The Driving Role of Food and Cultivated Land Resource in Balancing the Complex Urban System of Socio-Economy and Environment: A Case Study of Shanghai City in China
Abstract
:1. Introduction
2. Methods and Study Area
2.1. System Dynamics Model
2.1.1. Model Conceptualization
- Grain security→Total population→Labor force→Output of the primary industry→Grain security (a positive loop);
- Grain security→Total population→Labor force→Output of tertiary/secondary industry→natural land→Grain security (a negative loop);
- Grain security→Total population→Air/Water pollution→Pollution index→Output of the primary industry→Grain security (a negative loop);
- Grain security→Total population→Labor force→Output of the tertiary/secondary industry→GDP→Output of the primary industry (a positive loop);
- Grain security→Total population→Air/Water pollution→Pollution index→Output of the tertiary/secondary industry→GDP→Output of the primary industry (a negative loop).
2.1.2. Model Formulation
2.1.3. Scenario Settings
2.2. Coupling Coordination Degree Model
2.2.1. Indicator System and Data Source
2.2.2. Performance Evaluation of Subsystems
2.2.3. Coordination Evaluation of the Urban System
2.3. Study Area
3. Results
3.1. Model Accuracy
3.2. Model Results of Three Scenarios
3.2.1. Development of Food in Urban Agriculture
3.2.2. Socioeconomic and Environmental Performance
3.2.3. Coupling Coordination Level
4. Discussion
5. Policy Implications
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Model Formulations
- [1]
- Air pollution coefficient = 0.81
- [2]
- Air protection coefficient = 0.2553
- [3]
- Birth = Birth rate × Total population × Grain yield per capita^0.3384
- [4]
- Birth rate ([(1995, 0)–(2030, 0.01)], (1995, 0.0055), (1996, 0.0056), (1997, 0.0055), (1998, 0.0052), (1999, 0.0054), (2000, 0.0053), (2001, 0.0043), (2002, 0.0047), (2003, 0.0043), (2004, 0.006), (2005, 0.0061), (2006, 0.006), (2007, 0.0073), (2008, 0.007), (2009, 0.0066), (2010, 0.0071), (2011, 0.0072), (2012, 0.0096), (2013, 0.0076), (2014, 0.0086), (2015, 0.0074), (2016, 0.009), (2017, 0.0081), (2018, 0.0067), (2030, 0.0085))
- [5]
- Cultivated land = Natural land × Proportion of agricultural output^0.2342/Proportion of nonagricultural outputt^8.975
- [6]
- Culture coefficient = 0.3105
- [7]
- Death = Death rate × Total population × (1 + Pollution index × 6.3084)/Grain yield per capita^0.3384
- [8]
- Death rate ([(1995, 0)–(2030, 0.01)], (1995, 0.0075), (1996, 0.007), (1997, 0.0068), (1998, 0.007), (1999, 0.0065), (2000, 0.0072), (2001, 0.0071), (2002, 0.0073), (2003, 0.0075), (2004, 0.0072), (2005, 0.0075), (2006, 0.0072), (2007, 0.0074), (2008, 0.0077), (2009, 0.0076), (2010, 0.0077), (2011, 0.0079), (2012, 0.0054), (2013, 0.0082), (2014, 0.0083), (2015, 0.0086), (2016, 0.0085), (2017, 0.0087), (2018, 0.0086), (2030, 0.0095))
- [9]
- Depreciation rate for primary industry = 0.045
- [10]
- Depreciation rate for secondary industry = 0.0698
- [11]
- Depreciation rate for tertiary industry = 0.045
- [12]
- Discharge of industrial SO2 = Output of the secondary industry × Industrial SO2 per secondary output/1000
- [13]
- Discharge of industrial wastewater = Output of the secondary industry × Industrial wastewater per secondary output
- [14]
- Discharge of living SO2 = Total population × Living SO2 per capita/1000
- [15]
- Discharge of living wastewater = Total population × Living wastewater per capita
- [16]
- Discharge OF SO2 = Discharge of industrial SO2 + Discharge of living SO2
- [17]
- Discharge of wastewater = Discharge of industrial wastewater + Discharge of living wastewater
- [18]
- Education coefficient = 0.1915
- [19]
- Energy intensity ([(1995, 0.8)–(2030, 2.2)], (1995, 1.0581), (1996, 1.0172), (1997, 0.9991), (1998, 1.0156), (1999, 1.0713), (2000, 1.125), (2001, 1.2388), (2002, 1.3188), (2003, 1.359), (2004, 1.3919), (2005, 1.4852), (2006, 1.5712), (2007, 1.6117), (2008, 1.6427), (2009, 1.6948), (2010, 1.7256), (2011, 1.7102), (2012, 1.8409), (2013, 1.9079), (2014, 1.7114), (2015, 1.7664), (2016, 1.7471), (2017, 1.8431), (2018, 1.855), (2019, 1.7215), (2030, 2.1033))
- [20]
- Energy pollution coefficient = Total energy consumption × 0.63/LN (The secondary industrial investment)
- [21]
- Energy consumption per capita = Total energy consumption/Total population
- [22]
- Energy pressure = Total energy consumption × 0.01/LN (R and D investment)
- [23]
- Expenditure in environmental protection = GDP lagged × Rate of environmental protection expenditure
- [24]
- FINAL TIME = 2030
- [25]
- Fiscal expenditure = GDP lagged × Rate of fiscal expenditure
- [26]
- GDP = Output of the primary industry + Output of the secondary industry + Output of the tertiary industry
- [27]
- GDP lag = INTEG (Production-GDP lagged,4151.4)
- [28]
- GDP lagged = GDP lag
- [29]
- Grain yield = Cultivated land × Grain yield per unit area
- [30]
- Grain yield per capita = Grain yield/Total population
- [31]
- Grain yield per unit area ([(1995, 370)–(2030, 800)], (1995, 725.517), (1996, 781.171), (1997, 798.154), (1998, 723.485), (1999, 715.366), (2000, 608.604), (2001, 539.629), (2002, 482.47), (2003, 383.793), (2004, 432.641), (2005, 443.995), (2006, 535.096), (2007, 530.097), (2008, 564.244), (2009, 601.483), (2010, 589.055), (2011, 610.972), (2012, 615.025), (2013, 607.181), (2014, 597.981), (2015, 590.516), (2016, 519.979), (2017, 520.772), (2018, 539.329), (2030, 762.012))
- [32]
- Healthcare coefficient = 0.129
- [33]
- Industrial SO2 per secondary output = 53.29 × EXP (−((Time − 1995)/19.46)^5)/(Expenditure in environmental protection^Air protection coefficient)
- [34]
- Industrial wastewater per secondary output = 1411 × EXP(−0.02637 × (Time − 1995))/(Expenditure in environmental protection^Water protection coefficient)
- [35]
- INITIAL TIME = 1995
- [36]
- Labor force ratio([(1995, 0.45)–(2030, 0.6)], (1995, 0.5617), (1996, 0.5838), (1997, 0.5639), (1998, 0.5416), (1999, 0.5113), (2000, 0.5082), (2001, 0.4763), (2002, 0.4886), (2003, 0.4946), (2004, 0.5521), (2005, 0.5333), (2006, 0.5396), (2007, 0.5334), (2008, 0.5328), (2009, 0.5239), (2010, 0.5213), (2011, 0.5126), (2012, 0.4976), (2013, 0.5923), (2014, 0.5709), (2015, 0.5527), (2016, 0.5353), (2017, 0.5217), (2018, 0.5095), (2030, 0.5316))
- [37]
- Labor force ratio of the primary industry ([(1995, 0.01)–(2030, 0.14)], (1995, 0.0985), (1996, 0.1204), (1997, 0.1271), (1998, 0.1244), (1999, 0.1141), (2000, 0.1077), (2001, 0.11), (2002, 0.1015), (2003, 0.0863), (2004, 0.0688), (2005, 0.063), (2006, 0.055), (2007, 0.0524), (2008, 0.0469), (2009, 0.0456), (2010, 0.034), (2011, 0.0338), (2012, 0.041), (2013, 0.037), (2014, 0.0328), (2015, 0.0338), (2016, 0.0333), (2017, 0.0309), (2018, 0.0297), (2030, 0.012))
- [38]
- Labor force ratio of the secondary industry ([(1995, 0.25)–(2030, 0.56)], (1995, 0.5447), (1996, 0.5226), (1997, 0.491), (1998, 0.4603), (1999, 0.4646), (2000, 0.4431), (2001, 0.3987), (2002, 0.3967), (2003, 0.4076), (2004, 0.4535), (2005, 0.4243), (2006, 0.4168), (2007, 0.4125), (2008, 0.4027), (2009, 0.3974), (2010, 0.4068), (2011, 0.403), (2012, 0.3944), (2013, 0.3501), (2014, 0.3492), (2015, 0.3377), (2016, 0.3285), (2017, 0.3136), (2018, 0.3074), (2030, 0.2782))
- [39]
- Labor force ratio of the tertiary industry ([(1995, 0.35)–(2030, 0.75)], (1995, 0.3568), (1996, 0.357), (1997, 0.3819), (1998, 0.4153), (1999, 0.4213), (2000, 0.4492), (2001, 0.4912), (2002, 0.5017), (2003, 0.5061), (2004, 0.4777), (2005, 0.5128), (2006, 0.5282), (2007, 0.5351), (2008, 0.5504), (2009, 0.557), (2010, 0.5592), (2011, 0.5632), (2012, 0.5646), (2013, 0.6129), (2014, 0.618), (2015, 0.6285), (2016, 0.6382), (2017, 0.6554), (2018, 0.663), (2030, 0.7098))
- [40]
- Livelihood index for inhabitant = LN (Fiscal expenditure × (Culture coefficient × Public books per capita + Education coefficient*Primary school students per capita + Healthcare coefficient × Medical staff per capita + Transport coefficient × Road area per capita))
- [41]
- Living SO2 per capita ([(1994, 0)–(2030, 12)], (1994, 6.402), (1995, 10.792), (1996, 5.307), (1997, 4.856), (1998, 6.417), (1999, 5.888), (2000, 8.585), (2001, 10.348), (2002, 7.105), (2003, 7.627), (2004, 6.736), (2005, 7.28), (2006, 6.808), (2007, 6.463), (2008, 6.917), (2009, 6.317), (2010, 4.121), (2011, 1.272), (2012, 1.46), (2013, 1.778), (2014, 1.351), (2015, 2.733), (2016, 0.283), (2017, 0.241), (2018, 0.033), (2019, 0.041), (2030, 0.131))
- [42]
- Living wastewater per capita ([(1994, 60)–(2030, 95)], (1994, 61.2117), (1995, 76.662), (1996, 78.8422), (1997, 74.6138), (1998, 77.3412), (1999, 75.0479), (2000, 75.345), (2001, 76.124), (2002, 74.257), (2003, 68.5793), (2004, 74.66), (2005, 78.6243), (2006, 89.3075), (2007, 86.7248), (2008, 84.9603), (2009, 85.6561), (2010, 91.8367), (2011, 65.6157), (2012, 72.0773), (2013, 73.5404), (2014, 73.0833), (2015, 73.3747), (2016, 76.1157), (2017, 74.6071), (2018, 74.5462), (2019, 74.1606), (2030, 77.1461))
- [43]
- Medical staff per capita([(1995, 0.005)–(2030, 0.011)], (1995, 0.0078), (1996, 0.0075), (1997, 0.0073), (1998, 0.0071), (1999, 0.0069), (2000, 0.0067), (2001, 0.0063), (2002, 0.0059), (2003, 0.0058), (2004, 0.0055), (2005, 0.0055), (2006, 0.0056), (2007, 0.0059), (2008, 0.006), (2009, 0.0059), (2010, 0.0059), (2011, 0.0059), (2012, 0.0062), (2013, 0.0065), (2014, 0.0068), (2015, 0.007), (2016, 0.0074), (2017, 0.0078), (2018, 0.0085), (2019, 0.0084), (2030, 0.0107))
- [44]
- Natural land = 6341
- [45]
- Output of the primary industry = 0.086/Pollution index^0.8284 × Livelihood index for inhabitant^0.1163 × The stock of the primary industrial fixed assets^0.91 × (Labor force ratio of the primary industry × Total labor force)^0.5272
- [46]
- Output of the secondary industry = 0.3843/Energy pressure^0.4549 × Energy consumption per capita^0.6016 × The stock of the secondary industrial fixed assets^0.8047 × (Total labor force*Labor force ratio of the secondary industry) ^0.3084
- [47]
- Output of the tertiary industry = 23.0808/Pollution index^0.8284 × Livelihood index for inhabitant^0.1163 × The stock of the tertiary industrial fixed assets^0.162 × (Total labor force × Labor force ratio of the tertiary industry) ^0.7136
- [48]
- Pollution index = LN (Energy pollution coefficient × (Air pollution coefficient × Discharge of SO2+Water pollution coefficient × Discharge of wastewater)/(Discharge of SO2+Discharge of wastewater))
- [49]
- Primary school students per capita([(1995, 0.02)–(2030, 0.08)], (1995, 0.0776), (1996, 0.0734), (1997, 0.0688), (1998, 0.063), (1999, 0.0556), (2000, 0.049), (2001, 0.0433), (2002, 0.0393), (2003, 0.0367), (2004, 0.0293), (2005, 0.0283), (2006, 0.0272), (2007, 0.0258), (2008, 0.0276), (2009, 0.0304), (2010, 0.0305), (2011, 0.0312), (2012, 0.032), (2013, 0.0328), (2014, 0.0331), (2015, 0.0331), (2016, 0.0326), (2017, 0.0325), (2018, 0.0342), (2019, 0.034), (2030, 0.0415))
- [50]
- Production = GDP-Expenditure in environmental protection
- [51]
- Proportion of agricultural output = Output of the primary industry/GDP
- [52]
- Proportion of nonagricultural output = (Output of the secondary industry + Output of the tertiary industry)/GDP
- [53]
- Public books per capita([(1995, 1)–(2030, 4)], (1995, 1.1216), (1996, 1.1392), (1997, 3.2102), (1998, 3.1493), (1999, 3.0989), (2000, 3.4191), (2001, 3.3974), (2002, 3.3959), (2003, 3.3378), (2004, 3.1891), (2005, 3.2005), (2006, 3.0866), (2007, 3.03), (2008, 2.9865), (2009, 2.9833), (2010, 2.9566), (2011, 2.9369), (2012, 3.0261), (2013, 2.9975), (2014, 3.035), (2015, 3.1337), (2016, 3.1719), (2017, 3.2146), (2018, 3.2567), (2019, 3.3208), (2030, 3.8485))
- [54]
- R and D investment = GDP lagged × Ratio of R and D investment
- [55]
- Rate of environmental protection expenditure ([(1995, 0)–(2030, 0.1)], (1995, 0.01846), (1996, 0.02309), (1997, 0.02376), (1998, 0.02666), (1999, 0.02642), (2000, 0.02949), (2001, 0.02909), (2002, 0.02802), (2003, 0.02815), (2004, 0.02782), (2005, 0.03057), (2006, 0.02933), (2007, 0.02843), (2008, 0.02906), (2009, 0.02925), (2010, 0.02833), (2011, 0.02788), (2012, 0.02827), (2013, 0.02814), (2014, 0.0277), (2015, 0.02636), (2016, 0.02756), (2017, 0.03015), (2018, 0.03027), (2019, 0.02829), (2030, 0.035))
- [56]
- Rate of fiscal expenditure ([(1995, 0.1)–(2030, 0.35)], (1995, 0.1064), (1996, 0.115), (1997, 0.1238), (1998, 0.1255), (1999, 0.1294), (2000, 0.1294), (2001, 0.1382), (2002, 0.1515), (2003, 0.1621), (2004, 0.1723), (2005, 0.1805), (2006, 0.1711), (2007, 0.1709), (2008, 0.1801), (2009, 0.1899), (2010, 0.1844), (2011, 0.1956), (2012, 0.2073), (2013, 0.2096), (2014, 0.1815), (2015, 0.2303), (2016, 0.2315), (2017, 0.2464), (2018, 0.2556), (2030, 0.3096))
- [57]
- Rate of fixed assets investment ([(1995, 0.1)–(2030, 0.7)], (1995, 0.6361), (1996, 0.6549), (1997, 0.5707), (1998, 0.5129), (1999, 0.4397), (2000, 0.3885), (2001, 0.3794), (2002, 0.3774), (2003, 0.3604), (2004, 0.3807), (2005, 0.3852), (2006, 0.3703), (2007, 0.3462), (2008, 0.3322), (2009, 0.335), (2010, 0.2968), (2011, 0.2532), (2012, 0.2604), (2013, 0.2614), (2014, 0.2381), (2015, 0.2363), (2016, 0.226), (2017, 0.2366), (2018, 0.2334), (2030, 0.1108))
- [58]
- Ratio of R and D investment ([(1995, 0.01)–(2030, 0.06)], (1995, 0.0129), (1996, 0.0137), (1997, 0.0144), (1998, 0.0145), (1999, 0.0151), (2000, 0.0159), (2001, 0.0168), (2002, 0.0177), (2003, 0.0189), (2004, 0.021), (2005, 0.0232), (2006, 0.0244), (2007, 0.0239), (2008, 0.0249), (2009, 0.0269), (2010, 0.0269), (2011, 0.0299), (2012, 0.0337), (2013, 0.036), (2014, 0.0341), (2015, 0.0348), (2016, 0.0351), (2017, 0.0393), (2018, 0.0416), (2030, 0.054))
- [59]
- Road area per capita ([(1995, 4)–(2030, 18)], (1995, 4.01), (1996, 4.46), (1997, 4.91), (1998, 6.04), (1999, 8.52), (2000, 8.68), (2001, 13.6), (2002, 11.6), (2003, 12.46), (2004, 15.36), (2005, 11.78), (2006, 11.84), (2007, 15.4), (2008, 15.7), (2009, 17.54), (2010, 11.12), (2011, 11.18), (2012, 11.24), (2013, 11.3), (2014, 11.51), (2015, 11.83), (2016, 12.09), (2017, 12.34), (2018, 12.49), (2019, 12.7), (2030, 14.63))
- [60]
- SAVEPER = TIME STEP
- [61]
- The primary industrial depreciation = The stock of the primary industrial fixed assets × Depreciation rate for primary industry
- [62]
- The primary industrial investment = Total fixed assets investment × The proportion of the primary industrial investment
- [63]
- The proportion of the primary industrial investment ([(1995, 0)–(2030, 0.012)], (1995, 0.0061), (1996, 0.0107), (1997, 0.004), (1998, 0.0033), (1999, 0.0044), (2000, 0.0044), (2001, 0.0035), (2002, 0.0025), (2003, 0.0018), (2004, 0.0018), (2005, 0.0017), (2006, 0.0037), (2007, 0.002), (2008, 0.0018), (2009, 0.0022), (2010, 0.0032), (2011, 0.0038), (2012, 0.0023), (2013, 0.0034), (2014, 0.0021), (2015, 0.0007), (2016, 0.0006), (2017, 0.0003), (2018, 0.0007), (2030, 0.0003))
- [64]
- The proportion of the secondary industrial investment ([(1995, 0)–(2030, 0.4)], (1995, 0.3226), (1996, 0.3314), (1997, 0.3354), (1998, 0.3333), (1999, 0.3323), (2000, 0.3294), (2001, 0.3427), (2002, 0.332), (2003, 0.3291), (2004, 0.3275), (2005, 0.3055), (2006, 0.309), (2007, 0.3135), (2008, 0.2942), (2009, 0.2707), (2010, 0.2699), (2011, 0.2557), (2012, 0.2463), (2013, 0.2199), (2014, 0.1924), (2015, 0.1509), (2016, 0.1455), (2017, 0.1426), (2018, 0.1588), (2030, 0.075))
- [65]
- The proportion of the tertiary industrial investment ([(1995, 0.6)–(2030, 1)], (1995, 0.6713), (1996, 0.6582), (1997, 0.6611), (1998, 0.6636), (1999, 0.6635), (2000, 0.6664), (2001, 0.654), (2002, 0.6656), (2003, 0.6692), (2004, 0.6708), (2005, 0.693), (2006, 0.6874), (2007, 0.6847), (2008, 0.7041), (2009, 0.7271), (2010, 0.727), (2011, 0.7406), (2012, 0.7516), (2013, 0.7768), (2014, 0.8057), (2015, 0.8484), (2016, 0.8539), (2017, 0.8572), (2018, 0.8405), (2030, 0.922))
- [66]
- The secondary industrial depreciation = The stock of the secondary industrial fixed assets × Depreciation rate for secondary industry
- [67]
- The secondary industrial investment = Total fixed assets investment × The proportion of the secondary industrial investment
- [68]
- The stock of the primary industrial fixed assets = INTEG (The primary industrial investment-The primary industrial depreciation,464.362)
- [69]
- The stock of the secondary industrial fixed assets = INTEG (The secondary industrial investment-The secondary industrial depreciation,8072)
- [70]
- The stock of the tertiary industrial fixed assets = INTEG (The tertiary industrial investment-The tertiary industrial depreciation,5501.27)
- [71]
- The tertiary industrial depreciation = The stock of the tertiary industrial fixed assets*Depreciation rate for tertiary industry
- [72]
- The tertiary industrial investment = Total fixed assets investment × The proportion of the tertiary industrial investment
- [73]
- TIME STEP = 1
- [74]
- Total energy consumption = Energy intensity × GDP lagged
- [75]
- Total fixed assets investment = GDP lagged × Rate of fixed assets investment
- [76]
- Total labor force =Total population × Labor force ratio
- [77]
- Total population = INTEG (Birth-Death,1414)
- [78]
- Transport coefficient = 0.2399
- [79]
- Water pollution coefficient = 0.35
- [80]
- Water protection coefficient = 0.7555
Appendix B
No. | Parameters | Values | Methods |
---|---|---|---|
1 | Air pollution coefficient | Appendix A | [19] |
2 | Air protection coefficient | Appendix A | Regression analysis |
3 | Elastic coefficient of Grain yield per capita for Birth | 0.3384 | Regression analysis |
4 | Birth rate | Appendix A | Table function |
5 | Elastic coefficient of Proportion of agricultural output for Cultivated land | 0.2342 | Regression analysis |
6 | Elastic coefficient of Proportion of nonagricultural output for Cultivated land | 8.975 | Regression analysis |
7 | Culture coefficient | Appendix A | Regression analysis |
8 | Elastic coefficient of Pollution index for Death | 6.3084 | Regression analysis |
9 | Elastic coefficient of Gain yield per capita for Birth | 0.3384 | Regression analysis |
10 | Death rate | Appendix A | Table function |
11 | Depreciation rate for primary industry | Appendix A | [19] |
12 | Depreciation rate for secondary industry | Appendix A | Regression analysis |
13 | Depreciation rate for tertiary industry | Appendix A | [19] |
14 | Education coefficient | Appendix A | Regression analysis |
15 | Energy intensity | Appendix A | Table function |
16 | Elastic coefficient of Total energy consumption for energy pollution coefficient | 0.63 | Regression analysis |
17 | Elastic coefficient of Total energy consumption for Energy pressure | 0.01 | Regression analysis |
18 | Grain yield per unit area | Appendix A | Table function |
19 | Healthcare coefficient | Appendix A | Regression analysis |
20 | Industrial wastewater per secondary output | Appendix A | Regression analysis |
21 | Labor force ratio | Appendix A | Table function |
22 | Labor force ratio of the primary industry | Appendix A | Table function |
23 | Labor force ratio of the secondary industry | Appendix A | Table function |
24 | Labor force ratio of the tertiary industry | Appendix A | Table function |
25 | Living SO2 per capita | Appendix A | Table function |
26 | Living wastewater per capita | Appendix A | Table function |
27 | Medical staff per capita | Appendix A | Table function |
28 | Natural land | Appendix A | Constant |
29 | Output of the primary industry | Appendix A | Regression analysis |
30 | Elastic coefficient of Pollution index for Output of the primary industry | 0.8284 | Regression analysis |
31 | Elastic coefficient of Livelihood index for inhabitant for Output of the primary industry | 0.1163 | Regression analysis |
32 | Elastic coefficient of the stock of the primary industrial fixed assets for Output of the primary industry | 0.91 | Regression analysis |
33 | Elastic coefficient of the labor force for Output of the primary industry | 0.5272 | Regression analysis |
34 | Output of the secondary industry | Appendix A | Regression analysis |
35 | Elastic coefficient of Energy pressure for Output of secondary industry | 0.4549 | Regression analysis |
36 | Elastic coefficient of Energy consumption per capita for Output of secondary industry | 0.6061 | Regression analysis |
37 | Elastic coefficient of the stock of the secondary industrial fixed assets for Output of the secondary industry | 0.8047 | Regression analysis |
38 | Elastic coefficient of the labor force for Output of the secondary industry | 0.3084 | Regression analysis |
39 | Output of the tertiary industry | Appendix A | Regression analysis |
40 | Elastic coefficient of Pollution index for Output of the tertiary industry | 0.8284 | Regression analysis |
41 | Elastic coefficient of Livelihood index for inhabitant for Output of the secondary industry | 0.1163 | Regression analysis |
42 | Elastic coefficient of the stock of the tertiary industrial fixed assets for Output of the tertiary industry | 0.162 | Regression analysis |
43 | Elastic coefficient of the labor force for Output of the tertiary industry | 0.7136 | Regression analysis |
44 | Primary school students per capita | Appendix A | Table function |
45 | Public books per capita | Appendix A | Table function |
46 | Rate of environmental protection expenditure | Appendix A | Table function |
47 | Rate of fiscal expenditure | Appendix A | Table function |
48 | Rate of fixed assets investment | Appendix A | Table function |
49 | Ratio of R and D investment | Appendix A | Table function |
50 | Road area per capita | Appendix A | Table function |
51 | The proportion of the primary industrial investment | Appendix A | Table function |
52 | The proportion of the secondary industrial investment | Appendix A | Table function |
53 | The proportion of the tertiary industrial investment | Appendix A | Table function |
54 | Transport coefficient | Appendix A | Regression analysis |
55 | Water pollution coefficient | Appendix A | (Xing et al., 2019) |
56 | Water protection coefficient | Appendix A | Regression analysis |
References
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2018 Revision; Department of Economic and Social Affairs Affairs, Ed.; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Ruan, F.-L.; Yan, L. Interactions among electricity consumption, disposable income, wastewater discharge, and economic growth: Evidence from megacities in China from 1995 to 2018. Energy 2022, 260, 124910. [Google Scholar] [CrossRef]
- United Nations. The New Urban Agenda. In Proceedings of the Housing and Sustainable Urban Development (Habitat III), Quito, Ecuador, 17–20 October 2016. [Google Scholar]
- Acuto, M.; Parnell, S.; Seto, K.C. Building a global urban science. Nat. Sustain. 2018, 1, 2–4. [Google Scholar] [CrossRef]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef]
- Kutty, A.A.; Abdella, G.M.; Kucukvar, M.; Onat, N.C.; Bulu, M. A system thinking approach for harmonizing smart and sustainable city initiatives with United Nations sustainable development goals. Sustain. Dev. 2020, 28, 1347–1365. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Godfray, H.C.J.; Tilman, D.; Gleick, P.; Hoff, H.; Pahl-Wostl, C.; Xu, Z.; Chung, M.G.; Sun, J.; et al. Nexus approaches to global sustainable development. Nat. Sustain. 2018, 1, 466–476. [Google Scholar] [CrossRef]
- Seto, K.C.; Golden, J.S.; Alberti, M.; Turner, B.L. Sustainability in an urbanizing planet. Proc. Natl. Acad. Sci. USA 2017, 114, 8935–8938. [Google Scholar] [CrossRef] [PubMed]
- Mou, Y.; Luo, Y.; Su, Z.; Wang, J.; Liu, T. Evaluating the dynamic sustainability and resilience of a hybrid urban system: Case of Chengdu, China. J. Clean. Prod. 2021, 291, 125719. [Google Scholar] [CrossRef]
- Cui, D.; Chen, X.; Xue, Y.; Li, R.; Zeng, W. An integrated approach to investigate the relationship of coupling coordination between social economy and water environment on urban scale—A case study of Kunming. J. Environ. Manag. 2019, 234, 189–199. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Chen, S.Q.; Zhang, L.X. System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. Ecol. Model. 2013, 252, 44–52. [Google Scholar] [CrossRef]
- Guan, D.; Gao, W.; Su, W.; Li, H.; Hokao, K. Modeling and dynamic assessment of urban economy–resource–environment system with a coupled system dynamics–geographic information system model. Ecol. Indic. 2011, 11, 1333–1344. [Google Scholar] [CrossRef]
- Lu, X.-H.; Ke, S.-G. Evaluating the effectiveness of sustainable urban land use in China from the perspective of sustainable urbanization. Habitat Int. 2018, 77, 90–98. [Google Scholar] [CrossRef]
- Everest, T.; Koparan, H.; Sungur, A.; Özcan, H. An important tool against combat climate change: Land suitability assessment for canola (a case study: Çanakkale, NW Turkey). Environ. Dev. Sustain. 2022, 24, 13137–13172. [Google Scholar] [CrossRef]
- Tan, S.; Liu, Q.; Han, S. Spatial-temporal evolution of coupling relationship between land development intensity and resources environment carrying capacity in China. J. Environ. Manag. 2022, 301, 113778. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Y.; Li, Y.; Li, J. Conversion from rural settlements and arable land under rapid urbanization in Beijing during 1985–2010. J. Rural. Stud. 2017, 51, 141–150. [Google Scholar] [CrossRef]
- Azunre, G.A.; Amponsah, O.; Peprah, C.; Takyi, S.A.; Braimah, I. A review of the role of urban agriculture in the sustainable city discourse. Cities 2019, 93, 104–119. [Google Scholar] [CrossRef]
- Xing, L.; Xue, M.; Hu, M. Dynamic simulation and assessment of the coupling coordination degree of the economy-resource-environment system: Case of Wuhan City in China. J. Environ. Manag. 2019, 230, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Tapia, C.; Randall, L.; Wang, S.; Borges, L.A. Monitoring the contribution of urban agriculture to urban sustainability: An indicator-based framework. Sustain. Cities Soc. 2021, 74, 103130. [Google Scholar] [CrossRef]
- Nigussie, S.; Liu, L.; Yeshitela, K. Towards improving food security in urban and peri-urban areas in Ethiopia through map analysis for planning. Urban For. Urban Green. 2021, 58, 126967. [Google Scholar] [CrossRef]
- Tong, D.; Crosson, C.; Zhong, Q.; Zhang, Y. Optimize urban food production to address food deserts in regions with restricted water access. Landsc. Urban Plan. 2020, 202, 103859. [Google Scholar] [CrossRef]
- Xia, H.; Ge, S.; Zhang, X.; Kim, G.; Lei, Y.; Liu, Y. Spatiotemporal Dynamics of Green Infrastructure in an Agricultural Peri-Urban Area: A Case Study of Baisha District in Zhengzhou, China. Land 2021, 10, 801. [Google Scholar] [CrossRef]
- Clerino, P.; Fargue-Lelièvre, A.; Meynard, J.-M. Stakeholder’s practices for the sustainability assessment of professional urban agriculture reveal numerous original criteria and indicators. Agron. Sustain. Dev. 2023, 43, 3. [Google Scholar] [CrossRef]
- Goździewicz-Biechońska, J.; Brzezińska-Rawa, A. Protecting ecosystem services of urban agriculture against land-use change using market-based instruments. A Polish perspective. Land Use Policy 2022, 120, 106296. [Google Scholar] [CrossRef]
- Moragues-Faus, A.; Marsden, T.; Adlerová, B.; Hausmanová, T. Building Diverse, Distributive, and Territorialized Agrifood Economies to Deliver Sustainability and Food Security. Econ. Geogr. 2020, 96, 219–243. [Google Scholar] [CrossRef]
- Badami, M.G.; Ramankutty, N. Urban agriculture and food security: A critique based on an assessment of urban land constraints. Glob. Food Secur. 2015, 4, 8–15. [Google Scholar] [CrossRef]
- Nitya, R.A.O.; Patil, S.; Singh, C.; Roy, P.; Pryor, C.; Poonacha, P.; Genes, M. Cultivating sustainable and healthy cities: A systematic literature review of the outcomes of urban and peri-urban agriculture. Sustain. Cities Soc. 2022, 85, 104063. [Google Scholar] [CrossRef]
- Fanfani, D.; Duží, B.; Mancino, M.; Rovai, M. Multiple evaluation of urban and peri-urban agriculture and its relation to spatial planning: The case of Prato territory (Italy). Sustain. Cities Soc. 2022, 79, 103636. [Google Scholar] [CrossRef]
- Walters, S.A.; Stoelzle Midden, K. Sustainability of Urban Agriculture: Vegetable Production on Green Roofs. Agriculture 2018, 8, 168. [Google Scholar] [CrossRef]
- Horst, M.; McClintock, N.; Hoey, L. The Intersection of Planning, Urban Agriculture, and Food Justice A Review of the Literature. J. Am. Plan. Assoc. 2017, 83, 277–295. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Hao, Y.; Zhang, P.; Xiong, X.; Shi, Z. System dynamics modeling of food-energy-water resource security in a megacity of China: Insights from the case of Beijing. J. Clean. Prod. 2022, 355, 131773. [Google Scholar] [CrossRef]
- Forrester, J.W. Industrial Dynamics; MIT Press: Cambridge, MA, USA, 1961. [Google Scholar]
- Wen, C.; Dong, W.; Zhang, Q.; He, N.; Li, T. A system dynamics model to simulate the water-energy-food nexus of resource-based regions: A case study in Daqing City, China. Sci. Total. Environ. 2022, 806, 150497. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, Y.; Wang, H.; Yang, J.; Zhou, X. Research on the coordinated development of greenization and urbanization based on system dynamics and data envelopment analysis—A case study of Tianjin. J. Clean. Prod. 2019, 214, 195–208. [Google Scholar] [CrossRef]
- Tan, Y.; Jiao, L.; Shuai, C.; Shen, L. A system dynamics model for simulating urban sustainability performance: A China case study. J. Clean. Prod. 2018, 199, 1107–1115. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, F.; Zhang, J.; Wang, Z. Fluctuation in the transformation of economic development and the coupling mechanism with the environmental quality of resource-based cities–A case study of Northeast China. Resour. Policy 2021, 72, 102128. [Google Scholar] [CrossRef]
- Tomal, M. Evaluation of coupling coordination degree and convergence behaviour of local development: A spatiotemporal analysis of all Polish municipalities over the period 2003–2019. Sustain. Cities Soc. 2021, 71, 102992. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D. Multiscale assessment of the coupling coordination between innovation and economic development in resource-based cities: A case study of Northeast China. J. Clean. Prod. 2021, 318, 128597. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Ruan, F.; Yan, L. Challenges facing indicators to become a universal language for sustainable urban development. Sustain. Dev. 2022, 30, 41–57. [Google Scholar] [CrossRef]
- Fantini, A. Urban and peri-urban agriculture as a strategy for creating more sustainable and resilient urban food systems and facing socio-environmental emergencies. Agroecol. Sustain. Food Syst. 2023, 47, 47–71. [Google Scholar] [CrossRef]
- Yan, D.; Liu, L.; Liu, X.; Zhang, M. Global Trends in Urban Agriculture Research: A Pathway toward Urban Resilience and Sustainability. Land 2022, 11, 117. [Google Scholar] [CrossRef]
- Ayambire, R.A.; Amponsah, O.; Peprah, C.; Takyi, S.A. A review of practices for sustaining urban and peri-urban agriculture: Implications for land use planning in rapidly urbanising Ghanaian cities. Land Use Policy 2019, 84, 260–277. [Google Scholar] [CrossRef]
- Cohen, N. Roles of Cities in Creating Healthful Food Systems. Annu. Rev. Public Health 2022, 43, 419–437. [Google Scholar] [CrossRef] [PubMed]
Parameters | Scenario 1: Current Trend | Scenario 2: Higher-Rate Grain Yield Growth | Scenario 3: Lower-Rate Grain Yield Growth |
---|---|---|---|
LFRP | 0.012 | 0.041 | 0.006 |
LFRS | 0.2782 | 0.2492 | 0.2842 |
PPII | 0.008 | 0.026 | 0.002 |
PSII | 0.1308 | 0.1128 | 0.1368 |
GYUA | 662 | 800 | 602 |
REPE | 0.032 | 0.037 | 0.026 |
Subsystem | Indicators | Weight | Direction |
---|---|---|---|
Socio-economy | X11: GDP per capita (Ұ10 thousand) | 7.77% | + |
X12: The proportion of agriculture in GDP (%) | 15.93% | + | |
X13: Fixed assets investment per capita (Ұ10 thousand) | 9.84% | + | |
X14: Fiscal expenditure per capita (Ұ10 thousand) | 10.43% | + | |
X15: R & D expenditure per capita (Ұ10 thousand) | 23.55% | + | |
X16: Birth (10 thousand persons) | 32.47% | + | |
Environment | X21: Cultivated land per capita (km2/10 thousand persons) | 11.95% | + |
X22: Grain yield per capita (t/10 thousand persons) | 21.32% | + | |
X23: Energy consumption per capita (Ton of standard coal) | 11.02% | − | |
X24: Discharge of wastewater per capita (t) | 13.34% | − | |
X25: Discharge of SO2 per capita (t) | 23.62% | − | |
X26: Expenditure in environmental protection per capita (Ұ10 thousand) | 18.74% | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, F. The Driving Role of Food and Cultivated Land Resource in Balancing the Complex Urban System of Socio-Economy and Environment: A Case Study of Shanghai City in China. Land 2023, 12, 905. https://doi.org/10.3390/land12040905
Ruan F. The Driving Role of Food and Cultivated Land Resource in Balancing the Complex Urban System of Socio-Economy and Environment: A Case Study of Shanghai City in China. Land. 2023; 12(4):905. https://doi.org/10.3390/land12040905
Chicago/Turabian StyleRuan, Fangli. 2023. "The Driving Role of Food and Cultivated Land Resource in Balancing the Complex Urban System of Socio-Economy and Environment: A Case Study of Shanghai City in China" Land 12, no. 4: 905. https://doi.org/10.3390/land12040905
APA StyleRuan, F. (2023). The Driving Role of Food and Cultivated Land Resource in Balancing the Complex Urban System of Socio-Economy and Environment: A Case Study of Shanghai City in China. Land, 12(4), 905. https://doi.org/10.3390/land12040905