Disparities in the Health Benefits of Urban Green/Blue Space: A Case Study from Shandong Province, China
Abstract
:1. Introduction
2. Study Area
3. Measures and Methods
3.1. Data Processing
3.2. Measures
3.2.1. Dependent Variable
3.2.2. Key Variables
3.2.3. Covariates
3.3. Analytical Methods
4. Results
4.1. Main Findings
4.2. Sensitivity Analysis
5. Discussion
5.1. Effects of Different Types of UGS/UBS on the SRH of All Residents
5.2. Effects of Different Types of UGS/UBS on the Different Subgroups
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jabbar, M.; Yusoff, M.M.; Shafie, A. Assessing the role of urban green spaces for human well-being: A systematic review. Geojournal 2022, 87, 4405–4423. [Google Scholar] [CrossRef]
- White, M.P.; Elliott, L.R.; Gascon, M.; Roberts, B.; Fleming, L.E. Blue space, health and well-being: A narrative overview and synthesis of potential benefits. Environ. Res. 2020, 191, 110169. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; Qureshi, S.; Haase, D. Human-environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research. Environ. Impact Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Voelker, S.; Matros, J.; Classen, T. Determining urban open spaces for health-related appropriations: A qualitative analysis on the significance of blue space. Environ. Earth Sci. 2016, 75, 1067. [Google Scholar] [CrossRef]
- Andersson-Sköld, Y.; Thorsson, S.; Rayner, D.; Lindberg, F.; Janhäll, S.; Jonsson, A.; Moback, U.; Bergman, R.; Granberg, M. An integrated method for assessing climate-related risks and adaptation alternatives in urban areas. Clim. Risk Manag. 2015, 7, 31–50. [Google Scholar] [CrossRef]
- Lachowycz, K.; Jones, A.P. Towards a better understanding of the relationship between greenspace and health: Development of a theoretical framework. Landsc. Urban Plan. 2013, 118, 62–69. [Google Scholar] [CrossRef]
- White, M.P.; Wheeler, B.W.; Herbert, S.; Alcock, I.; Depledge, M.H. Coastal proximity and physical activity: Is the coast an under-appreciated public health resource? Prev. Med. 2014, 69, 135–140. [Google Scholar] [CrossRef]
- White, M.; Smith, A.; Humphryes, K.; Pahl, S.; Snelling, D.; Depledge, M. Blue space the importance of water for preference, affect, and restorativeness ratings of natural and built scenes. J. Environ. Psychol. 2010, 30, 482–493. [Google Scholar] [CrossRef]
- Nutsford, D.; Pearson, A.L.; Kingham, S.; Reitsma, F. Residential exposure to visible blue space (but not green space) associated with lower psychological distress in a capital city. Health Place 2016, 39, 70–78. [Google Scholar] [CrossRef]
- de Vries, S.; Verheij, R.A.; Groenewegen, P.P.; Spreeuwenberg, P. Natural environments—Healthy environments? An exploratory analysis of the relationship between greenspace and health. Environ. Plan. A 2003, 35, 1717–1731. [Google Scholar] [CrossRef]
- Maas, J.; Verheij, R.A.; Groenewegen, P.P.; de Vries, S.; Spreeuwenberg, P. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Richardson, E.A.; Mitchell, R. Gender differences in relationships between urban green space and health in the United Kingdom. Soc. Sci. Med. 2010, 71, 568–575. [Google Scholar] [CrossRef]
- Haeffner, M.; Jackson-Smith, D.; Buchert, M.; Risley, J. Accessing blue spaces: Social and geographic factors structuring familiarity with, use of, and appreciation of urban waterways. Landsc. Urban Plan. 2017, 167, 136–146. [Google Scholar] [CrossRef]
- Lachowycz, K.; Jones, A.P.; Page, A.S.; Wheeler, B.W.; Cooper, A.R. What can global positioning systems tell us about the contribution of different types of urban greenspace to children’s physical activity? Health Place 2012, 18, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, B.W.; Lovell, R.; Higgins, S.L.; White, M.P.; Alcock, I.; Osborne, N.J.; Husk, K.; Sabel, C.E.; Depledge, M.H. Beyond greenspace: An ecological study of population general health and indicators of natural environment type and quality. Int. J. Health Geogr. 2015, 14, 17. [Google Scholar] [CrossRef]
- McDougall, C.W.; Hanley, N.; Quilliam, R.S.; Oliver, D.M. Blue space exposure, health and well-being: Does freshwater type matter? Landsc. Urban Plan. 2022, 224, 104446. [Google Scholar] [CrossRef]
- van den Berg, M.; van Poppel, M.; van Kamp, I.; Andrusaityte, S.; Balseviciene, B.; Cirach, M.; Danileviciute, A.; Ellis, N.; Hurst, G.; Masterson, D.; et al. Visiting green space is associated with mental health and vitality: A cross-sectional study in four european cities. Health Place 2016, 38, 8–15. [Google Scholar] [CrossRef] [PubMed]
- de Bell, S.; Graham, H.; Jarvis, S.; White, P. The importance of nature in mediating social and psychological benefits associated with visits to freshwater blue space. Landsc. Urban Plan. 2017, 167, 118–127. [Google Scholar] [CrossRef]
- McDougall, C.W.; Quilliam, R.S.; Hanley, N.; Oliver, D.M. Freshwater blue space and population health: An emerging research agenda. Sci. Total Environ. 2020, 737, 140196. [Google Scholar] [CrossRef]
- Labib, S.M.; Lindley, S.; Huck, J.J. Spatial dimensions of the influence of urban green-blue spaces on human health: A systematic review. Environ. Res. 2020, 180, 108869. [Google Scholar] [CrossRef]
- Central People’s Government of the People’s Republic of China. Shandong: Overview of Economic and Social Development in 2017. 2017. Available online: http://www.gov.cn/guoqing/2019-01/30/content_5362414.htm (accessed on 20 September 2022).
- Shandong Province Bureau of Statistics. Shandong Statistical Yearbook; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Zhang, Z. Analysis on Regional Differences of Economic Development in Shandong Province. In Proceedings of the 3rd International Conference on Management Science, Education Technology, Arts, Social Science and Economics (MSETASSE), Qingdao, China, 21 November 2015; pp. 709–711. [Google Scholar]
- National Statistics Bureau. China Statistical Yearbook 2018; National Statistics Bureau: Beijing, China, 2018. [Google Scholar]
- Shandong Provincial Department of Natural Resources. Urban System Planning of Shandong Province (2011–2030). Available online: http://dnr.shandong.gov.cn/zwgk_324/xxgkml/ghjh/gtkjgh/202005/t20200528_3114433.html (accessed on 22 September 2022).
- People’s Government of Shandong Province. Shandong Province Eco-Environmental Protection “13th Five-Year” Plan. Available online: http://xxgk.sdein.gov.cn/xxgkml/zhxgh/201706/t20170627_1122724.html (accessed on 22 September 2022).
- Idler, E.L.; Benyamini, Y. Self-rated health and mortality: A review of twenty-seven community studies. J. Health Soc. Behav. 1997, 38, 21–37. [Google Scholar] [CrossRef]
- DeSalvo, K.B.; Fan, V.S.; McDonell, M.B.; Fihn, S.D. Predicting Mortality and Healthcare Utilization with a Single Question. Health Serv. Res. 2005, 40, 1234–1246. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Kinmonth, A.L.; Sanderson, S.; Surtees, P.; Bingham, S.; Khaw, K.T. What determines Self-Rated Health (SRH)? A cross-sectional study of SF-36 health domains in the EPIC-Norfolk cohort. J. Epidemiol. Community Health 2011, 65, 800–806. [Google Scholar] [CrossRef]
- Froom, P.; Melamed, S.; Triber, I.; Ratson, N.Z.; Hermoni, D. Predicting self-reported health: The CORDIS study. Prev. Med. 2004, 39, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Liu, Y.; Feng, Z.; Pearce, J.R.; Wang, R.; Zhang, Y.; Chen, J. Residential exposure to natural outdoor environments and general health among older adults in Shanghai, China. Int. J. Equity Health 2019, 18, 178. [Google Scholar] [CrossRef]
- Lin, C.; Wu, L. Green and Blue Space Availability and Self-Rated Health among Seniors in China: Evidence from a National Survey. Int. J. Environ. Res. Public Health 2021, 18, 545. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Bartoll, X.; Basagana, X.; Dalmau-Bueno, A.; Martinez, D.; Ambros, A.; Cirach, M.; Triguero-Mas, M.; Gascon, M.; Borrell, C.; et al. Green spaces and General Health: Roles of mental health status, social support, and physical activity. Environ. Int. 2016, 91, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chinese Watershed and River Network Dataset Based on DEM Extraction. Registration and Publication System of Resources and Environmental Science Data. 2018. Available online: http://www.resdc.cn/DOI (accessed on 12 October 2022).
- Bertram, C.; Meyerhoff, J.; Rehdanz, K.; Wüstemann, H. Differences in the recreational value of urban parks between weekdays and weekends: A discrete choice analysis. Landsc. Urban Plan. 2017, 159, 5–14. [Google Scholar] [CrossRef]
- Bullock, C.H. Valuing Urban Green Space: Hypothetical Alternatives and the Status Quo. J. Environ. Plan. Manag. 2008, 51, 15–35. [Google Scholar] [CrossRef]
- Pasanen, T.P.; White, M.P.; Wheeler, B.W.; Garrett, J.K.; Elliott, L.R. Neighbourhood blue space, health and wellbeing: The mediating role of different types of physical activity. Environ. Int. 2019, 131, 105016. [Google Scholar] [CrossRef] [PubMed]
- Petrunoff, N.A.; Yi, N.X.; Dickens, B.; Sia, A.; Koo, J.; Cook, A.R.; Lin, W.H.; Ying, L.; Hsing, A.W.; van Dam, R.M.; et al. Associations of park access, park use and physical activity in parks with wellbeing in an Asian urban environment: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 87. [Google Scholar] [CrossRef]
- Sturm, R.; Cohen, D. Proximity to Urban Parks and Mental Health. J. Ment. Health Policy Econ. 2014, 17, 19–24. [Google Scholar] [PubMed]
- Freedman, D.S.; Mei, Z.G.; Srinivasan, S.R.; Berenson, G.S.; Dietz, W.H. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: The Bogalusa Heart Study. J. Pediatr. 2007, 150, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Maas, J.; van Dillen, S.M.E.; Verheij, R.A.; Groenewegen, P.P. Social contacts as a possible mechanism behind the relation between green space and health. Health Place 2009, 15, 586–595. [Google Scholar] [CrossRef]
- Sugiyama, T.; Leslie, E.; Giles-Corti, B.; Owen, N. Associations of neighbourhood greenness with physical and mental health: Do walking, social coherence and local social interaction explain the relationships? J. Epidemiol. Community Health 2008, 62, e9. [Google Scholar] [CrossRef]
- Liu, L.H.; Qu, H.Y.; Ma, Y.M.; Wang, K.; Qu, H.X. Restorative benefits of urban green space: Physiological, psychological restoration and eye movement analysis. J. Environ. Manag. 2022, 301, 9. [Google Scholar] [CrossRef]
- Wu, L.; Kim, S.K. Health outcomes of urban green space in China: Evidence from Beijing. Sustain. Cities Soc. 2021, 65, 102604. [Google Scholar] [CrossRef]
- Akpinar, A. How is quality of urban green spaces associated with physical activity and health? Urban For. Urban Green. 2016, 16, 76–83. [Google Scholar] [CrossRef]
- Jarvis, I.; Koehoorn, M.; Gergel, S.E.; van den Bosch, M. Different types of urban natural environments influence various dimensions of self-reported health. Environ. Res. 2020, 186, 109614. [Google Scholar] [CrossRef] [PubMed]
- Coppel, G.; Wuestemann, H. The impact of urban green space on health in Berlin, Germany: Empirical findings and implications for urban planning. Landsc. Urban Plan. 2017, 167, 410–418. [Google Scholar] [CrossRef]
- Ekkel, E.D.; de Vries, S. Nearby green space and human health: Evaluating accessibility metrics. Landsc. Urban Plan. 2017, 157, 214–220. [Google Scholar] [CrossRef]
- Mushangwe, S.; Astell-Burt, T.; Steel, D.; Feng, X. Ethnic inequalities in green space availability: Evidence from Australia. Urban For. Urban Green. 2021, 64, 127235. [Google Scholar] [CrossRef]
- Egerer, M.; Ordonez, C.; Lin, B.B.; Kendal, D. Multicultural gardeners and park users benefit from and attach diverse values to urban nature spaces. Urban For. Urban Green. 2019, 46, 126445. [Google Scholar] [CrossRef]
- Ha, J.; Kim, H.J.; With, K.A. Urban green space alone is not enough: A landscape analysis linking the spatial distribution of urban green space to mental health in the city of Chicago. Landsc. Urban Plan. 2022, 218, 104309. [Google Scholar] [CrossRef]
- Wu, L.; Chen, C. Does pattern matter? Exploring the pathways and effects of urban green space on promoting life satisfaction through reducing air pollution. Urban For. Urban Green. 2023, 82, 127890. [Google Scholar] [CrossRef]
- Vaeztavakoli, A.; Lak, A.; Yigitcanlar, T. Blue and Green Spaces as Therapeutic Landscapes: Health Effects of Urban Water Canal Areas of Isfahan. Sustainability 2018, 10, 4010. [Google Scholar] [CrossRef]
- Finlay, J.; Franke, T.; McKay, H.; Sims-Gould, J. Therapeutic landscapes and wellbeing in later life: Impacts of blue and green spaces for older adults. Health Place 2015, 34, 97–106. [Google Scholar] [CrossRef]
- Gascon, M.; Zijlema, W.; Vert, C.; White, M.P.; Nieuwenhuijsen, M.J. Outdoor blue spaces, human health and well-being: A systematic review of quantitative studies. Int. J. Hyg. Environ. Health 2017, 220, 1207–1221. [Google Scholar] [CrossRef]
- Murakawa, S.; Sekine, T.; Narita, K.I.; Nishina, D. Study of the effects of a river on the thermal environment in an urban area. Energy Build. 1991, 16, 993–1001. [Google Scholar] [CrossRef]
- Chen, C.; Luo, W.; Li, H.; Zhang, D.; Kang, N.; Yang, X.; Xia, Y. Impact of Perception of Green Space for Health Promotion on Willingness to Use Parks and Actual Use among Young Urban Residents. Int. J. Environ. Res. Public Health 2020, 17, 5560. [Google Scholar] [CrossRef] [PubMed]
- Aliyas, Z. Physical, mental, and physiological health benefits of green and blue outdoor spaces among elderly people. Int. J. Environ. Health Res. 2019, 31, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Pun, V.C.; Manjourides, J.; Suh, H.H. Association of neighborhood greenness with self-perceived stress, depression and anxiety symptoms in older U.S adults. Environ. Health 2018, 17, 39. [Google Scholar] [CrossRef]
- Noordzij, J.M.; Beenackers, M.A.; Oude Groeniger, J.; Van Lenthe, F.J. Effect of changes in green spaces on mental health in older adults: A fixed effects analysis. J. Epidemiol. Community Health 2020, 74, 48–56. [Google Scholar] [CrossRef]
- de Keijzer, C.; Bauwelinck, M.; Dadvand, P. Long-term exposure to residential greenspace and healthy ageing: A systematic review. Curr. Environ. Health Rep. 2020, 7, 65–88. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, C.W.; Yin, H.Y.; Shao, L.D.; Wang, R.Y. More visible greenspace, stronger heart? Evidence from ischaemic heart disease emergency department visits by middle-aged and older adults in Hubei, China. Landsc. Urban Plan. 2022, 224, 104444. [Google Scholar] [CrossRef]
- Azad, S.P.; Morinaga, R.; Kobayashi, H. Effect of Housing Layout and Open Space Morphology on Residential Environments–Applying New Density Indices for Evaluation of Residential Areas Case Study: Tehran, Iran. J. Asian Archit. Build. Eng. 2018, 17, 79–86. [Google Scholar] [CrossRef]
- Ta, N.; Li, H.; Zhu, Q.; Wu, J. Contributions of the quantity and quality of neighborhood green space to residential satisfaction in suburban Shanghai. Urban For. Urban Green. 2021, 64, 127293. [Google Scholar] [CrossRef]
- Heo, S.; Bell, M.L. Investigation on urban greenspace in relation to sociodemographic factors and health inequity based on different greenspace metrics in 3 US urban communities. J. Expo. Sci. Environ. Epidemiol. 2022, 33, 218–228. [Google Scholar] [CrossRef]
- Quynh, H.; Craig, W.; Janssen, I.; Pickett, W. Exposure to public natural space as a protective factor for emotional well-being among young people in Canada. BMC Public Health 2013, 13, 407. [Google Scholar] [CrossRef]
- Stafford, M.; Cummins, S.; Macintyre, S.; Ellaway, A.; Marmot, M. Gender differences in the associations between health and neighbourhood environment. Soc. Sci. Med. 2005, 60, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
No. of Observations: 1208 | |||||
---|---|---|---|---|---|
Variables | Descriptions | Mean | S.D. | Min | Max |
Self-reported health (SRHi) | Measured on a scale from 1“Very bad” to 5 “Very good” | 4.030 | 0.970 | 1.000 | 5.000 |
Demographic and socio-economic indicators (Di) | |||||
Age | Measured in years | 48.062 | 17.269 | 18.000 | 96.000 |
Gender | dummy: 1 = male, 0 = female | 0.459 | 0.498 | 0.000 | 1.000 |
Marital status | |||||
Unmarried | dummy: 1 = unmarried, 0 else | 0.130 | 0.336 | 0.000 | 1.000 |
Married | dummy: 1 = married, 0 else | 0.786 | 0.411 | 0.000 | 1.000 |
Divorced | dummy: 1 = divorced, 0 else | 0.015 | 0.121 | 0.000 | 1.000 |
Widowed | dummy: 1 = widowed, 0 else | 0.070 | 0.254 | 0.000 | 1.000 |
Children | |||||
No children | dummy: 1 = no, 0 else | 0.150 | 0.357 | 0.000 | 1.000 |
Have children | dummy: 1 = have, 0 else | 0.844 | 0.363 | 0.000 | 1.000 |
No answer about having children | dummy: 1 = no answers, 0 else | 0.006 | 0.076 | 0.000 | 1.000 |
Income level (unit: CNY) | |||||
0 ≤ Income ≤ 5000 | dummy: 1 = yes, 0 else | 0.193 | 0.395 | 0.000 | 1.000 |
5000 < Income ≤ 30,000 | dummy: 1 = yes, 0 else | 0.252 | 0.434 | 0.000 | 1.000 |
30,000 < Income ≤ 50,000 | dummy: 1 = yes, 0 else | 0.160 | 0.367 | 0.000 | 1.000 |
50,000 < Income ≤ 100,000 | dummy: 1 = yes, 0 else | 0.166 | 0.373 | 0.000 | 1.000 |
No answer about income | dummy: 1 = no answers, 0 else | 0.229 | 0.421 | 0.000 | 1.000 |
Household registration | |||||
Agricultural residence | dummy: 1 = agricultural, 0 else | 0.485 | 0.500 | 0.000 | 1.000 |
Non-agricultural residence | dummy: 1 = non-agricultural, 0 else | 0.512 | 0.500 | 0.000 | 1.000 |
Residence is unclear | dummy: 1 = no answers, 0 else | 0.002 | 0.050 | 0.000 | 1.000 |
Education level | |||||
Uneducated | dummy: 1 = yes, 0 else | 0.077 | 0.267 | 0.000 | 1.000 |
Primary school or junior high school | dummy: 1 = yes, 0 else | 0.417 | 0.493 | 0.000 | 1.000 |
Senior high school | dummy: 1 = yes, 0 else | 0.220 | 0.415 | 0.000 | 1.000 |
Junior college or above | dummy: 1 = yes, 0 else | 0.282 | 0.450 | 0.000 | 1.000 |
No answer about education level | dummy: 1 = no answers, 0 else | 0.003 | 0.057 | 0.000 | 1.000 |
Housing property | |||||
Do not own a house | dummy: 1 = own, 0 else | 0.361 | 0.480 | 0.000 | 1.000 |
Own a house | dummy: 1 = not own, 0 else | 0.627 | 0.484 | 0.000 | 1.000 |
No answer about housing property | dummy: 1 = no answers, 0 else | 0.012 | 0.111 | 0.000 | 1.000 |
Housing area level (unit: m2) | |||||
Housing area ≤ 71 | dummy: 1 = yes, 0 else | 0.233 | 0.423 | 0.000 | 1.000 |
71 < Housing area ≤ 90 | dummy: 1 = yes, 0 else | 0.281 | 0.449 | 0.000 | 1.000 |
90 < Housing area ≤ 110 | dummy: 1 = yes, 0 else | 0.197 | 0.398 | 0.000 | 1.000 |
Housing area > 110 | dummy: 1 = yes, 0 else | 0.222 | 0.416 | 0.000 | 1.000 |
No answer about housing area level | dummy: 1 = no answers, 0 else | 0.067 | 0.250 | 0.000 | 1.000 |
Family car | |||||
Do not own a car | dummy: 1 = not own, 0 else | 0.503 | 0.500 | 0.000 | 1.000 |
Own a car | dummy: 1 = own, 0 else | 0.488 | 0.500 | 0.000 | 1.000 |
No answer about car ownership | dummy: 1 = no answers, 0 else | 0.009 | 0.095 | 0.000 | 1.000 |
Exercise frequency | |||||
Never exercise | dummy: 1 = yes, 0 else | 0.329 | 0.470 | 0.000 | 1.000 |
Exercise several times a year | dummy: 1 = yes, 0 else | 0.180 | 0.385 | 0.000 | 1.000 |
Exercise several times a month | dummy: 1 = yes, 0 else | 0.117 | 0.321 | 0.000 | 1.000 |
Exercise several times a week | dummy: 1 = yes, 0 else | 0.187 | 0.390 | 0.000 | 1.000 |
Exercise every day | dummy: 1 = yes, 0 else | 0.185 | 0.388 | 0.000 | 1.000 |
No answer about exercise | dummy: 1 = no answers, 0 else | 0.002 | 0.041 | 0.000 | 1.000 |
Neighborhood indicators (Ni) | |||||
Community type | |||||
Inner-city community | dummy: 1 = yes, 0 else | 0.175 | 0.380 | 0.000 | 1.000 |
Welfare housing community | dummy: 1 = yes, 0 else | 0.099 | 0.298 | 0.000 | 1.000 |
Affordable housing community | dummy: 1 = yes, 0 else | 0.022 | 0.145 | 0.000 | 1.000 |
Commercial community | dummy: 1 = yes, 0 else | 0.406 | 0.491 | 0.000 | 1.000 |
Senior residential community | dummy: 1 = yes, 0 else | 0.008 | 0.091 | 0.000 | 1.000 |
Community transformed from villages | dummy: 1 = yes, 0 else | 0.288 | 0.453 | 0.000 | 1.000 |
Other community type | dummy: 1 = other, 0 else | 0.002 | 0.050 | 0.000 | 1.000 |
Green and blue space indicators (Ki) | |||||
Total green space | Coverage ratio of total green space within the 0.5 km circular buffer | 0.090 | 0.099 | 0.000 | 0.450 |
Forests | Coverage ratio of forests within the 0.5 km circular buffer | 0.013 | 0.042 | 0.000 | 0.371 |
Grass | Coverage ratio of grassland within the 0.5 km circular buffer | 0.077 | 0.093 | 0.000 | 0.450 |
Freshwater existence | dummy: 1 = exist and 0 = else (existence within the 0.5 km circular buffer) | 0.805 | 0.397 | 0.000 | 1.000 |
Distance to parks | Distance to the nearest parks (km) | 2.873 | 6.529 | 0.019 | 41.025 |
Distance to rivers | Distance to the nearest rivers (km) | 8.204 | 7.666 | 0.348 | 31.150 |
Parks existence | dummy: 1 = exist and 0 = else (existence within the 0.5 km circular buffer) | 0.340 | 0.474 | 0.000 | 1.000 |
Number of parks | The number of parks within the 0.5 km circular buffer | 0.113 | 0.388 | 0.000 | 2.000 |
SRHi | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
Demographic and socio-economic indicators (Di) | ||||||
Age | −0.023 *** | −0.024 *** | −0.026 *** | −0.023 *** | −0.023 *** | −0.023 *** |
(0.002) | (0.002) | (0.004) | (0.002) | (0.002) | (0.002) | |
Gender | 0.009 | −0.005 | 0.012 | 0.009 | 0.009 | 0.009 |
(0.055) | (0.058) | (0.091) | (0.055) | (0.055) | (0.055) | |
Marital status | ||||||
Unmarried | Reference | Reference | Reference | Reference | Reference | Reference |
Married | −0.175 | −0.160 | 0.011 | −0.172 | −0.172 | −0.177 |
(0.110) | (0.114) | (0.193) | (0.110) | (0.110) | (0.110) | |
Divorced | −0.266 | −0.281 | −0.358 | −0.268 | −0.269 | −0.269 |
(0.194) | (0.197) | (0.273) | (0.195) | (0.195) | (0.193) | |
Widowed | −0.041 | −0.016 | 0.284 | −0.039 | −0.039 | −0.044 |
(0.171) | (0.179) | (0.309) | (0.171) | (0.172) | (0.171) | |
Children | ||||||
No children | Reference | Reference | Reference | Reference | Reference | Reference |
Have children | 0.259 ** | 0.277 ** | 0.151 | 0.258 ** | 0.258 ** | 0.263 ** |
(0.111) | (0.114) | (0.198) | (0.111) | (0.111) | (0.112) | |
No answer about children | 0.466 * | 0.496 * | 0.895 *** | 0.472 * | 0.473 * | 0.478 * |
(0.261) | (0.257) | (0.330) | (0.259) | (0.259) | (0.263) | |
Income level | ||||||
0 ≤ Income ≤ 5000 | Reference | Reference | Reference | Reference | Reference | Reference |
5000 < Income ≤ 30,000 | 0.176 ** | 0.193 ** | 0.224 * | 0.176 ** | 0.176 ** | 0.175 ** |
(0.085) | (0.092) | (0.130) | (0.085) | (0.085) | (0.085) | |
30,000 < Income ≤ 50,000 | 0.151 * | 0.133 | 0.236 | 0.151 * | 0.152 * | 0.150 |
(0.091) | (0.097) | (0.155) | (0.091) | (0.091) | (0.091) | |
50,000 < Income ≤ 100,000 | 0.170 * | 0.161 | 0.097 | 0.168 * | 0.169 * | 0.169 * |
(0.096) | (0.102) | (0.159) | (0.096) | (0.096) | (0.096) | |
No answer about income | 0.162 * | 0.177 * | 0.253 * | 0.159 * | 0.159 * | 0.163 * |
(0.092) | (0.096) | (0.144) | (0.092) | (0.092) | (0.092) | |
Household registration | ||||||
Agricultural residence | Reference | Reference | Reference | Reference | Reference | Reference |
Non-agricultural residence | −0.029 | −0.055 | −0.031 | −0.029 | −0.029 | −0.030 |
(0.066) | (0.068) | (0.108) | (0.066) | (0.066) | (0.066) | |
Residence is unclear | −0.153 | −0.124 | −0.550 | −0.155 | −0.154 | −0.147 |
(0.546) | (0.535) | (0.400) | (0.544) | (0.543) | (0.551) | |
Education level | ||||||
Uneducated | Reference | Reference | Reference | Reference | Reference | Reference |
Primary or junior high school | 0.136 | 0.075 | −0.129 | 0.139 | 0.139 | 0.138 |
(0.124) | (0.135) | (0.175) | (0.124) | (0.124) | (0.124) | |
Senior high school | 0.093 | 0.011 | −0.136 | 0.096 | 0.096 | 0.096 |
(0.134) | (0.144) | (0.189) | (0.134) | (0.134) | (0.134) | |
Junior college or above | 0.108 | 0.031 | −0.098 | 0.111 | 0.111 | 0.111 |
(0.142) | (0.154) | (0.200) | (0.142) | (0.142) | (0.142) | |
No answer about education level | 0.680 | 0.566 | 0.184 | 0.687 * | 0.685 * | 0.681 * |
(0.414) | (0.428) | (0.459) | (0.415) | (0.414) | (0.413) | |
Housing property | ||||||
Do not own a house | Reference | Reference | Reference | Reference | Reference | Reference |
Own a house | 0.068 | 0.041 | 0.252 ** | 0.068 | 0.068 | 0.067 |
(0.062) | (0.065) | (0.102) | (0.062) | (0.062) | (0.062) | |
No answer about house property | −0.247 | −0.249 | 0.485 | −0.246 | −0.246 | −0.247 |
(0.237) | (0.232) | (0.554) | (0.237) | (0.237) | (0.234) | |
Housing area level | ||||||
Housing area ≤ 71 | Reference | Reference | Reference | Reference | Reference | Reference |
71 < Housing area ≤ 90 | 0.148 * | 0.165 *** | 0.076 | 0.145 * | 0.145 * | 0.150 * |
(0.077) | (0.080) | (0.129) | (0.078) | (0.078) | (0.078) | |
90 < Housing area ≤ 110 | 0.103 | 0.132 | 0.026 | 0.103 | 0.102 | 0.107 |
(0.089) | (0.094) | (0.140) | (0.089) | (0.089) | (0.090) | |
Housing area > 110 | 0.136 | 0.200 ** | 0.199 | 0.135 | 0.134 | 0.143 |
(0.089) | (0.095) | (0.139) | (0.089) | (0.089) | (0.091) | |
No answer about housing area | 0.115 | 0.111 | 0.090 | 0.116 | 0.116 | 0.122 |
(0.113) | (0.118) | (0.171) | (0.114) | (0.114) | (0.114) | |
Family car | ||||||
Do not own a car | Reference | Reference | Reference | Reference | Reference | Reference |
Own a car | 0.032 | 0.011 | −0.012 | 0.032 | 0.032 | 0.029 |
(0.058) | (0.061) | (0.090) | (0.058) | (0.058) | (0.058) | |
No answer about car ownership | −0.128 | −0.070 | 0.185 | −0.133 | −0.133 | −0.138 |
(0.333) | (0.345) | (0.525) | (0.335) | (0.334) | (0.332) | |
Exercise frequency | ||||||
Never exercise | Reference | Reference | Reference | Reference | Reference | Reference |
Exercise several times a year | 0.207 *** | 0.242 *** | 0.145 | 0.205 *** | 0.204 *** | 0.206 *** |
(0.076) | (0.080) | (0.119) | (0.077) | (0.076) | (0.076) | |
Exercise several times a month | 0.151 * | 0.195 ** | 0.091 | 0.154 * | 0.153 * | 0.151 |
(0.091) | (0.097) | (0.159) | (0.092) | (0.091) | (0.092) | |
Exercise several times a week | 0.205 ** | 0.221 *** | 0.200 | 0.205 ** | 0.205 ** | 0.206 ** |
(0.081) | (0.084) | (0.135) | (0.081) | (0.081) | (0.081) | |
Exercise everyday | 0.331 *** | 0.392 *** | 0.243 * | 0.331 *** | 0.331 *** | 0.331 *** |
(0.078) | (0.084) | (0.130) | (0.079) | (0.078) | (0.078) | |
No answer about exercise | 0.103 | 0.085 | 0.293 | 0.105 | 0.105 | 0.106 |
(0.232) | (0.257) | (0.278) | (0.234) | (0.234) | (0.233) | |
Neighborhood indicators (Ni) | ||||||
Community type | ||||||
Inner-city community | Reference | Reference | Reference | Reference | Reference | Reference |
Welfare housing community | 0.142 | 0.195 | 0.088 | 0.136 | 0.134 | 0.141 |
(0.121) | (0.125) | (0.192) | (0.122) | (0.123) | (0.121) | |
Affordable housing community | 0.139 | 0.167 | 0.400 | 0.134 | 0.134 | 0.128 |
(0.219) | (0.227) | (0.299) | (0.219) | (0.219) | (0.221) | |
Commercial community | 0.096 | 0.129 | 0.181 | 0.094 | 0.093 | 0.094 |
(0.096) | (0.105) | (0.184) | (0.096) | (0.096) | (0.096) | |
Senior residential community | 0.140 | 0.152 | 1.701 *** | 0.132 | 0.131 | 0.124 |
(0.331) | (0.332) | (0.374) | (0.331) | (0.331) | (0.324) | |
Community transformed from villages | 0.111 | 0.208 * | 0.097 | 0.108 | 0.108 | 0.115 |
(0.109) | (0.125) | (0.183) | (0.109) | (0.109) | (0.110) | |
Other community type | 0.380 | 0.390 | 0.088 | 0.365 | 0.365 | 0.347 |
(0.310) | (0.320) | (0.192) | (0.320) | (0.321) | (0.318) | |
Green and blue space indicators (Ki) | ||||||
Distance to parks | −0.128 * | |||||
(0.068) | ||||||
Distance to rivers | −0.263 ** | |||||
(0.132) | ||||||
Total green space (Model 4a) | 0.300 | |||||
(0.581) | ||||||
Freshwater existence (Model 4b) | −0.013 | |||||
(0.121) | ||||||
Forests (Model 5a) | 0.374 | |||||
(0.959) | ||||||
Grassland (Model 5b) | 0.292 | |||||
(0.713) | ||||||
Parks’ existence (Model 6a) | 0.063 | |||||
(0.092) | ||||||
Number of parks (Model 6b) | 0.011 | |||||
(0.126) | ||||||
Constant | 4.770 *** | 4.881 *** | 4.853 *** | 4.776 *** | 4.762 *** | 4.732 *** |
(0.281) | (0.302) | (0.457) | (0.295) | (0.284) | (0.286) | |
Observations | 1208 | 1084 | 505 | 1208 | 1208 | 1208 |
R-squared | 0.301 | 0.293 | 0.336 | 0.301 | 0.301 | 0.301 |
Townships | YES | YES | YES | YES | YES | YES |
Months | YES | YES | YES | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lin, J.; Sun, X.; Zhang, Y.; Wong, H.; Ouyang, L.; Liu, L.; Wu, L. Disparities in the Health Benefits of Urban Green/Blue Space: A Case Study from Shandong Province, China. Land 2023, 12, 900. https://doi.org/10.3390/land12040900
Wang X, Lin J, Sun X, Zhang Y, Wong H, Ouyang L, Liu L, Wu L. Disparities in the Health Benefits of Urban Green/Blue Space: A Case Study from Shandong Province, China. Land. 2023; 12(4):900. https://doi.org/10.3390/land12040900
Chicago/Turabian StyleWang, Xinrui, Jian Lin, Xuemeng Sun, Yutong Zhang, Hiutung Wong, Libin Ouyang, Lin Liu, and Longfeng Wu. 2023. "Disparities in the Health Benefits of Urban Green/Blue Space: A Case Study from Shandong Province, China" Land 12, no. 4: 900. https://doi.org/10.3390/land12040900
APA StyleWang, X., Lin, J., Sun, X., Zhang, Y., Wong, H., Ouyang, L., Liu, L., & Wu, L. (2023). Disparities in the Health Benefits of Urban Green/Blue Space: A Case Study from Shandong Province, China. Land, 12(4), 900. https://doi.org/10.3390/land12040900