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Abstract: Land cover monitoring is crucial to understand land transformations at a global, regional
and local level, and the development of innovative methodologies is necessary in order to define
appropriate policies and land management practices. Deep learning techniques have recently been
demonstrated as a useful method for land cover mapping through the classification of remote sensing
imagery. This research aims to test and compare the predictive models created using the convolutional
neural networks (CNNs) VGG16, DenseNet121 and ResNet50 on multitemporal and single-date
Sentinel-2 satellite data. The most promising model was the VGG16 both with single-date and
multi-temporal images, which reach an overall accuracy of 71% and which was used to produce an
automatically generated EAGLE-compliant land cover map of Rome for 2019. The methodology is
part of the land mapping activities of ISPRA and exploits its main products as input and support
data. In this sense, it is a first attempt to develop a high-update-frequency land cover classification
tool for dynamic areas to be integrated in the framework of the ISPRA monitoring activities for the
Italian territory.

Keywords: deep learning; convolutional neural networks; land cover; remote sensing; Copernicus;
Sentinel-2

1. Introduction
Background

The availability of updated and reliable land cover (LC, all the acronyms and abbrevi-
ations are reported in Abbreviations part) and land use (LU) data is a crucial element in
monitoring the effect of human activity on the territory, on ecosystems and on their ability to
provide ecosystem services, in order to guide decisions for sustainable soil management [1].

In Europe, the Copernicus Land Monitoring Service (CLMS) [2] offers users and
stakeholders a wide range of land cover and land use products to support land monitoring
activities (Table 1).

As part of the Global component of the CLMS, a 100-m-resolution annually updated
global LC map is provided for the period 2015–2019 [3]. The CLMS pan-European compo-
nent includes the CORINE Land Cover (CLC, vector data updated every 6 years, with a
minimum mapping unit of 26 hectares and a 33-class land cover and land use classification
system) [4], the four High-Resolution Layers raster (with a resolution of 10 m for the land
cover classes of artificial surfaces, forest, grassland and water and wetness) [5], and the
new CLC Plus Backbone, which offers a 10-m-resolution LC mapping in raster format
for 2018 [6]. As part of the CLMS Local component, the Urban Atlas, Riparian Zones,
Natura 2000 and Coastal Zones [7] layers are available, which offer high spatial resolution
mapping for specific areas of the European territory (in order, urban areas, riparian zones,
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Natura 2000 protected areas and a buffer zone of 10 km of coastline). The CLMS Local data
adopt an LC and LU classification system in compliance with the Mapping Assessment of
Ecosystem Services (MAES) ecosystem types.

Table 1. Copernicus Land Monitoring Service land cover and land use data with reference to the
Global, Pan-European and Local component; LC = Land Cover classes, LU = Land Use classes,
CLMS = Copernicus Land Monitoring Service.

Name Data Type Classes MMU

CLMS Global Component Global Land Cover Raster 23 (LC) Pixel 100 × 100 m

CLMS Pan-European Component
CLC Plus Backbone Raster 12 (LC) Pixel 10 × 10 m

CORINE Land Cover Vector 44 (LC, LU)
25 ha (status)
5 ha (changes)

CLMS Local Component

Coastal Zones

Vector
55 (LC, LU) 0.5 haNatura 2000

Riparian Zones

Urban Atlas 27 (LC, LU)
0.25 ha (class 1)
1 ha (class 2–5)

As part of the Global component of the CLMS, a 100-m-resolution annually updated
global LC map is provided for the period 2015–2019 [3]. The CLMS pan-European compo-
nent includes the CORINE Land Cover (CLC, vector data updated every 6 years, with a
minimum mapping unit of 26 hectares and a 33-class land cover and land use classification
system) [4], the four High-Resolution Layers raster (with a resolution of 10 m for the land
cover classes of artificial surfaces, forest, grassland and water and wetness) [5], and the
new CLC Plus Backbone, which offers a 10-m-resolution LC mapping in raster format
for 2018 [6]. As part of the CLMS Local component, the Urban Atlas, Riparian Zones,
Natura 2000 and Coastal Zones [7] layers are available, which offer high spatial resolution
mapping for specific areas of the European territory (in order, urban areas, riparian zones,
Natura 2000 protected areas and a buffer zone of 10 km of coastline). The CLMS Local data
adopt an LC and LU classification system in compliance with the Mapping Assessment of
Ecosystem Services (MAES) ecosystem types.

These data are reliable and widely used for land monitoring but have limitations
in terms of low update frequency and classification system with mixed land cover
and land use classes. In this perspective, the growing availability of satellite data has
contributed to the development of new mapping techniques [8] which constitutes an
important support tool for the creation of new land monitoring products. Actually, there
are numerous experiences of LC and LU mapping by exploiting the 10-m-resolution
multispectral information of the Copernicus Sentienel-2 optical satellite and the C-
band Sentinel-1 SAR data [9–12]. Among the main products with European coverage,
Malinowski et al. [13] proposed Sentinel-2 based 14-class land cover and land use
classification for 2017, ESA also introduced Sentinel-1 data for a 12-class land cover
classification [14] while Venter and Sydneham [15] integrated Sentinel data with the
Land Use and Cover Area frame Survey (LUCAS), producing a 2018 map with 90%
accuracy. Also of note are global products such as the ESA WorldCover [16,17], the Finer
Resolution Observation and Monitoring of Global Land Cover (FROM-GLC10) [18] or
the Esri 2020 LULC map [19].

However, the land cover classification of Remote Sensing images is extremely
challenging, due to the wide variety of anthropogenic and natural elements (buildings,
roads, trees, agricultural activities, water bodies) that correspond to different colors,
shapes and textures. Particularly important and complex is also the production of tools
for the detailed and high-frequency monitoring of dynamic contexts, such as peri-urban
and suburban areas, and of impactful and rapid phenomena such as illegal building
and construction sites.
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Image processing methods have improved in recent years [20]. In many studies,
deep learning has been shown to be useful for land cover classification [21], with
successful applications in urban areas [22,23], agricultural land [24], forestry [25,26]
and wetlands [27,28].

Deep learning models used for land cover classification are based on Artificial Neural
Network algorithms [29], which include Convolutional Neural Networks (CNNs) [30,31],
Recurrent Neural Networks (RNNs) [32] and Generative Adversarial Networks (GANs) [33].
CNNs are currently the most commonly used in remote sensing image processing [34–36],
and its structure consists of an input layer, several convolutional and pooling layers and a
final output which is used for the classification of the image [37].

CNNs have proven to be effective alternatives to traditional Machine Learning meth-
ods such as Decision Trees [38], Random Forests [39], Support Vector Machines [40] and
K-Nearest Neighbors [41]. Using CNNs, information can be learned automatically and di-
rectly from data, without requiring human intervention, allowing also for solving complex
and non-linear problems [42,43]. They have better performances than ML since they can
handle a larger amount of data faster and adapt to changes [44]. Furthermore, convolu-
tional neural networks are more generalized than traditional machine learning algorithms,
making them suitable for a wide range of tasks, as well as performing well on new data [45].
Finally, CNNs are able to learn from the spatial context of the data [46,47].

There are a variety of CNN architectures that can be used for LC classification, such
as the VGGNet [48], AlexNet [49], ResNet [50], DenseNet [51] and U-Net [52]. Several of
these algorithms have been used successfully on RGB [53,54], multispectral [55,56] and
hyperspectral data [57–59], and the state of the art reveals many publications regarding
classification of not freely available high-resolution images [54,60,61]. However, various
DL methods were recently utilized to generate LU and LC maps using free data, which are
receiving particular attention because their high temporal resolution allows for significant
cost savings in high-frequency monitoring [62–64], e.g., Hu et al. [65] used Landsat-8
images for wetland cover classification with a VGG, Di Pilato et al. [66] focused their study
on the detection of changes in urban areas using a CNN on Sentinel-2 images, Mirmazloumi
et al. [12] developed a workflow to generate a LULC map of Europe using Sentinel and
Landsat-8 images.

The Higher Institute for Environmental Protection and Research (ISPRA) produces
and updates tools for mapping and monitoring land cover, land use and land con-
sumption for the Italian territory. ISPRA is responsible together with the National
Environmental Protection System (SNPA) for updating the National Land Consumption
Map (LCM) [1,67], a nationwide 10-m-resolution raster that maps land consumption
with a tree-level classification system. The LCM is updated annually through photo-
interpretation of the entire national territory with the aid of support layers obtained
through the classification of Sentinel data [68]. ISPRA also produces land cover and
land use maps with an EAGLE-compliant classification system integrating Copernicus
data [69,70] and develops innovative methodologies for the classification of land cover
and land consumption by the classification of satellite images [71], also through deep
learning techniques [54].

This research aims to define a methodology that integrates as much as possible with
the main ISPRA land monitoring products, in order to introduce valuable high-update-
frequency land mapping tools to the land monitoring framework already in place for the
Italian territory. This study shows the first results of land cover mapping by applying
three CNN imaging techniques to Sentinel-2 multispectral images in order to analyze their
performance in the production of classifications on the Italian territory. The VGG16 [72–74],
DenseNet121 [61,75] and ResNet50 [72,73] algorithms were compared for the identification
of five EAGLE-compliant land cover classes with respect to the classification of a single
image and multi-temporal data.
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2. Materials and Methods
2.1. Study Area

The considered study area is the Municipality of Rome located in Central Italy, in the
Latium region (Figure 1).
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Figure 1. (a) Location of the study areas in Italy; (b) the Municipality of Rome.

The municipality is located in the Tiber valley and is spread over an area of 1287 km2.
Rome is the largest municipality in Italy and is one of the largest European capitals, with a
territory with a low population density due to the presence of numerous green urban areas.
The territory has reliefs and hills alternating with flat areas and extends to the sandy coasts
on the Tyrrhenian Sea. According to the Köppen climate classification, Rome belongs to the
Csa zone, i.e., a temperate climate with hot summers. The average annual rainfall is around
800 mm in the thirty years 1971–2000, with maximum peaks in the months of November,
December and April.

Initially a portion of the municipality with an area of 64 km2 was selected for the
comparison between different deep learning algorithms and different input data. For this
purpose, the area was divided into two parts, the larger (indicated with an “B” in Figure 2)
was used for the predictive model training phase, while the smaller (indicated with a “A”
in Figure 2) was used in the validation phase. In the following, the two areas will be called
the “training area” and “validation area”, respectively.

The best combination of the input data and algorithm was then applied to the land
cover mapping of the whole municipality of Rome in the testing phase.

2.2. Overview

The proposed research applies deep learning algorithms on Sentinel-2 images for the
production of a land cover map based on an EAGLE-compliant land cover classification
system [71,76]. Figure 3 shows the main phases of the methodology, which foresees a first
phase of data collection and pre-processing, followed by the modeling phase. Modeling
consists of a model-training phase, a validation phase and a final application to the area of
interest through the testing phase.
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In the study, three CNN algorithms were tested on different sets of label data in order
to identify the most promising configuration, which was then applied to the prediction
area and used for the land cover classification of the whole municipality of Rome.

The process was developed using the Python-friendly open-source library TensorFlow
(https://www.tensorflow.org/, accessed on 15 February 2023), and the accuracy assessment
was based on the Olofsson methodology [77].

2.3. Data Collection and Pre-Processing

The 10 Sentinel-2 bands with a spatial resolution of 10 and 20 m were selected with
reference to 22 March, 25 July and 8 October 2019. Data were downloaded through the
Semi-Automatic Classification Plugin for QGis [78], considering atmospherically corrected
Surface Reflectance Level-2A images with low cloud cover. The bands were stacked to
create three mono-temporal images for the three reference dates (with 10 bands each) and
merged into a fourth 30-band multitemporal image, according to the procedure described
by Wakulinska [62].

A PCA (principal component analysis) was used to reduce the dimensionality of the
data to three spectral bands, in order to optimize the processing times and the complexity
of the models. In order to create the training and validation datasets, a test area of 64 km2

was defined and then divided into two sections, which were used for the training phase
and for the validation phase (Figure 2).

2.4. Land Cover Classification System

Table 2 shows the classification system adopted for the land cover classification de-
scribed in this research, which is based on the EAGLE Land Cover Components [76] and
coincides with the second level of the land cover classification systems used for other ISPRA
activities [1,69–71].

Table 2. EAGLE-compliant classification system adopted for land cover mapping activities.

I Level II Level

1 Abiotic non-vegetated surfaces 1.1 Artificial abiotic
1.2 Natural abiotic

2 Biotic vegetated surfaces 2.1 Woody vegetation
2.2 Herbaceous vegetation

3 Water surfaces

The first classification level distinguishes three main land cover classes, two of which
are further developed at the second classification level.

1. Abiotic non-vegetated surfaces include any unvegetated surfaces, with or without
anthropogenic influence or impact, either covered with man-made artificial structures
or natural materials. At the second classification level, the class is subdivided into
artificial abiotic surfaces (i.e., permanent and reversible consumed land, according
to the definition of ISPRA-SNPA [1]) and natural abiotic surfaces (i.e., any kind of
surface in its natural form, either with or without anthropogenic influence, such as
unvegetated rocky areas, sand, bare soil).

2. Biotic vegetated surfaces include any surface with spontaneous, semi-natural or artifi-
cial vegetation, with or without anthropogenic influence. At the second classification
level, woody vegetation and herbaceous vegetation are distinguished [76].

3. Water surfaces include water in its liquid or solid state of aggregation, both of artificial
origin or natural formation (water basins, rivers, streams, stagnant waters, glaciers).

https://www.tensorflow.org/
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2.5. Modeling
2.5.1. Deep Learning Algorithms

Three of the most popular and efficient CNN algorithms were selected with the aim of
evaluating the best-performing models:

• DenseNet-121

The basic idea of a DenseNet is similar to ResNet: connect shallow layers with deep
layers using shortcuts. As a matter of fact, DenseNet architectures [51] modify the standard
CNN structure by building shorter connections between each layer. In order to maximize
the flow of information, DenseNets connect every layer to every other one, meaning that
the input of a layer is the result of concatenation of feature maps from previous ones. In this
work, a DenseNet121 with a depth of 121 layers was employed, as shown in Figure 4 [75,79].
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Figure 4. The three CNN architectures used.

• VGG-16

VGG is a standard deep CNN introduced by Simonyan et al. [48]. VGG consists of
several configurations (VGG-13, VGG-16, VGG-19, etc.), each following the same generic
design. In a VGG, an image is passed through a stack of convolutional layers with very
small filters to extract features. These architectures are based on the basic structure of
convolutional neural networks. The VGG-16 used consists of 13 convolutional layers and
3 fully connected layers. The complexity of the VGG network can be increased by adding
more convolutional layers [8,48]. Figure 4 displays the VGG-16 architecture.

• ResNet-50
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ResNet (Residual Network) and all its variants (ResNet-18, ResNet-34, ResNet-50,
ResNet-101 and ResNet-152) were proposed in 2015 by He [50] with the aim to reduce the
problem of vanishing gradients. It was partially solved through “shortcut connections”, a
technique used to create connections between layers that are not directly adjacent [54,75].
Figure 4 shows the ResNet-50 architecture.

Each of the three classification algorithms was applied to the three single-date multi-
band rasters and to the multitemporal multiband raster. In the following, each pairing
between a certain multiband raster and a certain classification algorithm is defined as an
“experiment”, and overall, 12 experiments were performed (Table 3).

Table 3. Main characteristics of the experiments performed by applying the three classification
algorithms to the four multiband rasters.

Experiment Type Date Algorithms N◦ Bands

1

single-date

22 March 2019
DenseNet121 102 25 July 2019

3 8 October 2019

4 22 March 2019
VGG16 105 25 July 2019

6 8 October 2019

7 22 March 2019
ResNet50 108 25 July 2019

9 8 October 2019

10
multi-temporal 22 March 2019/25 July 2019/8 October 2019

DenseNet121
3011 VGG16

12 ResNet50

2.5.2. Predictive Model Training, Validation and Testing

In the training phase, the labelling activity was carried out through the LC Map
produced and updated by ISPRA-SNPA, which is available in vector format only for the
municipality of Rome. The LC map was reclassified according to the classes of Table 2,
and 150,000 training areas were extracted from the LC Map to create the training dataset;
moreover, vector elements were combined with ground truth provided by Sentinel-2.
A CNN patch training was involved. This method is common in land cover applications
and trains a convolutional neural network on a large dataset of small land cover patches
rather than training on batches of individual pixels.

At first, a simple 2D CNN was applied to each of the 12 experiments in order to
evaluate which provides the best results. Typical CNN models include an input layer, a
series of convolutional and pooling layers, and an output layer [37].

The training procedure consisted of 100 epochs of iteration. The model was compiled
using an Adam optimizer [80], which iteratively updates network weights by using training
data rather than the traditional stochastic gradient descent method [81] with a learning
rate of 0.0001. The model output consists of a vector with one entry for each class. Using
the softmax activation function, the output is normalized, and a probability distribution
is generated. Next, a weighted cross-entropy was chosen and calculated as the network
loss function. In addition, batch normalization was implemented to improve the model’s
accuracy and to reduce training time and overfitting [82].

In order to select the best experiment, three of the most common DL metrics were
calculated on the land cover products obtained in the validation phase (Equations (1)–(3)):

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)
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F1 score = 2× Recall× Precision
Recall + Precision

(3)

The experiment that showed the best results was used to map the land coverage of the
entire territory of the municipality of Rome in the testing phase.

2.6. Accuracy Assessment of the Land Cover Map of Rome

The land cover map of the municipality of Rome was validated with the photointer-
pretation of a sample of points, which was determined using Olofsson methodology [77].

Quantitative evaluation was conducted evaluating the Overall Accuracy (OA) for the
overall classification (Equation (4)) and the User Accuracy (PA) and Produser Accuracy
(UA) for each land cover class (Equations (5) and (6)).

Overall Accuracy(%) =
number of correctly classified pixels

total number of pixels
× 100 (4)

s Accuracy(%) =
number of correctly classified pixels in class i

number of pixels classified as class i(total row)
× 100 (5)

Producer′s Accuracy(%) =
number of correctly classified pixels in class i

number of known pixels in class i(total column)
× 100 (6)

Accuracy was also calculated by deleting a strip of edge pixels from each patch
(“erosion”) to estimate the impact of mixed pixels on overall accuracy. The calculation of
the sample size is reported in Appendix A. The accuracy assessment was conducted for the
single-date and multi-temporal maps, both in the original version and in the version with
the erosion of a row of pixels at the edges of the patches.

3. Results
3.1. Results Overview

This section presents the results of the algorithm validation and testing activities. The
validation phase is carried out by applying the 12 experiments on the validation area,
and the accuracy metrics of the resulting classifications are reported. In the validation
phase, the VGG16 algorithm applied to the summer image (Experiment 5) and to the
multi-temporal one (Experiment 11) give the best results. Such configurations were used in
the subsequent testing phase for the production of two land cover maps of Rome, which
were then subjected to accuracy assessment through the Olofsson methodology.

3.2. Validation

Table 4 shows the results of the accuracy assessment carried out on the validation area,
with reference to the application of the 12 experiments.

Comparing the metrics and the maps for the twelve experiments, the best results are
obtained with the VGG16 algorithm (Figure 5).

This algorithm performs better than both ResNet50 and DenseNet121 with multi-
temporal data (experiment 11) and with each of the three single-date data experiments
(experiments 4–6). With reference to the input data, the best results are achieved using
multi-temporal data (experiments 10–12), while among the single-date images the summer
image (25 July 2019, used for experiments 2, 5 and 8) shows the best classification.
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Table 4. Overall accuracy (OA), Precision, Recall and F1-Score of the validation phase for each of the
12 experiments.

Experiments Type Algorithms OA Precision Recall F1-Score

1

single-date

DenseNet121
0.67 0.59 0.63 0.59

2 0.72 0.65 0.68 0.64
3 0.70 0.63 0.67 0.63

4
VGG16

0.75 0.68 0.73 0.68
5 0.80 0.75 0.80 0.76
6 0.74 0.66 0.68 0.65

7
ResNet50

0.67 0.60 0.62 0.58
8 0.64 0.57 0.58 0.56
9 0.63 0.58 0.62 0.58

10 multi-
temporal

DenseNet121 0.69 0.59 0.70 0.60
11 VGG16 0.87 0.79 0.88 0.77
12 ResNet50 0.67 0.62 0.64 0.62
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3.3. Testing

Experiment 5 (Figure 6) and Experiment 11 (Figure 7) were selected for the production
of the land cover map of Rome (LCR).

The accuracy assessment carried out with the Olofsson methodology provided the
results of Table 5.

The single-date classification shows higher accuracy values than the multi-temporal
one in all classes, except for the natural abiotic surfaces. By eliminating edge pixels from
each patch (erosion), an increase in overall accuracy is observed in both single-date and
multi-temporal classification.

Land 2023, 12, x FOR PEER REVIEW 12 of 22 
 

 
Figure 6. Single-date land cover map of Rome (LCR) produced by classifying the 10-band single-
date Sentinel-2 data of July the 25 with the VGG16 algorithm. 

Figure 6. Single-date land cover map of Rome (LCR) produced by classifying the 10-band single-date
Sentinel-2 data of July the 25 with the VGG16 algorithm.

Table 5. Accuracy assessment of the LCR. The results in single dates refer to the classification
based on the summer image of 25 July 2019. P.A. = Producer Accuracy, U.A. = User Accuracy,
O.A. = Overall Accuracy.

Land Cover Class

Single Date Multi-Temporal

P.A. U.A. O.A. O.A.
Erosion P.A. U.A. O.A. O.A.

Erosion

Abiotic surfaces 0.75 0.73

0.62 0.71

0.78 0.80

0.59 0.76

Artificial abiotic 0.63 0.77 0.62 0.72
Natural abiotic 0.39 0.23 0.67 0.45

Vegetation 0.81 0.87 0.78 0.88
Woody vegetation 0.62 0.52 0.49 0.50

Herbaceous vegetation 0.58 0.73 0.55 0.64
Water surfaces 0.94 0.66 0.96 0.47



Land 2023, 12, 879 12 of 20Land 2023, 12, x FOR PEER REVIEW 13 of 22 
 

 
Figure 7. Multi-temporal land cover map of Rome (LCR) produced by classifying the 30-band multi-
temporal Sentinel-2 data with the VGG16 algorithm. 

The accuracy assessment carried out with the Olofsson methodology provided the 
results of Table 5. 

Table 5. Accuracy assessment of the LCR. The results in single dates refer to the classification based 
on the summer image of 25 July 2019. P.A. = Producer Accuracy, U.A. = User Accuracy, O.A. = 
Overall Accuracy. 

Land Cover Class 
Single Date Multi-Temporal 

P.A. U.A. O.A. 
O.A.  

Erosion P.A. U.A. O.A. 
O.A.  

Erosion 
Abiotic surfaces 0.75 0.73 

0.62 0.71 

0.78 0.80 

0.59 0.76 

Artificial abiotic 0.63 0.77 0.62 0.72 
Natural abiotic 0.39 0.23 0.67 0.45 

Vegetation 0.81 0.87 0.78 0.88 
Woody vegetation  0.62 0.52 0.49 0.50 

Herbaceous vegetation 0.58 0.73 0.55 0.64 
Water surfaces 0.94 0.66 0.96 0.47 

The single-date classification shows higher accuracy values than the multi-temporal 
one in all classes, except for the natural abiotic surfaces. By eliminating edge pixels from 
each patch (erosion), an increase in overall accuracy is observed in both single-date and 
multi-temporal classification. 
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multi-temporal Sentinel-2 data with the VGG16 algorithm.

4. Discussion

The methodology compares the three CNN algorithms VGG16, DenseNet121 and
ResNet50 for land cover mapping according to five EAGLE-compliant land cover classes
through Sentinel-2 multispectral image classification. The methodology also refers to the
land monitoring activities carried out by ISPRA for the national territory, in an attempt to
enhance its standards and products for the creation of new land mapping tools.

In detail, three Setinel-2 acquisitions relating to spring (22 March 2019), summer
(25 July 2019) and autumn (8 October 2019) were selected, processed individually and
combined into a stack, then the three algorithms were applied to the four datasets, obtaining
12 land cover classifications. The accuracy assessment of single-date classifications shows
that all three algorithms are affected by seasonal land cover variations. For the DenseNet121
and the VGG16, the best results were related to the summer image, while for the ResNet50,
spring classification was slightly better. In all three cases, the multi-temporal classification
shows results in line with the best single-date one, demonstrating that the models work
well even on a single date, with positive implications in terms of time and computational
costs. On the other hand, the best result relates to the summer period, which is the same
as the ISPRA data used to extract the training areas; therefore, to obtain products with
high update frequency (less than one year), it will be necessary to take into account the
seasonal variability of the land cover in the selection of the training dataset, especially in
agricultural areas and those with mixed vegetation. The VVG16 algorithm gave the best
results in the training and validation activities and was used for the land cover mapping
of the municipality of Rome, with respect to the summer image (experiment 5) and the
multitemporal stack (experiment 11).
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The accuracy assessment carried out on the two land cover maps of Rome shows better
results as regards the classification on a single date (which reaches an overall accuracy of
62%), while the land cover map based on the multi-temporal stack reaches 59%.

The algorithm is efficient in distinguishing the three macro-classes of Abiotic surfaces,
vegetation and water bodies, while for analyzing the second classification level, natural
abiotic surfaces have the highest omission and commission errors due to the small number
of training areas, which limits the effectiveness of the algorithm (Figure 8).
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Figure 8. Examples of land cover classes with reference to the single-date classification through the
VGG16 algorithm. The first image from above (a) represents an artificial abiotic surface, the second
(b) a clay area classified as a natural abiotic surface, while the last two images are examples of natural
areas covered by woody vegetation (c) and herbaceous vegetation (d).

Most of the herbaceous vegetation omission errors (which instead has few commis-
sions) are mainly located in peri-urban and rural areas, above all on the edges of the
shelterbelt of trees and riparian vegetation, due to the woody vegetation commission errors.
Most of the woody vegetation omissions are concentrated in urban areas, particularly in
small green urban areas (for example, sparse trees alternating with a herbaceous cover)
and in rows of trees. Permanent water bodies show few omission errors, while commission
errors are concentrated at the edge of the water bodies and on small patches of arable land.

Most of the classification errors occur on the edges of the classes and are due to the
spectral signature of the mixed pixels. These errors affect both the single-date classification
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(which, however, has fewer errors on woody vegetation) and the multi-temporal one.
A second assessment conducted by excluding the border pixels of all patches shows a
significant increase in overall accuracy, which reaches 71% for single-date classification and
76% for multitemporal classification.

The artificial abiotic surfaces show good results, commission errors mainly concern
the bare soil in the agricultural area and omissions are mainly located in urban areas with
a simultaneous presence of many small patches of different land cover classes (such as
tree-lined streets) and along the road network.

This methodology is based on Sentinel-2 data and adopts an EAGLE-compliant classi-
fication system, resulting in it being integrated well into the Copernicus framework and
suitable for a wide range of improvements, such as the introduction of Sentinel-1 SAR
data or the expansion of the classification system (e.g., distinguishing trees from shrubs
and separating permanent and periodic herbaceous vegetation), evaluating the seasonal
variability of the land cover and integrating high-resolution or hyperspectral data into the
methodology. It will also be important to evaluate the sensitivity of the algorithm with
respect to the use of a higher number of Sentinel-2 spectral bands.

The map is more accurate in urbanized areas, since the ISPRA land cover map of
the municipality of Rome used to extract the training areas represents the consumed
land with more geometric detail than the non-consumed land [83]. Anyway, the use of
ISPRA products for the extraction of training areas allows for progressively improving the
reliability of the training dataset without additional photo-interpretation costs, since the
annual and highly accurate update of the land cover and land consumption maps is one of
the institutional tasks of ISPRA and SNPA.

Already in this preliminary phase, the map shows good results in single-date classifica-
tion, with notable positive implications in terms of the timeliness of updates and reduction
in computational costs. In this sense, the methodology constitutes a first attempt to create
new tools for high-frequency land monitoring in critical areas, for example, with reference
to the monitoring of urban densification phenomena and the management of green spaces
included in the consolidated urban fabric.

5. Conclusions

This research compares for the first time three CNN algorithms for the definition of
a land cover mapping methodology that exploits the data produced by ISPRA for Italy
to optimize the collection of training areas. Actually, compared to other traditional or
machine-learning-based classification techniques, CNNs require little pre-processing of
the data and marginal human intervention once the model is calibrated. However, the
creation of the training dataset is cumbersome and delicate, since the correct training of
the algorithm requires a large number of well-selected training areas, whose collection is
generally carried out through photo-interpretation.

The use of the ISPRA land cover map significantly optimizes this onerous phase, since
a dataset is exploited which is already physiologically subject to manual updating and
which must guarantee high accuracy. In this way, a training dataset that is reviewed and
updated every year is obtained, which allows the production of a land cover map on an
annual basis with limited training area selection efforts. Achieving higher update frequen-
cies requires an in-depth analysis of the selection of training areas relating to the classes
most subject to land cover variations during the year, such as agricultural areas, so that
the algorithms understand their behavior during the year. Once the reasonably achievable
update frequency has been defined on the basis of data availability, optimization of compu-
tational costs and adaptation of training areas to seasonal variations, the methodology will
be able to support high-frequency monitoring of rapid and impactful phenomena, such
as large infrastructure construction sites, illegal building or forest disturbances. Anyway,
already in the preliminary phase, the results are encouraging to consider applications to
the monitoring of urban areas. By 2050, more than 75% of the world’s population will
live in urban areas, with repercussions in terms of exposure to extreme events, significant
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environmental impacts and lower resilience in dealing with the climate crisis and phe-
nomena such as the urban heat island. Controlling land transformations in urban areas is
therefore essential because it affects people’s health and well-being. This theme is included
among the priorities of the 7th of the 8th Environmental Action Programme, is included
in the “Biodiversity Strategy for 2030”, is the theme of the UN Sustainable Development
Goals number 11 and requires the adoption of effective policies based on reliable and
timely observations. Actually, the methodology stands as a promising tool to deepen the
monitoring of urban areas and in particular the green infrastructures in urban areas and
the related ecosystem services, the evaluation of the cooling index, the SDG 11.7.1 [84]
associated with accessibility, and maps of vulnerability in terms of physical access to green
spaces. Experiences such as the recent “Dynamic world” [85] show the potential of deep
learning techniques in land cover mapping, even on a large scale and with high update
frequency. With appropriate refinements in the selection of training areas, the methodology
will be also improved for high-frequency monitoring of peri-urban and rural areas, with a
view to maximizing integration with other land monitoring tools available nationwide.
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Abbreviation Meaning
CLC CORINE Land Cover
CLMS Copernicus Land Monitoring Service
CNN Convolutional Neural Networks
DenseNet Densely Connected Convolutional Networks
DL Deep Learning
EAGLE EIONET Action Group on Land monitoring in Europe
GAN Generative Adversarial Networks
ISPRA Italian Institute for Environmental Protection and Research
LCM National Land Consumption Map
LC Land Cover
LCR Land Cover map of Rome
LU Land Use
MAES Mapping Assessment of Ecosystem Services
ML Machine Learning
OA Overall Accuracy
PA Producer Accuracy
PCA Principal Component Analysis
ResNet Residual Network
RNN Recurrent Neural Network
UA User Accuracy
SNPA National Environmental Protection System
VGG Visual Geometry Group
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Appendix A. Calculation of the Sample Size for the Accuracy Assessment

The accuracy assessment was conducted on four land cover maps of the municipality
of Rome: the land cover map from single-data classification of the summer image, that
from multi-temporal image classification and the related versions subjected to the “erosion”
operation, i.e., deleting a strip of pixels along the edges between patches of different classes
to evaluate how the classification of mixed pixels affects accuracy.

The sample size (n) was calculated with Olofsson’s methodology:

(∑ WiSi)
2[

S
(
Ô
)
]2

where:
Wi—is the area proportion of each class derived from the map classification
Si—standard deviation of stratum i, Si =

√
(Ui(1 − Ui))

Ui—user accuracy of class i
S(Ô) is the standard target standard error.
Si is related to the Ui, which was assumed to be equal to 0.6 for all classes.
The target standard error for overall accuracy was assumed to be 0.01, which corre-

sponds to a confidence interval of 1%.
The points were distributed among the land cover classes through a stratified sampling

and then they were photo-interpreted. The number of points attributed to each class was
the average between the equal and area-proportional distribution (see https://fromgistors.
blogspot.com/2019/09/Accuracy-Assessment-of-Land-Cover-Classification.html, accessed
on 27 February 2023). In the distribution of points between the classes, the results have
been rounded up, and a minimum of 100 points has been set for all classes.

Calculation of the sample size for the four maps is reported in Tables A1–A4.

Table A1. Calculation of the sample size of the land cover map of the municipality of Rome from
single-date summer image classification.

LC Class Area (ha) Wi Ui Si Wi*Si Equal Propor. Mean Final

110 27.606 0.21 0.60 0.49 0.105 160 173 167 167
120 417 0.00 0.60 0.49 0.002 160 3 82 100
210 38.813 0.30 0.60 0.49 0.148 160 242 202 202
220 60.496 0.47 0.60 0.49 0.230 160 378 270 270
310 1302 0.01 0.60 0.49 0.005 160 9 85 100

Total 128.634 1.00 - - - 800 805 806 839

Table A2. Calculation of the sample size of the land cover map of the municipality of Rome from
multi-temporal data classification.

LC Class Area (ha) Wi Ui Si Wi*Si Equal Propor. Mean Final

110 32.582 0.25 0.60 0.49 0.124 160 204 183 183
120 4 0.00 0.60 0.49 0.000 160 1 81 100
210 25.641 0.20 0.60 0.49 0.098 160 160 161 161
220 68.278 0.53 0.60 0.49 0.260 160 426 294 294
310 2129 0.02 0.60 0.49 0.008 160 14 88 100

Total 128.634 1.00 - - - 800 805 807 838

Table A3. Calculation of the sample size of the land cover map of the municipality of Rome from
single-date summer image classification after the application of the “erosion” operation.

LC class Area (ha) Wi Ui Si Wi*Si Equal Propor. Mean Final

110 22.786 0.25 0.60 0.49 0.121 170 210 191 191

https://fromgistors.blogspot.com/2019/09/Accuracy-Assessment-of-Land-Cover-Classification.html
https://fromgistors.blogspot.com/2019/09/Accuracy-Assessment-of-Land-Cover-Classification.html
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Table A3. Cont.

LC class Area (ha) Wi Ui Si Wi*Si Equal Propor. Mean Final

120 12 0.00 0.60 0.49 0.000 170 1 86 100
210 27.041 0.29 0.60 0.49 0.143 170 249 210 210
220 44.628 0.48 0.60 0.49 0.236 170 411 291 291
310 915 0.01 0.60 0.49 0.005 170 9 90 100

Total 95.383 1.00 - - - 850 880 868 892

Table A4. Calculation of the sample size of the land cover map of the municipality of Rome from
multi-temporal data classification after the application of the “erosion” operation.

LC Class Area (ha) Wi Ui Si Wi*Si Equal Propor. Mean Final

110 24.729 0.27 0.60 0.49 0.131 160 215 188 188
120 0 0.00 0.60 0.49 0.000 160 1 81 100
210 16.110 0.17 0.60 0.49 0.085 160 140 151 151
220 50.134 0.54 0.60 0.49 0.265 160 435 298 298
310 1590 0.02 0.60 0.49 0.008 160 14 88 100

Total 92.563 1.00 - - - 800 805 806 837
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62. Wakulinśka, M.; Marcinkowska-Ochtyra, A. Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation. Remote
Sens. 2020, 12, 2696. [CrossRef]

63. Campos-Taberner, M.; García-Haro, F.J.; Martínez, B.; Izquierdo-Verdiguier, E.; Atzberger, C.; Camps-Valls, G.; Gilabert, M.A.
Understanding Deep Learning in Land Use Classification Based on Sentinel-2 Time Series. Sci. Rep. 2020, 10, 17188. [CrossRef]

64. Martini, M.; Mazzia, V.; Khaliq, A.; Chiaberge, M. Domain-Adversarial Training of Self-Attention-Based Networks for Land
Cover Classification Using Multi-Temporal Sentinel-2 Satellite Imagery. Remote Sens. 2021, 13, 2564. [CrossRef]

65. Hu, X.; Zhang, P.; Zhang, Q.; Wang, J. Improving Wetland Cover Classification Using Artificial Neural Networks with Ensemble
Techniques. Gisci. Remote Sens. 2021, 58, 603–623. [CrossRef]

66. Di Pilato, A.; Taggio, N.; Pompili, A.; Iacobellis, M.; Di Florio, A.; Passarelli, D.; Samarelli, S. Deep Learning Approaches to Earth
Observation Change Detection. Remote Sens. 2021, 13, 4083. [CrossRef]

67. Strollo, A.; Smiraglia, D.; Bruno, R.; Assennato, F.; Congedo, L.; de Fioravante, P.; Giuliani, C.; Marinosci, I.; Riitano, N.;
Munafò, M. Land Consumption in Italy. J. Maps 2020, 16, 113–123. [CrossRef]

68. Luti, T.; de Fioravante, P.; Marinosci, I.; Strollo, A.; Riitano, N.; Falanga, V.; Mariani, L.; Congedo, L.; Munafò, M. Land
Consumption Monitoring with Sar Data and Multispectral Indices. Remote Sens. 2021, 13, 1586. [CrossRef]

69. de Fioravante, P.; Strollo, A.; Assennato, F.; Marinosci, I.; Congedo, L.; Munafò, M. High Resolution Land Cover Integrating
Copernicus Products: A 2012–2020 Map of Italy. Land 2022, 11, 35. [CrossRef]

70. de Fioravante, P.; Strollo, A.; Cavalli, A.; Cimini, A.; Smiraglia, D.; Assennato, F.; Munafò, M. Ecosystem Mapping and Accounting
in Italy Based on Copernicus and National Data through Integration of EAGLE and SEEA-EA Frameworks. Land 2023, 12, 286.
[CrossRef]

71. de Fioravante, P.; Luti, T.; Cavalli, A.; Giuliani, C.; Dichicco, P.; Marchetti, M.; Chirici, G.; Congedo, L.; Munafò, M. Multispectral
Sentinel-2 and Sar Sentinel-1 Integration for Automatic Land Cover Classification. Land 2021, 10, 611. [CrossRef]

72. Fahmi, H.; Sari, W.P. Analysis of Deep Learning Architecture for Patch-Based Land Cover Classification. In Proceedings of
the 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Yogyakarta, Indonesia, 13–14 December 2022; pp. 1–5.

https://doi.org/10.3390/fi12100167
https://doi.org/10.1007/s00234-020-02420-0
https://doi.org/10.1016/j.isprsjprs.2021.04.022
https://doi.org/10.3390/land11111919
https://doi.org/10.1016/j.ecoinf.2021.101325
https://doi.org/10.1109/JSTARS.2021.3112209
https://doi.org/10.1016/j.image.2021.116549
https://doi.org/10.1109/TGRS.2021.3075223
https://doi.org/10.3390/rs12060959
https://doi.org/10.1016/j.isprsjprs.2020.09.020
https://doi.org/10.3390/rs13122257
https://doi.org/10.3390/rs12172696
https://doi.org/10.1038/s41598-020-74215-5
https://doi.org/10.3390/rs13132564
https://doi.org/10.1080/15481603.2021.1932126
https://doi.org/10.3390/rs13204083
https://doi.org/10.1080/17445647.2020.1758808
https://doi.org/10.3390/rs13081586
https://doi.org/10.3390/land11010035
https://doi.org/10.3390/land12020286
https://doi.org/10.3390/land10060611


Land 2023, 12, 879 20 of 20

73. Tao, C.S.; Chen, S.W.; Xiao, S.P. Comparison Study of Multitemporal PolSAR Classification Using Convolutional Neural
Networks. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA,
26 September–2 October 2020; pp. 204–207.

74. Zhang, Q.; Zhang, Y.; Yang, P.; Meng, Y.; Zhuo, S.; Yang, Z. The Land Cover Classification Using a Feature Pyramid Networks
Architecture from Satellite Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 241–246. [CrossRef]

75. Schmitt, M.; Wu, Y.L. Remote Sensing Image Classification with the SEN12MS DATASET. ISPRS Ann. Photogramm. Remote Sens.
Spat. Inf. Sci. 2021, 5, 101–106. [CrossRef]

76. Arnold, S.; Kosztra, B.; Banko, G.; Milenov, P.; Smith, G.; Hazeu, G. Explanatory Documentation of the EAGLE Concept-Version 3.1.2;
European Environment Agency: Copenhagen, Denmark, 2016.

77. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and
Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [CrossRef]

78. Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in
QGIS. J. Open Source Softw. 2021, 6, 3172. [CrossRef]

79. Cai, H.; Chen, T.; Niu, R.; Plaza, A. Landslide Detection Using Densely Connected Convolutional Networks and Environmental
Conditions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5235–5247. [CrossRef]

80. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
81. Amari, S. Backpropagation and Stochastic Gradient Descent Method. Neurocomputing 1993, 5, 185–196. [CrossRef]
82. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,

arXiv:1502.03167.
83. Munafò, M.; Cesetti, F. L’uso e Il Consumo Di Suolo Di Roma Capitale. Analisi Della Copertura Del Suolo Nel Territorio Di Roma–Rapporto

2021; ISPRA: Rome, Italy, 2021.
84. Cimini, A.; Fioravante, P.; Riitano, N.; Dichicco, P.; Calò, A.; Mugnozza, G.; Marchetti, M.; Munafò, M. Land Consumption

Dynamics and Urban–Rural Continuum Mapping in Italy for SDG 11.3.1 Indicator Assessment. Land 2023, 12, 155. [CrossRef]
85. Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel,

R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 251.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-241-2020
https://doi.org/10.5194/isprs-annals-V-2-2021-101-2021
https://doi.org/10.1016/j.rse.2014.02.015
https://doi.org/10.21105/joss.03172
https://doi.org/10.1109/JSTARS.2021.3079196
https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/10.3390/land12010155
https://doi.org/10.1038/s41597-022-01307-4

	Introduction 
	Materials and Methods 
	Study Area 
	Overview 
	Data Collection and Pre-Processing 
	Land Cover Classification System 
	Modeling 
	Deep Learning Algorithms 
	Predictive Model Training, Validation and Testing 

	Accuracy Assessment of the Land Cover Map of Rome 

	Results 
	Results Overview 
	Validation 
	Testing 

	Discussion 
	Conclusions 
	Appendix A
	References

