Assessing Relativeness in the Provision of Urban Ecosystem Services: Better Comparison Methods for Improved Well-Being
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Conceptual Design
- Define the indicators for urban ecosystem services in terms of sets of metrics. An analysis of data availability was performed in this first step to identify the metrics that could be used in the assessments of both cities for accurate comparisons. Metrics are variables that collectively quantify each ecosystem service indicator. In total, the provision of 10 urban ecosystem services was defined in each city, with each UES being represented by one metric.
- Analyse the provision of urban ecosystem services at the district level. In this step, we designed the model to quantify the provision of each of the 10 UES defined in the first step. The same model, created in a logic-based geospatial modelling system, was applied in each city.
- Apply different normalization methods to compare the provision between Barcelona and Santiago. In this step, we tested how different normalization methods affected the interpretation of the UES provision and comparison, and tested the utility of EMDS in this analysis. For this purpose, we used two different normalization methods. As a result, UES provision maps were obtained.
- Spatial aggregation and variation analysis. In this final step, we analysed the differences in the spatial aggregation and variation in the provisioning between the results obtained by the two normalization methods.
2.2.1. Definition of Urban Ecosystem Services
2.2.2. Analysis of the Provision of Urban Ecosystem Services
2.2.3. Comparison of Urban Ecosystem Services between the Two Cities
2.2.4. Spatial Aggregation and Variation Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Kourdounouli, C.; Jönsson, A.M. Urban ecosystem conditions and ecosystem services–a comparison between large urban zones and city cores in the EU. J. Environ. Plan. Manag. 2020, 63, 798–817. [Google Scholar] [CrossRef]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Kraemer, R.; Kabisch, N. Parks in context: Advancing citywide spatial quality assessments of urban green spaces using fine-scaled indicators. Ecol. Soc. 2021, 26, 45. [Google Scholar] [CrossRef]
- Derkzen, M.L.; van Teeffelen, A.J.A.; Verburg, P.H. REVIEW: Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, the Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Wilkerson, M.L.; Mitchell, M.G.; Shanahan, D.; Wilson, K.; Ives, C.D.; Lovelock, C.; Rhodes, J. The role of socio-economic factors in planning and managing urban ecosystem services. Ecosyst. Serv. 2018, 31, 102–110. [Google Scholar] [CrossRef]
- Niemelä, J.; Saarela, S.-R.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Väre, S.; Kotze, D.J. Using the ecosystem services approach for better planning and conservation of urban green spaces: A Finland case study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Holt, A.R.; Mears, M.; Maltby, L.; Warren, P. Understanding spatial patterns in the production of multiple urban ecosystem services. Ecosyst. Serv. 2015, 16, 33–46. [Google Scholar] [CrossRef]
- Dobbs, C.; Hernández-Moreno, Á.; Reyes-Paecke, S.; Miranda, M.D. Exploring temporal dynamics of urban ecosystem services in Latin America: The case of Bogota (Colombia) and Santiago (Chile). Ecol. Indic. 2018, 85, 1068–1080. [Google Scholar] [CrossRef]
- Dobbs, C.; Escobedo, F.J.; Zipperer, W.C. A framework for developing urban forest ecosystem services and goods indicators. Landsc. Urban Plan. 2011, 99, 196–206. [Google Scholar] [CrossRef]
- Li, F.; Guo, S.; Li, D.; Li, X.; Li, J.; Xie, S. A multi-criteria spatial approach for mapping urban ecosystem services demand. Ecol. Indic. 2020, 112, 106119. [Google Scholar] [CrossRef]
- Gold, S.M. Social benefits of trees in urban environmentst. Int. J. Environ. Stud. 1976, 10, 85–90. [Google Scholar] [CrossRef]
- Parsa, V.A.; Salehi, E.; Yavari, A.R.; van Bodegom, P.M. Evaluating the potential contribution of urban ecosystem service to climate change mitigation. Urban Ecosyst. 2019, 22, 989–1006. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, W.; Huang, Q.; Wang, Y. Ecosystem services response to rural-urban transitions in coastal and island cities: A comparison between Shenzhen and Hong Kong, China. J. Clean. Prod. 2020, 260, 121033. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Galleguillos-Torres, M.; Dissegna, A.M.; Weibel, B. How urban densification influences ecosystem services—A comparison between a temperate and a tropical city. Environ. Res. Lett. 2020, 15, 075001. [Google Scholar] [CrossRef]
- Subiza-Pérez, M.; Vozmediano, L.; Juan, C.S. Landscape and Urban Planning Green and blue settings as providers of mental health ecosystem services: Comparing urban beaches and parks and building a predictive model of psychological restoration. Landsc. Urban Plan. 2020, 204, 103926. [Google Scholar] [CrossRef]
- Bing, Z.; Qiu, Y.; Huang, H.; Chen, T.; Zhong, W.; Jiang, H. Spatial distribution of cultural ecosystem services demand and supply in urban and suburban areas: A case study from Shanghai, China. Ecol. Indic. 2021, 127, 107720. [Google Scholar] [CrossRef]
- Remme, R.; de Nijs, T.; Paulin, M. Natural Capital Model—Technical Documentation of the Quantification, Mapping and Monetary Valuation of Urban Ecosystem Services. RIVM Report 2017-0040. 2018, p. 76. Available online: www.rivm.nl/en (accessed on 28 April 2023).
- Tavares, P.A.; Beltrão, N.; Guimarães, U.S.; Teodoro, A.; Gonçalves, P. Urban ecosystem services quantification through remote sensing approach: A systematic review. Environments 2019, 6, 51. [Google Scholar] [CrossRef]
- Alemu, J.B.; Richards, D.R.; Gaw, L.Y.-F.; Masoudi, M.; Nathan, Y.; Friess, D.A. Identifying spatial patterns and interactions among multiple ecosystem services in an urban mangrove landscape. Ecol. Indic. 2021, 121, 107042. [Google Scholar] [CrossRef]
- Shiraishi, K. The inequity of distribution of urban forest and ecosystem services in Cali, Colombia. Urban For. Urban Green. 2022, 67, 127446. [Google Scholar] [CrossRef]
- Watkins, S.L.; Gerrish, E. The relationship between urban forests and race: A meta-analysis. J. Environ. Manag. 2018, 209, 152–168. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, F.J.; Clerici, N.; Staudhammer, C.L.; Corzo, G.T. Socio-ecological dynamics and inequality in Bogotá, Colombia’s public urban forests and their ecosystem services. Urban For. Urban Green. 2015, 14, 1040–1053. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. J. For. Res. 2022, 34, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Nahlik, A.M.; Kentula, M.E.; Fennessy, M.S.; Landers, D.H. Where is the consensus? A proposed foundation for moving ecosystem service concepts into practice. Ecol. Econ. 2012, 77, 27–35. [Google Scholar] [CrossRef]
- Blanco, E.; Raskin, K.; Clergeau, P. Towards regenerative neighbourhoods: An international survey on urban strategies promoting the production of ecosystem services. Sustain. Cities Soc. 2022, 80, 103784. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Sirén, E.; Brunner, S.H.; Weibel, B. Review of decision support tools to operationalize the ecosystem services concept. Ecosyst. Serv. 2017, 26, 306–315. [Google Scholar] [CrossRef]
- Reynolds, K.M.; Hessburg, P.F. An Overview of the Ecosystem Management Decision-Support System. In Making Transparent Environmental Management Decisions. Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–22. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Montoya-Tangarife, C.; de la Barrera, F.; Salazar, A.; Inostroza, L. Monitoring the effects of land cover change on the supply of ecosystem services in an urban region: A study of Santiago-Valparaíso, Chile. PLoS ONE 2017, 12, e0188117. [Google Scholar] [CrossRef]
- Zhang, S.; Ramírez, F.M. Assessing and mapping ecosystem services to support urban green infrastructure: The case of Barcelona, Spain. Cities 2019, 92, 59–70. [Google Scholar] [CrossRef]
- Baró, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Haase, D.; Gómez-Baggethun, E. Mapping ecosystem service capacity, flow and demand for landscape and urban planning: A case study in the Barcelona metropolitan region. Land Use Policy 2016, 57, 405–417. [Google Scholar] [CrossRef]
- Dobbs, C.; Escobedo, F.J.; Clerici, N.; De La Barrera, F.; Eleuterio, A.A.; MacGregor-Fors, I.; Reyes-Paecke, S.; Vásquez, A.; Camaño, J.D.Z.; Hernández, H.J. Urban ecosystem Services in Latin America: Mismatch between global concepts and regional realities? Urban Ecosyst. 2019, 22, 173–187. [Google Scholar] [CrossRef]
- National Statistics Institute. Residents in Spain. 2022. Available online: https://www.ine.es/index.htm (accessed on 30 January 2023).
- National Statistics Institute. Census. 2017. Available online: https://www.ine.gob.cl/censo (accessed on 30 January 2023).
- Kourtzanidis, K.; Angelakoglou, K.; Giourka, P.; Tsarchopoulos, P.; Nikolopoulos, N.; Ioannidis, D.; Kantorovitch, J.; Formiga, J.; Verbeek, K.; de Vries, M.; et al. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Cui, F.; Hamdi, R.; Yuan, X.; He, H.; Yang, T.; Kuang, W.; Termonia, P.; De Maeyer, P. Quantifying the response of surface urban heat island to urban greening in global north megacities. Sci. Total. Environ. 2021, 801, 149553. [Google Scholar] [CrossRef]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For. Urban Green. 2013, 12, 282–286. [Google Scholar] [CrossRef]
- Kuehler, E.; Hathaway, J.; Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 2017, 10, e1813. [Google Scholar] [CrossRef]
- Dzhambov, A.; Dimitrova, D. Urban green spaces’ effectiveness as a psychological buffer for the negative health impact of noise pollution: A systematic review. Noise Health 2014, 16, 157–165. [Google Scholar] [CrossRef]
- Gozalo, G.R.; Morillas, J.M.B.; González, D.M.; Moraga, P.A. Relationships among satisfaction, noise perception, and use of urban green spaces. Sci. Total. Environ. 2018, 624, 438–450. [Google Scholar] [CrossRef]
- Rudd, H.; Vala, J.; Schaefer, V. Importance of backyard habitat in a comprehensive biodiversity conservation strategy: A connectivity analysis of urban green spaces. Restor. Ecol. 2002, 10, 368–375. [Google Scholar] [CrossRef]
- Grunewald, K.; Richter, B.; Meinel, G.; Herold, H.; Syrbe, R.-U. Proposal of indicators regarding the provision and accessibility of green spaces for assessing the ecosystem service ‘recreation in the city’ in Germany. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 26–39. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Sun, Z.; Bao, Z. Landscape perception and recreation needs in urban green space in Fuyang, Hangzhou, China. Urban For. Urban Green. 2013, 12, 44–52. [Google Scholar] [CrossRef]
- Plieninger, T.; Dijks, S.; Oteros-Rozas, E.; Bieling, C. Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy 2013, 33, 118–129. [Google Scholar] [CrossRef]
- Ulmer, J.M.; Wolf, K.L.; Backman, D.R.; Tretheway, R.L.; Blain, C.J.; O’neil-Dunne, J.P.; Frank, L.D. Multiple health benefits of urban tree canopy: The mounting evidence for a green prescription. Health Place 2016, 42, 54–62. [Google Scholar] [CrossRef]
- Wolf, K.L.; Lam, S.T.; McKeen, J.K.; Richardson, G.R.; Bosch, M.v.D.; Bardekjian, A.C. Urban Trees and Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2020, 17, 4371. [Google Scholar] [CrossRef]
- Riechers, M.; Barkmann, J.; Tscharntke, T. Perceptions of cultural ecosystem services from urban green. Ecosyst. Serv. 2016, 17, 33–39. [Google Scholar] [CrossRef]
- Hu, T.; Wei, D.; Su, Y.; Wang, X.; Zhang, J.; Sun, X.; Liu, Y.; Guo, Q. Quantifying the shape of urban street trees and evaluating its influence on their aesthetic functions based mobile lidar data. ISPRS J. Photogramm. Remote Sens. 2022, 184, 203–214. [Google Scholar] [CrossRef]
- Chuvieco, E. Teledetección Ambiental; Ariel: Barcelona, Spain, 2010. [Google Scholar]
- Jime, J.C. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. Atmos. 2004, 108, D22. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Barcelona’s City Hall Open Data Service. Available online: https://opendata-ajuntament.barcelona.cat/en (accessed on 31 January 2023).
- Dormidontova, V.; Belkin, A. The Continuity of Open Greened Spaces-Basic Principle of Urboecology. IOP Conf. Ser. Mater. Sci. Eng. 2020, 753, 022048. [Google Scholar] [CrossRef]
- Puigdollers, J. Barcelona Green Infrastructure and Biodiversity Plan 2020. Barcelona, Spain (in Spanish, English Summary). 2013, p. 111. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Barcelona+green+infrastructure+and+biodiversity+plan+2020.#0 (accessed on 28 April 2023).
- Hernández-Morcillo, M.; Plieninger, T.; Bieling, C. An empirical review of cultural ecosystem service indicators. Ecol. Indic. 2013, 29, 434–444. [Google Scholar] [CrossRef]
- Geospatial Data Infrastructure. Available online: https://www.ide.cl/ (accessed on 31 January 2023).
- Miller, B.J.; Saunders, M.C. NetWeaver Reference Manual; Pennsylvania State University: College Park, PA, USA, 2002; p. 127. [Google Scholar]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Janelle, D.G. (Eds.) Spatially Integrated Social Science. In Spatial Information Systems; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Liu, L.; Wu, J. Scenario analysis in urban ecosystem services research: Progress, prospects, and implications for urban planning and management. Landsc. Urban Plan. 2022, 224, 104433. [Google Scholar] [CrossRef]
- Romero-Duque, L.P.; Trilleras, J.; Castellarini, F.; Quijas, S. Ecosystem services in urban ecological infrastructure of Latin America and the Caribbean: How do they contribute to urban planning? Sci. Total. Environ. 2020, 728, 138780. [Google Scholar] [CrossRef] [PubMed]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- Polasky, S.; Lewis, D.J.; Plantinga, A.J.; Nelson, E. Implementing the optimal provision of ecosystem services. Proc. Natl. Acad. Sci. USA 2014, 111, 6248–6253. [Google Scholar] [CrossRef] [PubMed]
- Spangenberg, J.H.; Görg, C.; Truong, D.T.; Tekken, V.; Bustamante, J.V.; Settele, J. Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 40–53. [Google Scholar] [CrossRef]
- Reynolds, K.M. EMDS 3.0: A modeling framework for coping with complexity in environmental assessment and planning. Sci. China Technol. Sci. 2006, 49 (Suppl. S1), 63–75. [Google Scholar] [CrossRef]
- Elliot, T.; Bertrand, A.; Babí Almenar, J.; Petucco, C.; Proença, V.; Rugani, B. Spatial optimisation of urban ecosystem services through integrated participatory and multi-objective integer linear programming. Ecol. Model. 2019, 409, 108774. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total. Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
UES Groups and UES Indicators | UES Metrics | Units | Format | Metrics References |
---|---|---|---|---|
REGULATING | ||||
Micro-climate regulation | Intensity of urban heat island based on land surface temperature | °C | Raster | [39] |
Air quality regulation | CO2 storage by urban trees | kg/m2 | Raster | [40] |
Drainage | Extension of impermeable surfaces or areas covered by vegetation | % | Raster | [41,42] |
Noise reduction | Presence of green infrastructure along traffic axis | % | Polygon | [43,44] |
Habitat provision | Continuity of green urban areas | m2 | Raster | [45] |
CULTURAL | ||||
Recreation | Distance to the closest green urban area suitable for recreational activities | m | Point | [46,47] |
Social value | Quantity of sites within urban green areas serving as a meeting point with other citizens | num./km2 | Point | [48] |
Psychological or health-related value | Abundance of urban green areas within neighbourhoods | m2/inh. | Polygon | [49,50] |
Cultural or historical value | Quantity of urban green sites relevant to local culture or history | num./km2 | Point | [51] |
Aesthetics | Presence of green urban areas on the streets | % | Polygon | [52] |
Barcelona | Santiago | ||
---|---|---|---|
Date | Resolution | Date | Resolution |
12 July 2013 | 30 m multispectral, 100 m thermal pixel | 9 January 2014 | 30 m multispectral, 100 m thermal pixel |
14 August 2016 | 30 m multispectral, 100 m thermal pixel | 15 January 2016 | 30 m multispectral, 100 m thermal pixel |
22 July 2019 | 30 m multispectral, 100 m thermal pixel | 23 January 2019 | 30 m multispectral, 100 m thermal pixel |
Land Use Type | NDVI Thresholds | Emissivity Values |
---|---|---|
Vegetation | >0.4 | 0.99 |
Water | <0 | 0.98 |
Built-up areas | 0 ≤ NDVI < 0.1 | 0.95 |
Bare ground | 0.1 ≤ NDVI < 0.2 | 0.94 |
Mixed pixels | 0.2 ≤ NDVI < 0.4 | Equation by Valor and Caselles [55] |
UES Metrics | Metrics Units | Separated Thresholds Approach | Joint Thresholds Approach | ||||
---|---|---|---|---|---|---|---|
BARCELONA | SANTIAGO | ||||||
No Evidence | Full Evidence | No Evidence | Full Evidence | No Evidence | Full Evidence | ||
Micro-climate regulation | °C | 33 | 31.5 | 35 | 32 | 34 | 31.75 |
Air quality regulation | kg/m2 | 1.25 | 1.7 | 1 | 1.45 | 1.35 | 1.57 |
Drainage | % | 12 | 40 | 12 | 50 | 12 | 45 |
Habitat provision | m2 | 900 | 80,000 | 2000 | 4,000,000 | 1450 | 2,000,000 |
Noise reduction | % | 20 | 40 | 10 | 35 | 15 | 37.5 |
Recreation | m | 700 | 150 | 1000 | 300 | 850 | 225 |
Social value | num./km2 | 0 | 15 | 0 | 2 | 0 | 1.5 |
Psychological or health-related value | m2/inh. | 1 | 23 | 0.1 | 1.2 | 0.55 | 12.1 |
Cultural or historical value | num./km2 | 0 | 10 | 0 | 1.3 | 0 | 5.65 |
Aesthetics | % | 10 | 35 | 5 | 35 | 7.5 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krsnik, G.; Reyes-Paecke, S.; Reynolds, K.M.; Garcia-Gonzalo, J.; González Olabarria, J.R. Assessing Relativeness in the Provision of Urban Ecosystem Services: Better Comparison Methods for Improved Well-Being. Land 2023, 12, 1088. https://doi.org/10.3390/land12051088
Krsnik G, Reyes-Paecke S, Reynolds KM, Garcia-Gonzalo J, González Olabarria JR. Assessing Relativeness in the Provision of Urban Ecosystem Services: Better Comparison Methods for Improved Well-Being. Land. 2023; 12(5):1088. https://doi.org/10.3390/land12051088
Chicago/Turabian StyleKrsnik, Goran, Sonia Reyes-Paecke, Keith M. Reynolds, Jordi Garcia-Gonzalo, and José Ramón González Olabarria. 2023. "Assessing Relativeness in the Provision of Urban Ecosystem Services: Better Comparison Methods for Improved Well-Being" Land 12, no. 5: 1088. https://doi.org/10.3390/land12051088
APA StyleKrsnik, G., Reyes-Paecke, S., Reynolds, K. M., Garcia-Gonzalo, J., & González Olabarria, J. R. (2023). Assessing Relativeness in the Provision of Urban Ecosystem Services: Better Comparison Methods for Improved Well-Being. Land, 12(5), 1088. https://doi.org/10.3390/land12051088