li, S. Land ecological security evaluation of Guangzhou, China. Int. J. Environ. Res. Public Health 2014, 11, 10537–10558. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Bai, Y.; Wang, G.; Chen, J.; Yu, J.; Liu, W. Land eco-efficiency for new-type urbanization in the Beijing-Tianjin-Hebei Region. Technol. Forecast. Soc. Chang. 2018, 137, 19–26. [Google Scholar] [CrossRef]
- Fischer, G.; Granat, J.; Makowski, M. AEZWIN an Interactive Multiple-Criteria Analysis Tool for Land Resources Appraisal; Presented at IIASA Interim Report; IIASA: Laxenburg, Austria, 1998. [Google Scholar]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Xie, H.; Huang, Y.; Choi, Y.; Shi, J. Evaluating the sustainable intensification of cultivated land use based on emergy analysis. Technol. Forecast. Soc. Chang. 2021, 165, 120449. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, Q.; Tong, X.; Chen, L. Evaluating land ecological security and examining its relationships with driving factors using GIS and generalized additive model. Sci. Total Environ. 2018, 633, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Li, Z. Spatio-temporal evolution characteristics and spatial interaction spillover effects of new-urbanization and green land utilization efficiency. Land 2021, 10, 1105. [Google Scholar] [CrossRef]
- Deng, S. Exploring the relationship between new-type urbanization and sustainable urban land use: Evidence from prefecture-level cities in China. Sustain. Comput. Inform. Syst. 2021, 30, 100446. [Google Scholar] [CrossRef]
- Bukht, R.; Heeks, R. Defining, conceptualising and measuring the digital economy. International Organisations Research Journal 2018, 13, 143–172. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, W. New Direction of Sustainable Urbanization: The Impact of Digital Technologies and Policies on China’s In Situ Urbanization. Buildings 2022, 12, 882. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Qu, Y. Is the internet the game changer? Disabled people and digital work in China. Disabil. Soc. 2022, 37, 725–745. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Z. Ecological well-being performance and influencing factors in China: From the perspective of income inequality. Kybernetes, 2021; ahead-of-print. [Google Scholar]
- Xu, H.; Jiao, M. City size, industrial structure and urbanization quality—A case study of the Yangtze River Delta urban agglomeration in China. Land Use Policy 2021, 111, 105735. [Google Scholar] [CrossRef]
- King, S.; Cotterill, S. Transformational government? The role of information technology in delivering citizen-centric local public services. Local Gov. Stud. 2007, 33, 333–354. [Google Scholar] [CrossRef]
- Li, G.; Zhou, X.; Bao, Z. A Win–Win Opportunity: The Industrial Pollution Reduction Effect of Digital Economy Development—A Quasi-Natural Experiment Based on the “Broadband China” Strategy. Sustainability 2022, 14, 5583. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dong, K.; Dong, X.; Taghizadeh-Hesary, F. Assessing the digital economy and its carbon-mitigation effects: The case of China. Energy Econ. 2022, 113, 106198. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, S.; Wan, X.; Yao, Y. Study on the effect of digital economy on high-quality economic development in China. PLoS ONE 2021, 16, e0257365. [Google Scholar] [CrossRef]
- Ren, J.; Chen, X.; Gao, T.; Chen, H.; Shi, L.; Shi, M. New Digital Infrastructure’s Impact on Agricultural Eco-Efficiency Improvement: Influence Mechanism and Empirical Test—Evidence from China. Int. J. Environ. Res. Public Health 2023, 20, 3552. [Google Scholar] [CrossRef] [PubMed]
- Khudoynazarovich, K.S. The role of digital technologies in agricultural development and foreign experience. TRANS Asian J. Mark. Manag. Res. (TAJMMR) 2021, 10, 19–29. [Google Scholar] [CrossRef]
- Nesterenko, N.Y.; Pakhomova, N.V.; Richter, K.K. Sustainable development of organic agriculture: Strategies of Russia and its regions in context of the application of digital economy technologies. Petersburg University Journal of Economic Studies 2020, 36, 217–242. [Google Scholar] [CrossRef]
- Goh, C.S.; Ahl, A.; Woo, W.T. Sustainable transformation of land-based economic development in the era of digital revolution. Trends Biotechnol. 2021, 39, 1–4. [Google Scholar] [CrossRef]
- Hein, A.; Schreieck, M.; Riasanow, T.; Setzke, D.S.; Wiesche, M.; Böhm, M.; Krcmar, H. Digital platform ecosystems. Electron. Mark. 2020, 30, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Noesselt, N. City brains and smart urbanization: Regulating ‘sharing economy’innovation in China. J. Chin. Gov. 2020, 5, 546–567. [Google Scholar] [CrossRef]
- Barbier, E.B. Wealth accounting, ecological capital and ecosystem services. Environ. Dev. Econ. 2013, 18, 133–161. [Google Scholar] [CrossRef] [Green Version]
- Che, S.; Wang, J. Digital economy development and haze pollution: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 73210–73226. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, C.; Li, C. Research on the Impact of the Digital Economy on China’s New-Type Urbanization: Based on Spatial and Mediation Models. Sustainability 2022, 14, 14843. [Google Scholar] [CrossRef]
- Wang, S.; Kong, W.; Ren, L.; Zhi, D.; Dai, B. Research on misuses and modification of coupling coordination degree model in China. J. Nat. Resour. 2021, 36, 793–810. [Google Scholar] [CrossRef]
Subsystem Layer | Dimensional Layer | Indicator Layer | CRITI Weights | Entropy Weights | Type |
---|---|---|---|---|---|
DE | Digital infrastructure | Number of Internet users per 10,000 people | 0.0916 | 0.1776 | + |
Number of cell phone subscribers per 10,000 people | 0.0808 | 0.1743 | + | ||
Digital development | Computer services and software practitioners | 0.5050 | 0.2711 | + | |
Total telecommunications business | 0.2452 | 0.2047 | + | ||
Digital inclusion | Digital finance inclusion index | 0.0775 | 0.1721 | + | |
NU | Population urbanization | Urbanization rate | 0.0464 | 0.0870 | + |
The proportion of employees in the secondary and tertiary industries | 0.0424 | 0.0847 | + | ||
Economic urbanization | GDP growth rate | 0.0531 | 0.0853 | + | |
Disposable income of urban and rural residents | 0.0725 | 0.0908 | + | ||
The proportion of output value of secondary and tertiary industries | 0.0394 | 0.0858 | + | ||
Social urbanization | The proportion of fiscal expenditure on science and education in GDP | 0.0903 | 0.0867 | + | |
Per capita retail sales of consumer goods | 0.0712 | 0.0910 | + | ||
Urban bus operation volume | 0.2174 | 0.1091 | + | ||
PM2.5 | 0.0897 | 0.0874 | − | ||
Spatial urbanization | Per capita built-up area | 0.0985 | 0.0906 | + | |
The proportion of urban built-up area in land area | 0.1791 | 0.1015 | + | ||
LE | Population pressure | Population density | 0.0222 | 0.0674 | − |
Industry pressure | Total agricultural output value-added/The area of cultivated land acquired in the year | 0.0215 | 0.0670 | − | |
Environmental pressure | Fertilizer application per unit sowing area | 0.0526 | 0.0685 | − | |
Industrial waste gas, wastewater, and waste load per unit of land | 0.0331 | 0.0678 | − | ||
Land structure | The proportion of industrial land area | 0.0188 | 0.0672 | − | |
Urban per capita green area | 0.1715 | 0.0771 | + | ||
Total water resources/Crop sown area | 0.2163 | 0.0860 | + | ||
Land function | Grain output per unit sown area | 0.0659 | 0.0694 | + | |
land economic density | 0.1679 | 0.0842 | + | ||
Overall development | Green development index | 0.0785 | 0.0721 | + | |
Population response | population growth rate | 0.0153 | 0.0668 | − | |
Industry response | GDP per capita | 0.0839 | 0.0725 | + | |
Environmental response | The comprehensive utilization rate of general industrial solid waste | 0.0270 | 0.0671 | + | |
Green coverage rate | 0.0256 | 0.0670 | + |
Development Type | Coupling Coordination Degree | Coupling Coordination Stage |
---|---|---|
Coordinated development | 0.7 < D ≤ 1 | Good coordination |
0.6 < D ≤ 0.7 | Intermediate coordination | |
Transformation development | 0.5 < D ≤ 0.6 | Basic coordination |
0.4 < D ≤ 0.5 | Basic imbalance | |
Imbalance development | 0.3 < D ≤ 0.4 | Intermediate imbalance |
0 < D ≤ 0.3 | Serious imbalance. |
Year | DE | NU | LE | Coupling Coordination Degree | Coupling Degree | Coupling Coordination Stage |
---|---|---|---|---|---|---|
2011 | 0.0943 | 0.3082 | 0.4152 | 0.3811 | 0.5350 | Intermediate imbalance |
2012 | 0.1213 | 0.3315 | 0.4290 | 0.4120 | 0.5802 | Basic imbalance |
2013 | 0.1514 | 0.3180 | 0.4271 | 0.4303 | 0.6222 | Basic imbalance |
2014 | 0.1647 | 0.3207 | 0.4359 | 0.4388 | 0.6298 | Basic imbalance |
2015 | 0.1799 | 0.3359 | 0.4446 | 0.4545 | 0.6487 | Basic imbalance |
2016 | 0.2037 | 0.3567 | 0.4498 | 0.4776 | 0.6814 | Basic imbalance |
2017 | 0.2345 | 0.3683 | 0.4463 | 0.5000 | 0.7193 | Basic coordination |
2018 | 0.2546 | 0.3837 | 0.4543 | 0.5159 | 0.7360 | Basic coordination |
2019 | 0.2690 | 0.3981 | 0.4689 | 0.5278 | 0.7418 | Basic coordination |
2020 | 0.2811 | 0.4011 | 0.4724 | 0.5353 | 0.7510 | Basic coordination |
Variance | LLC | IPS | Individual Fixed | Time Trend | Test Results |
---|---|---|---|---|---|
ln_DE | −34.5572 *** | −11.4447 *** | Yes | Yes | Stationary |
ln_NU | −8.8700 *** | −3.3008 *** | Yes | Yes | Stationary |
ln_LE | −16.5960 *** | −5.2458 *** | Yes | Yes | Stationary |
Equation | Excluded | p-Value | Whether to Reject the Null Hypothesis |
---|---|---|---|
ln_DE | ln_NU | 0.002 *** | Rejection |
ln_LE | 0.048 ** | Rejection | |
All | 0.000 *** | Rejection | |
ln_NU | ln_DE | 0.000 *** | Rejection |
ln_LE | 0.060 * | Rejection | |
All | 0.000 *** | Rejection | |
ln_LE | ln_DE | 0.018 ** | Rejection |
ln_NU | 0.005 *** | Rejection | |
All | 0.001 *** | Rejection |
Year | Adjacency Matrix | Economic Distance Matrix | ||||
---|---|---|---|---|---|---|
Moran’s I | Z-Value | p-Value | Moran’s I | Z-Value | p-Value | |
2011 | 0.449 | 4.812 | 0.00 | 0.186 | 9.635 | 0.00 |
2012 | 0.460 | 4.918 | 0.00 | 0.187 | 9.665 | 0.00 |
2013 | 0.394 | 4.283 | 0.00 | 0.161 | 8.536 | 0.00 |
2014 | 0.394 | 4.314 | 0.00 | 0.154 | 8.268 | 0.00 |
2015 | 0.400 | 4.362 | 0.00 | 0.161 | 8.574 | 0.00 |
2016 | 0.386 | 4.211 | 0.00 | 0.157 | 8.376 | 0.00 |
2017 | 0.416 | 4.512 | 0.00 | 0.167 | 8.832 | 0.00 |
2018 | 0.400 | 4.512 | 0.00 | 0.162 | 8.605 | 0.00 |
2019 | 0.360 | 3.955 | 0.00 | 0.162 | 8.042 | 0.00 |
2020 | 0.318 | 3.548 | 0.00 | 0.130 | 7.200 | 0.00 |
SDM→SAR | SDM→SEM | |
---|---|---|
LR-test | 59.23 *** | 42.47 *** |
Wald-test | 64.56 *** | 41.18 *** |
Hausman | 39.46 *** |
Variance | (1) Adjacency Matrix | (2) Economic Distance Matrix | ||
---|---|---|---|---|
ln_D | Wx | ln_D | Wx | |
ln_DE | 0.1872 *** | −0.0680 *** | 0.1873 *** | −0.0512 *** |
(0.0038) | (0.0126) | (0.0038) | (0.0088) | |
ln_NU | 0.2818 *** | −0.0250 | 0.2868 *** | −0.0335 ** |
(0.0105) | (0.0291) | (0.0103) | (0.0164) | |
ln_LE | −0.0611 *** | 0.0857 ** | −0.0478 *** | 0.0557 *** |
(0.0174) | (0.0344) | (0.0171) | (0.0215) | |
Control variables | Yes | Yes | ||
0.2624 *** (0.0660) | 0.2041 *** (0.0440) | |||
N | 410 0.989 | 410 0.988 | ||
R2 |
Variance | (1) Adjacency Matrix | (2) Economic Distance Matrix | ||
---|---|---|---|---|
ln_D | ln_D | |||
Direct effect | Indirect effects | Direct effect | Indirect effects | |
ln_DE | 0.1862 *** | −0.0249 *** | 0.1865 *** | −0.0156 *** |
(0.0038) | (0.0065) | (0.0038) | (0.0037) | |
ln_NU | 0.2844 *** | 0.0653 ** | 0.2882 *** | 0.0305 ** |
(0.0104) | (0.0267) | (0.0102) | (0.0122) | |
ln_LE | −0.0551 *** | 0.0910 ** | −0.0427 *** | 0.0552 ** |
(0.0164) | (0.0428) | (0.0162) | (0.0244) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Shen, S.; Du, L.; Fu, J.; Zou, J.; Peng, L.; Ding, R. Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta. Land 2023, 12, 677. https://doi.org/10.3390/land12030677
Zhu Y, Shen S, Du L, Fu J, Zou J, Peng L, Ding R. Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta. Land. 2023; 12(3):677. https://doi.org/10.3390/land12030677
Chicago/Turabian StyleZhu, Yuqi, Siwei Shen, Linyu Du, Jun Fu, Jian Zou, Lina Peng, and Rui Ding. 2023. "Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta" Land 12, no. 3: 677. https://doi.org/10.3390/land12030677
APA StyleZhu, Y., Shen, S., Du, L., Fu, J., Zou, J., Peng, L., & Ding, R. (2023). Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta. Land, 12(3), 677. https://doi.org/10.3390/land12030677