Biogeophysical Effects of Land-Use and Land-Cover Changes in South Asia: An Analysis of CMIP6 Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Climate System
2.1.2. Natural Vegetation
2.1.3. Agriculture Patterns
2.2. Overview of CMIP6-GCMs
2.2.1. Simulations and Models
2.2.2. Assessed Variables
2.3. Procedures
2.3.1. Robustness and Statistical Significance
2.3.2. Statistical Correlations and the Atmospheric Feedback
3. Results
3.1. LULCC and the Differences among Models in South Asia
3.2. Model Responses to TAS Changes
3.3. Changes in the Energy Fluxes
3.3.1. Radiative Fluxes
3.3.2. Non-Radiative Fluxes
3.3.3. Winter Responses
3.4. Atmospheric Feedback
3.5. Model Responses to PR Changes
3.6. Changes in the Elements of the Moisture Budget
4. Discussion
4.1. TAS Changes
4.2. PR Changes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | CMIP6 Model Name | Land Surface Model | Country | Horizontal Resolution (Lon. by Lat. in Degrees) | Reference | Land Use Representation | Vegetation Structure | |||
---|---|---|---|---|---|---|---|---|---|---|
Irrigation | Cropland | Pasture | LAI | Vegetation Distribution | ||||||
1 | ACCESS-ESM1-5 (ACCESS) | CABLE 2.4 | Australia | 1.9° × 1.2° | [66] | no | yes | no | prognostic | prescribed |
2 | BCC-CSM2-MR (BCC) | BCC-AVIM 2.0 | China | 1.1° × 1.1° | [67] | no | Not included | Not included | prescribed | prescribed |
3 | CanESM5 (CanESM5) | CLASS 3.6-CTEM 1.2; Physics—CLASS 3.6 Biogeochemistry—CTEM 1.2 | Canada | 2.8° × 2.8° | [68] | (Not output) | Not included | Not included | Not included | prescribed |
4 | CESM2 | CLM 5.0 | USA | 1.3° × 0.9° | [69] | yes | yes | no | prognostic | prescribed |
5 | CMCC-ESM2 (CMCC) | CLM 4.5 | Italy | 1.3° × 0.9° | Not available | no | no | no | prognostic | prescribed |
6 | CNRM-ESM2-1 (CNRM) | ISBA-CTRIP | France | 1.4° × 1.4° | [70] | no | yes | no | prognostic | prescribed |
7 | GFDL-ESM4 (GFDL) | GFDL-LM 4.1 | USA | 1.3° × 1° | [71] | no | yes | yes | prognostic | prescribed |
8 | IPSL-CM6A-LR (IPSL) | ORCHIDEE v2.0 | France | 2.5° × 1.3° | [72] | no | yes | no | prognostic | prescribed |
9 | MIROC-ES2L (MIROC) | MATSIRO 6.0 +VISIT-e v1 | Japan | 2.8° × 2.8° | [73,74] | no | yes | yes | prognostic | prescribed |
10 | MPI-ESM1-2-LR (MPI) | JSBACH 3.2 | Germany | 1.9° × 1.9° | [75] | no | yes | yes | prognostic | Simulated |
11 | UKESM1-0-LL (UKESM) | JULES-ES-1.0 | UK | 1.9° × 1.3° | [76] | (Not output) | yes | yes | Not included | simulated |
12 | LUH2 (Land Use forcing dataset) | GLM 2 (Global Land-Use Model) | - | 0.25° × 0.25° | [77] | yes | yes | yes | - |
Variable Name | CMIP6 Variable Code | Unit | Description |
---|---|---|---|
Near-surface air temperature | tas (TAS) | Kelvin | Near-surface air temperature usually at 2 m. |
Precipitation flux | pr (PR) | Kg m2-s−1 | Precipitation flux including both liquid and solid phases. |
Convective precipitation flux | prc (PRconv) | Kg m2-s−1 | Convective precipitation at surface. It includes both liquid and solid phases. |
Soil Moisture upper 10 cm | mrsos (SM) | kg m2 | The mass of water in all phases in a thin surface layer integrated over the uppermost 10 cm of the soil layer. |
Total Soil Moisture | mrso (SM10) | kg m2 | The mass per unit of area (summed over all soil layers) of water in all phases. |
Water Evaporation flux from canopy | evspsblveg (Esoil) | Kg m2-s−1 | The canopy evaporation and sublimation (if present in the model). It may include dew formation as a negative flux. |
Water evapotranspiration flux | evspsbl (Esurf) | Kg m2-s−1 | Evapotranspiration at the surface. The flux of water into the atmosphere due to conversion of both liquid and solid phases to vapor. |
Water evaporation flux from soil | evspsblveg (Esoil) | Kg m2-s−1 | Water evaporation flux from soil including sublimation. |
Surface Upward latent heat flux | hfls (LH) | W m2 | Surface upward latent heat flux. Surface means the lower boundary of the atmosphere and “upward” indicates a vector component that is positive when directed upward. The surface latent heat flux is the exchange of heat between the surface and the air on account of evaporation. |
Surface upward sensible heat flux | hfss (SH) | W m2 | The surface sensible heat flux, also called turbulent heat flux, is the exchange of heat between the surface and the air by the motion of air. |
Atmosphere mass content of water vapor | prw (WV) | kg m2 | Water vapor path vertically integrated through the atmospheric column. |
Leaf area index | lai (LAI) | Unitless | A ratio obtained by dividing the total upper leaf surface area of vegetation by the horizontal surface area of the land on which it grows. |
Surface downwelling shortwave flux in air | rsds | W m2 | Surface solar irradiance for UV calculations. |
Surface upwelling shortwave flux | rsus | W m2 | Shortwave radiation from below. |
Surface downwelling longwave flux in air | rlds | W m2 | Longwave radiation from above. |
Surface upwelling longwave flux in air | rlus | W m2 | Longwave radiation from below. |
Cloud area fraction | clt (Cc) | % | Total cloud area fraction for the whole atmospheric column, as seen from the surface or the top of the atmosphere. It includes both large-scale and convective clouds. |
References
- Perugini, L.; Caporaso, L.; Marconi, S.; Cescatti, A.; Quesada, B.; de Noblet-Ducoudré, N.; House, J.I.; Arneth, A. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 2017, 12, 53002. [Google Scholar] [CrossRef]
- Duveiller, G.; Caporaso, L.; Abad-Viñas, R.; Perugini, L.; Grassi, G.; Arneth, A.; Cescatti, A. Local biophysical effects of land use and land cover change: Towards an assessment tool for policy makers. Land Use Policy 2020, 91, 104382. [Google Scholar] [CrossRef]
- Pongratz, J.; Schwingshackl, C.; Bultan, S.; Obermeier, W.; Havermann, F.; Guo, S. Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Curr. Clim. Change Rep. 2021, 7, 99–120. [Google Scholar] [CrossRef]
- De Noblet-Ducoudré, N.; Boisier, J.-P.; Pitman, A.; Bonan, G.B.; Brovkin, V.; Cruz, F.; Delire, C.; Gayler, V.; van den Hurk, B.J.J.M.; Lawrence, P.J.; et al. Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results from the First Set of LUCID Experiments. J. Clim. 2012, 25, 3261–3281. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, G.; Kjellström, E. Climate Impacts from Afforestation and Deforestation in Europe. Earth Interact. 2019, 23, 1–27. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Z.; Guo, W. The Impacts of Land-Use and Land-Cover Change on Tropospheric Temperatures at Global and Regional Scales. Earth Interact. 2016, 20, 1–23. [Google Scholar] [CrossRef]
- Asoka, A.; Wada, Y.; Fishman, R.; Mishra, V. Strong Linkage Between Precipitation Intensity and Monsoon Season Groundwater Recharge in India. Geophys. Res. Lett. 2018, 45, 5536–5544. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Ghosh, S.; Roxy, M.K.; McDermid, S. Indian summer monsoon: Extreme events, historical changes, and role of anthropogenic forcings. Wiley Interdiscip. Rev. Clim. Change 2019, 10, e571. [Google Scholar] [CrossRef]
- Devaraju, N.; de Noblet-Ducoudré, N.; Quesada, B.; Bala, G. Quantifying the Relative Importance of Direct and Indirect Biophysical Effects of Deforestation on Surface Temperature and Teleconnections. J. Clim. 2018, 31, 3811–3829. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Q. The trends in land surface heat fluxes over global monsoon domains and their responses to monsoon and precipitation. Sci. Rep. 2020, 10, 5762. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Dirmeyer, P.A. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling. Environ. Res. Lett. 2016, 11, 34002. [Google Scholar] [CrossRef] [Green Version]
- Laguë, M.M.; Bonan, G.B.; Swann, A.L.S. Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System. J. Clim. 2019, 32, 5725–5744. [Google Scholar] [CrossRef] [Green Version]
- Winckler, J.; Reick, C.H.; Pongratz, J. Robust Identification of Local Biogeophysical Effects of Land-Cover Change in a Global Climate Model. J. Clim. 2017, 30, 1159–1176. [Google Scholar] [CrossRef]
- Luyssaert, S.; Jammet, M.; Stoy, P.C.; Estel, S.; Pongratz, J.; Ceschia, E.; Churkina, G.; Don, A.; Erb, K.; Ferlicoq, M.; et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 2014, 4, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.L.; Wilhelm, M.; Davin, E.L.; Thiery, W.; Seneviratne, S.I. Can climate-effective land management reduce regional warming? J. Geophys. Res. Atmos. 2017, 122, 2269–2288. [Google Scholar] [CrossRef]
- Malyshev, S.; Shevliakova, E.; Stouffer, R.J.; Pacala, S.W. Contrasting Local versus Regional Effects of Land-Use-Change-Induced Heterogeneity on Historical Climate: Analysis with the GFDL Earth System Model. J. Clim. 2015, 28, 5448–5469. [Google Scholar] [CrossRef]
- Chilukoti, N.; Xue, Y. An assessment of potential climate impact during 1948–2010 using historical land use land cover change maps. Int. J. Clim. 2021, 41, 295–315. [Google Scholar] [CrossRef]
- Huang, H.; Xue, Y.; Chilukoti, N.; Liu, Y.; Chen, G.; Diallo, I. Assessing Global and Regional Effects of Reconstructed Land-Use and Land-Cover Change on Climate since 1950 Using a Coupled Land–Atmosphere–Ocean Model. J. Clim. 2020, 33, 8997–9013. [Google Scholar] [CrossRef]
- Davin, E.L.; de Noblet-Ducoudré, N. Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes. J. Clim. 2010, 23, 97–112. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, A.; Yang, S.; Ullah, K. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 614–630. [Google Scholar] [CrossRef]
- Clift, P.D.; Plumb, R.A. The Asian Monsoon; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Roy, P.S.; Behera, M.D.; Murthy, M.S.R.; Roy, A.; Singh, S.; Kushwaha, S.P.S.; Jha, C.S.; Sudhakar, S.; Joshi, P.K.; Reddy, C.S.; et al. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 142–159. [Google Scholar] [CrossRef]
- Niyogi, D.; Subramanian, S.; Mohanty, U.C.; Kishtawal, C.M.; Ghosh, S.; Nair, U.S.; Ek, M.; Rajeevan, M. The Impact of Land Cover and Land Use Change on the Indian Monsoon Region Hydroclimate. In Land-Atmospheric Research Applications in South and Southeast Asia; Vadrevu, K.P., Ohara, T., Justice, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 553–575. [Google Scholar] [CrossRef]
- Paul, S.; Ghosh, S.; Oglesby, R.; Pathak, A.; Chandrasekharan, A.; Ramsankaran, R. Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover. Sci. Rep. 2016, 6, 32177. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.; Saha, S.K.; Dirmeyer, P.A.; Chase, T.N.; Goswami, B.N. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrol. Earth Syst. Sci. 2016, 20, 1765–1784. [Google Scholar] [CrossRef] [Green Version]
- Sudhakar Reddy, C.; Saranya, K.R.L.; Vazeed Pasha, S.; Satish, K.V.; Jha, C.S.; Diwakar, P.G.; Dadhwal, V.K.; Rao, P.V.N.; Krishna Murthy, Y.V.N. Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s. Glob. Planet. Change 2018, 161, 132–148. [Google Scholar] [CrossRef]
- Khan, N.; Ali, S.F. Critical Review on Past Literature of Deforestation in Rural Sector of Pakistan. Int. J. Adv. Res. Publ. 2017, 1, 91–94. [Google Scholar]
- Hasan, M.M.; Islam, R.; Rahman, M.S.; Ibrahim, M.; Shamsuzzoha, M.; Khanam, R.; Zaman, A.K.M.M. Analysis of Land Use and Land Cover Changing Patterns of Bangladesh Using Remote Sensing Technology. Am. J. Environ. Sci. 2021, 17, 64–74. [Google Scholar] [CrossRef]
- Mahmoudi, P.; Shirazi, S.A.; Jahanshahi, S.M.A.; Firoozi, F.; Mazhar, N. Detection of long-term vegetation degradation in baluchistan in southwest asia using ndvi products of the modis sensor of terra satellite. Environ. Eng. Manag. J. 2021, 20, 291–300. [Google Scholar] [CrossRef]
- Mishra, V.; Bhatia, U.; Tiwari, A.D. Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6. Sci. Data 2020, 7, 338. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.S.; Satish, K.V.; Jha, C.S.; Diwakar, P.G.; Murthy, Y.V.N.K.; Dadhwal, V.K. Development of deforestation and land cover database for Bhutan (1930–2014). Environ. Monit. Assess. 2016, 188, 658. [Google Scholar] [CrossRef]
- Schickhoff, U.; Bobrowski, M.; Mal, S.; Schwab, N.; Singh, R.B. Mountain Landscapes in Transition: Effects of Land Use and Climate Change. In The World’s Mountains in the Anthropocene; Schickhoff, U., Singh, R.B., Mal, S., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef] [Green Version]
- Quesada, B.; Devaraju, N.; Noblet-Ducoudré, N.; Arneth, A. Reduction of monsoon rainfall in response to past and future land use and land cover changes. Geophys. Res. Lett. 2017, 44, 1041–1050. [Google Scholar] [CrossRef]
- Dallmeyer, A.; Claussen, M. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate. Biogeosciences 2011, 8, 1499–1519. [Google Scholar] [CrossRef] [Green Version]
- Pathak, A.; Ghosh, S.; Kumar, P. Precipitation Recycling in the Indian Subcontinent during Summer Monsoon. J. Hydrometeorol. 2014, 15, 2050–2066. [Google Scholar] [CrossRef]
- Devaraju, N.; Bala, G.; Modak, A. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proc. Natl. Acad. Sci. USA 2015, 112, 3257–3262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notaro, M.; Chen, G.; Liu, Z. Vegetation Feedbacks to Climate in the Global Monsoon Regions. J. Clim. 2011, 24, 5740–5756. [Google Scholar] [CrossRef]
- Lejeune, Q.; Seneviratne, S.I.; Davin, E.L. Historical Land-Cover Change Impacts on Climate: Comparative Assessment of LUCID and CMIP5 Multimodel Experiments. J. Clim. 2017, 30, 1439–1459. [Google Scholar] [CrossRef]
- Singh, D.; McDermid, S.P.; Cook, B.I.; Puma, M.J.; Nazarenko, L.; Kelley, M. Distinct Influences of Land Cover and Land Management on Seasonal Climate. J. Geophys. Res. Atmos. 2018, 123, 12017–12039. [Google Scholar] [CrossRef] [Green Version]
- Guimberteau, M.; Laval, K.; Perrier, A.; Polcher, J. Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim. Dyn. 2012, 39, 1329–1348. [Google Scholar] [CrossRef]
- Wey, H.-W.; Lo, M.-H.; Lee, S.-Y.; Yu, J.-Y.; Hsu, H.-H. Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates. Geophys. Res. Lett. 2015, 42, 8605–8614. [Google Scholar] [CrossRef] [Green Version]
- Douglas, E.M.; Niyogi, D.; Frolking, S.; Yeluripati, J.B.; Pielke, R.A.; Niyogi, N.; Vörösmarty, C.J.; Mohanty, U.C. Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. Geophys. Res. Lett. 2006, 33, 556. [Google Scholar] [CrossRef] [Green Version]
- Tuinenburg, O.A.; Hutjes, R.W.A.; Jacobs, C.M.J.; Kabat, P. Diagnosis of Local Land–Atmosphere Feedbacks in India. J. Clim. 2011, 24, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Puma, M.J.; Cook, B.I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. 2010, 115, 15. [Google Scholar] [CrossRef]
- Chou, C.; Ryu, D.; Lo, M.-H.; Wey, H.-W.; Malano, H.M. Irrigation-Induced Land–Atmosphere Feedbacks and Their Impacts on Indian Summer Monsoon. J. Clim. 2018, 31, 8785–8801. [Google Scholar] [CrossRef]
- Sen Roy, S.; Mahmood, R.; Quintanar, A.I.; Gonzalez, A. Impacts of irrigation on dry season precipitation in India. Theor. Appl. Climatol. 2011, 104, 193–207. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Ducharne, A.; Thiery, W.; Cheruy, F.; Lawrence, D. The Role of Irrigation Expansion on Historical Climate Change: Insights from CMIP6. Earth’s Future 2022, 10, e2022EF002859. [Google Scholar] [CrossRef]
- Song, X.; Wang, D.-Y.; Li, F.; Zeng, X.-D. Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Adv. Clim. Change Res. 2021, 12, 584–595. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Hurtt, G.C.; Arneth, A.; Brovkin, V.; Calvin, K.V.; Jones, A.D.; Jones, C.D.; Lawrence, P.J.; de Noblet-Ducoudré, N.; Pongratz, J.; et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci. Model Dev. 2016, 9, 2973–2998. [Google Scholar] [CrossRef] [Green Version]
- van den Hurk, B.; Kim, H.; Krinner, G.; Seneviratne, S.I.; Derksen, C.; Oki, T.; Douville, H.; Colin, J.; Ducharne, A.; Cheruy, F.; et al. LS3MIP (v1.0) contribution to CMIP6: The Land Surface, Snow and Soil moisture Model Intercomparison Project-aims, setup and expected outcome. Geosci. Model Dev. 2016, 9, 2809–2832. [Google Scholar] [CrossRef] [Green Version]
- Goswami, B.N. South Asian monsoon. In Intraseasonal Variability in the Atmosphere-Ocean Climate System; Springer: Berlin/Heidelberg, Germany, 2005; pp. 19–61. [Google Scholar] [CrossRef]
- Khullar, S.R. A Comprehensive Geography; Kalyani Publishers: New Delhi, India, 2006. [Google Scholar]
- Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Champion, H.G.; Seth, S.K.; Khattak, G.M. Forest Types of Pakistan; Pakistan Forest Institute: Peshawar, Pakistan, 1965. [Google Scholar]
- Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B. Crop-specific seasonal estimates of irrigation water demand in South Asia. Hydrol. Earth Syst. Sci. 2016, 20, 1971–1982. [Google Scholar] [CrossRef] [Green Version]
- Hasanain, A.; Ahmad, S.; Mehmood, M.Z.; Majeed, S.; Zinabou, G. Irrigation and Water Use Efficiency in South Asia; Global Development Network (GDN): New Delhi, India, 2013. [Google Scholar]
- Almazroui, M.; Saeed, S.; Saeed, F.; Islam, M.N.; Ismail, M. Projections of Precipitation and Temperature over the South Asian Countries in CMIP6. Earth Syst. Environ. 2020, 4, 297–320. [Google Scholar] [CrossRef]
- Karim, R.; Tan, G.; Ayugi, B.; Babaousmail, H.; Liu, F. Evaluation of Historical CMIP6 Model Simulations of Seasonal Mean Temperature over Pakistan during 1970–2014. Atmosphere 2020, 11, 1005. [Google Scholar] [CrossRef]
- Aadhar, S.; Mishra, V. On the Projected Decline in Droughts Over South Asia in CMIP6 Multimodel Ensemble. J. Geophys. Res. Atmos. 2020, 125, e2020JD033587. [Google Scholar] [CrossRef]
- Zhai, J.; Mondal, S.K.; Fischer, T.; Wang, Y.; Su, B.; Huang, J.; Tao, H.; Wang, G.; Ullah, W.; Uddin, M.J. Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmos. Res. 2020, 246, 105111. [Google Scholar] [CrossRef]
- Jones, P.W. First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Weather Rev. 1999, 127, 2204–2210. [Google Scholar] [CrossRef]
- Zwiers, F.W.; von Storch, H. Taking Serial Correlation into Account in Tests of the Mean. J. Clim. 1995, 8, 336–351. [Google Scholar] [CrossRef]
- Lorenz, R.; Pitman, A.J.; Sisson, S.A. Does Amazonian deforestation cause global effects; can we be sure? J. Geophys. Res. Atmos. 2016, 121, 5567–5584. [Google Scholar] [CrossRef]
- Ziehn, T.; Chamberlain, M.A.; Law, R.M.; Lenton, A.; Bodman, R.W.; Dix, M.; Stevens, L.; Wang, Y.-P.; Srbinovsky, J. The Australian Earth System Model: ACCESS-ESM1.5. JSHESS 2020, 70, 193. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef] [Green Version]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef] [Green Version]
- Danabasoglu, G.; Lamarque, J.-F.; Bacmeister, J.; Bailey, D.A.; DuVivier, A.K.; Edwards, J.; Emmons, L.K.; Fasullo, J.; Garcia, R.; Gettelman, A.; et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 2020, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Séférian, R.; Nabat, P.; Michou, M.; Saint-Martin, D.; Voldoire, A.; Colin, J.; Decharme, B.; Delire, C.; Berthet, S.; Chevallier, M.; et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate. J. Adv. Model. Earth Syst. 2019, 11, 4182–4227. [Google Scholar] [CrossRef] [Green Version]
- Dunne, J.P.; Horowitz, L.W.; Adcroft, A.J.; Ginoux, P.; Held, I.M.; John, J.G.; Krasting, J.P.; Malyshev, S.; Naik, V.; Paulot, F.; et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, 1029. [Google Scholar] [CrossRef]
- Hajima, T.; Watanabe, M.; Yamamoto, A.; Tatebe, H.; Noguchi, M.A.; Abe, M.; Ohgaito, R.; Ito, A.; Yamazaki, D.; Okajima, H.; et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 2020, 13, 2197–2244. [Google Scholar] [CrossRef]
- Ito, A.; Hajima, T. Biogeophysical and biogeochemical impacts of land-use change simulated by MIROC-ES2L. Prog. Earth Planet. Sci. 2020, 7, 2635. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef] [Green Version]
- Sellar, A.A.; Jones, C.G.; Mulcahy, J.P.; Tang, Y.; Yool, A.; Wiltshire, A.; O’Connor, F.M.; Stringer, M.; Hill, R.; Palmieri, J.; et al. UKESM1: Description and Evaluation of the U.K. Earth System Model. J. Adv. Model. Earth Syst. 2019, 11, 4513–4558. [Google Scholar] [CrossRef] [Green Version]
- Hurtt, G.C.; Chini, L.; Sahajpal, R.; Frolking, S.; Bodirsky, B.L.; Calvin, K.; Doelman, J.C.; Fisk, J.; Fujimori, S.; Klein Goldewijk, K.; et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 2020, 13, 5425–5464. [Google Scholar] [CrossRef]
Esurf | Esoil | Ecan | SM | SM10 | Cc | PRconv | PR | Qnet | NetSW | NetLW | LWd | Qa | SH | LH | LAI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annual | −3.19 | −1.75 | −7.80 | 0.00 | 0.00 | −0.11 | −0.82 | −0.94 | −0.07 | 0.11 | −0.11 | 0.07 | 0.11 | 0.06 | −0.10 | −2.89 |
DJF | −1.16 | 2.91 | 17.46 | 0.00 | 0.00 | 0.02 | −1.29 | −0.21 | −0.09 | 0.00 | 0.00 | 0.05 | 0.14 | 0.07 | −0.01 | 0.08 |
MAM | −2.39 | −4.80 | −4.31 | 0.00 | 0.00 | −0.12 | −1.73 | −1.17 | −0.11 | 0.07 | −0.09 | −0.02 | 0.14 | 0.12 | −0.10 | −5.55 |
JJAS | −1.83 | −1.20 | −8.85 | 0.00 | 0.00 | −0.14 | −0.74 | −0.59 | −0.01 | 0.10 | −0.09 | −0.01 | 0.08 | 0.07 | −0.06 | −2.12 |
ON | −3.33 | −4.14 | −6.90 | 0.00 | 0.00 | −0.02 | 1.63 | 0.82 | −0.09 | 0.01 | −0.02 | 0.08 | 0.11 | 0.09 | −0.11 | −2.78 |
Model | Annual | DJF | MAM | JJAS | ON | |||||
---|---|---|---|---|---|---|---|---|---|---|
Strength (%) | Area | Strength (%) | Area | Strength (%) | Area | Strength (%) | Area | Strength (%) | Area | |
CESM2 | 21.38 | 23 | 30.12 | 69 | 15.41 | 36 | 19.91 | 32 | ||
CNRM | 15.43 | 93 | 9.82 | 63 | 18.73 | 89 | 17.44 | 91 | ||
IPSL | 11.05 | 54 | ||||||||
UKESM | 13.60 | 60 | 10.74 | 53 | 16.68 | 88 | ||||
CMCC | 32.89 | 68 | 29.27 | 70 | 28.71 | 84 | 19.06 | 68 | 27.63 | 79 |
MPI | 24.10 | 88 | 27.28 | 97 | 21.46 | 54 | 4.62 | 27 | 26.38 | 90 |
Median-Value | 22.74 | 78 | 27.28 | 69 | 18.43 | 57 | 18.73 | 53 | 21.91 | 89 |
Esurf | Esoil | Ecan | SM | SM10 | Cc | Wv | PRconv | LH | LAI | TAS | |
---|---|---|---|---|---|---|---|---|---|---|---|
Annual | 1.80 | 1.38 | 1.38 | 0.00 | 0.00 | 0.08 | 0.21 | 1.20 | 0.06 | 1.38 | −0.57 |
DJF | 1.28 | 1.28 | 12.69 | 0.00 | 0.00 | 0.11 | 0.45 | 2.51 | 0.04 | −0.01 | −0.10 |
MAM | 2.52 | 2.32 | 6.45 | 0.00 | 0.00 | 0.15 | 0.36 | 1.22 | 0.08 | 2.51 | −0.99 |
JJAS | 1.78 | 2.22 | 6.41 | 0.00 | 0.00 | 0.15 | 0.40 | 1.21 | 0.05 | 0.58 | −1.52 |
ON | 1.77 | 1.95 | 10.98 | 0.00 | 0.00 | 0.03 | 0.11 | 1.77 | 0.06 | 0.04 | −0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.F.; Schickhoff, U.; ul Hasson, S.; Böhner, J. Biogeophysical Effects of Land-Use and Land-Cover Changes in South Asia: An Analysis of CMIP6 Models. Land 2023, 12, 880. https://doi.org/10.3390/land12040880
Santos JF, Schickhoff U, ul Hasson S, Böhner J. Biogeophysical Effects of Land-Use and Land-Cover Changes in South Asia: An Analysis of CMIP6 Models. Land. 2023; 12(4):880. https://doi.org/10.3390/land12040880
Chicago/Turabian StyleSantos, Juliana Freitas, Udo Schickhoff, Shabeh ul Hasson, and Jürgen Böhner. 2023. "Biogeophysical Effects of Land-Use and Land-Cover Changes in South Asia: An Analysis of CMIP6 Models" Land 12, no. 4: 880. https://doi.org/10.3390/land12040880
APA StyleSantos, J. F., Schickhoff, U., ul Hasson, S., & Böhner, J. (2023). Biogeophysical Effects of Land-Use and Land-Cover Changes in South Asia: An Analysis of CMIP6 Models. Land, 12(4), 880. https://doi.org/10.3390/land12040880