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Abstract: Urban expansion is influenced by complex and variable social, economic, natural, and
policy-related factors. Given their nonlinear interactions, accurately modeling these urban expansion
processes poses a challenge. While most studies treat the city as an independent entity, prioritizing
internal urban factors, urban land expansion is influenced by intercity interactions and the ecological
environment. This study proposes a new approach that couples the gravitational field model, ecologi-
cal constraints, and the Future Land Use Simulation (FLUS) model, comprehensively considering the
impact of intercity interaction and the ecological environment. The experiment in Henan Province
in China assessed the effects of factors such as basic spatial variables (Slope and distance to the
city center), urban gravitational field, and ecological constraints on urban expansion through the
optimal parameters-based geographical detector (OPGD) model. The feasibility of the method was
confirmed by this case study, which shows that it improves the simulation accuracy of the urban
agglomeration scale, particularly for central cities. We identified the urban gravitational field and
ecological constraints as two important factors affecting the expansion of urban agglomerations.
Areas with stronger urban spatial fields are more likely to attract neighboring resources and pro-
mote urban expansion, whereas ecological factors constrain the expansion behavior of cities under
the condition of ecological and environmental resource protection needs, and both of them work
together to influence the expansion behavior of urban clusters. Therefore, we posit that intercity
interactions and ecological constraints are important considerations for the future spatial planning
of urban agglomerations and for coordinating the harmonious development of urbanization and
ecological conservation.

Keywords: urban agglomeration; gravitational field model; ecological constraints; FLUS model; land
use simulation; urban expansion; optimal parameters-based geographical detectors

1. Introduction

An urban agglomeration is a highly developed spatial form of an integrated city
and is one of the distinguishing features of modern civilization. Defined as an agglom-
erated radial area comprising one or two core cities and several microcities, an urban
agglomeration exhibits close socioeconomic ties. This framework fosters a high level of
spatial interaction between cities, contributing to the collective development of a region [1].
However, such high expansion impacts the urban landscape, particularly by significantly
reducing ecological and productive space, leading to serious ecological and environmental
problems [2–5]. As the World Commission on Environment and Development (WCED)
proposed, national environmental policies and urban development should align with sus-
tainable development goals [6]. Modeling and predicting urban expansion while providing
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policy-oriented recommendations for the rational control of urban expansion and the co-
ordinated sustainable development of urban ecology have become the focus of current
research [7–9]. Understanding the relationship between urban expansion and complex
networks of urban agglomerations necessitates exploring the mechanisms of urban expan-
sion [10]. This information can further assist policymakers in formulating policy-oriented
recommendations [11].

Urban growth is a complex process [12]. Since the emergence of the first theoretical
approach to cellular automata (CA)-based models of urban expansion in the 1980s [13], there
has been a proliferation of models and methods for simulating urban expansion, which have
evolved to the micro-dynamic model stage [9]. Many scholars have developed various land
use simulation models to understand better the land use change process under different
scenarios. These models include the conversion of land use and its effects at a small regional
extent (CLUE-S) model [14], the land-use scenario dynamics (LUSD) model [15], multi-
agent system models of land use/cover change (MAS/LUCC models) [16], etc. Among
these, the most widely used method is CA, which has successfully explored various urban
phenomena. It is widely used to simulate dynamic urban expansion and optimize urban
spatial structures [17]. However, its limitation includes its weaknesses in the quantitative
aspect and its inability to include the driving forces of urban growth in the simulation
process [18]. In contrast, artificial intelligence (AI)-based methods offer the advantage of
capturing the nonlinearity and heterogeneity of urban growth. Their improvement over
traditional CA has achieved good results in urban growth simulations [19]. Many scholars
have simulated land-use dynamics by combining artificial intelligence methods with CA
models. For instance, Qiang et al. combined and improved artificial neural networks (ANN)
and the CA method to simulate complex LULC dynamics in a vulnerable coastal region
with high accuracy [20]. Feng et al. proposed a machine-learning CA model based on a least-
squares support vector machine (LS-SVM) to simulate urban growth, which can capture the
spatial complexity of urban dynamics and improve simulation accuracy [21]. Liu proposed
an urban growth model using a self-adaptive genetic algorithm (SAGA) to optimize (CA),
which outperformed the logistics-CA model [22]. Liao et al. proposed a neighbor decay
cellular automata model based on particle swarm optimization (PSO-NDCA) with a higher
prediction accuracy for built-up land [23]. Urban expansion is influenced by many complex
and variable factors, such as social, economic, natural, and policy factors, with high
uncertainty levels. This makes it difficult to simulate urban expansion accurately. The future
land-use simulation (FLUS) model was proposed by Xiaoping [24], who considered climate,
natural, and socioeconomic factors. The model performs top-down system dynamics
and bottom-up meta-automata interactions, integrates ANNs, and introduces adaptive
competition and inertia mechanisms for land-use simulation. This makes it more accurate
than other recognized systems such as CLUE-S and CA, and it has been widely used to
simulate and predict land use/cover changes under the influence of human activities and
natural conditions [25].

Most current studies use CA to simulate urban expansion, treating the city as an
individual entity, favoring internal factors, and ignoring interactions between cities. The
interflow of urban space (e.g., the flow of people, transport, and information) is increas-
ingly important in driving urban expansion in metropolitan areas [26,27]. Therefore, it
is necessary to consider spatial interactions between cities when modeling large-scale
urban expansion [28]. Urban mobility intensity serves as a valid indicator of the intensity
of socioeconomic interactions among member cities in metropolitan cluster areas [29,30].
Furthermore, with urbanization, there is a need to scientifically control the scale of cities to
coordinate their sustainable development with the surrounding ecological environment [8].
Hence, urban development under ecological constraints is an effective way to address
and mitigate the ecological impact of rapid and uncontrolled urbanization [31]. For ex-
ample, Ma [7] integrated ecological correlation into CA for urban growth simulation, and
Li et al. [32] introduced conservation priorities based on standardized values of green in-
frastructure assessment into CA. They simulated and explored the impact of the ecological
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environment on the urbanization process to better coordinate the relationship between
urban expansion and ecological protection.

In general, current studies incorporating urban interactions and ecological constraints
into urban expansion simulations mainly manifest in two ways. For small regional scales,
such as individual cities, ecological constraints are primarily incorporated into urban
growth boundaries or urban expansion simulations under ecological constraints [6,7,32,33].
These studies consider conflicts between urban expansion and environmental protection.
However, studies on urban simulation at a large regional scale of urban agglomerations pri-
marily integrate the interflow effects between cities in urban expansion simulations [28,34]
and study the effects of spatial interactions between cities on urban growth.

Although many studies have analyzed the relationship between urban expansion and
urban interactions or ecological constraints, few have incorporated both urban interac-
tions and ecological constraints into urban agglomeration expansion simulations. While
gradually promoting urban development, it is also necessary to reduce the negative im-
pact of urban expansion on the ecological environment. Therefore, considering the dual
factors of ecological constraints and urban interactions is necessary for studying urban
agglomeration expansion.

Simultaneously, analyzing urban agglomeration expansion patterns and driving mech-
anisms has gradually become a hot research topic [35], and scholars posit that natural,
transportation location, socioeconomic, and policy factors are the main factors driving
urban expansion [36–39]. However, the driving factors of urban growth and their influ-
ences vary in different regions and development stages [40]. Understanding the main
determinants of regional urban sprawl can help planners formulate more locality-oriented
measures to control urban expansion in an orderly manner [38].

In summary, this study constructs a new approach to land use simulation that couples
gravitational field models and ecological constraints to incorporate urban interactions and
ecological constraints as driving variables in urban expansion simulation models. First,
urban strength and flow data were integrated to calculate urban spatial field strength.
Although prior studies [28,34,41] have utilized gravitational field models to measure the
strength of spatial interactions between cities, as intercity flows play an increasingly impor-
tant role in the evolution of urban agglomerations [27,28], the individual flow indicators
of cities cannot fully reflect the spatial interactions that occur between them. Therefore,
this study integrates human, traffic, and information flow data between cities and calcu-
lates cities’ comprehensive gravitational spatial field strength by combining the time–cost
distance. Then, the ecological quality of the region was comprehensively evaluated from
two perspectives: the remote sensing ecological index (RSEI) and the ecological resistance
surface (ERS) of urban expansion, which is taken as the ecological constraint of urban
expansion. Finally, the FLUS model incorporates the gravitational field model and eco-
logical constraints into the conversion rules of the FLUS model to predict the conversion
probability of urban units more accurately. The feasibility of this study’s methodology was
verified by simulating the land-use dynamics of an intercity cluster in Henan Province and
exploring the individual and coupled effects of the different drivers measured using the
optimal parameters-based geographical detector (OPGD) model. This study provides ratio-
nal suggestions for controlling urban expansion and coordinating sustainable development
in both society and nature.

2. Research Methodology

This study proposes an urban expansion simulation framework coupling the gravi-
tational field model and ecological constraints based on the FLUS model (Figure 1). This
framework is divided into five main steps:

1. Selection of basic spatial variables. Based on extensive research related to the FLUS
model and previous studies on the land-use status of urban agglomerations, we
selected ten drivers that significantly impact land-use change for this study;
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2. Construction of a gravitational field model that integrates socioeconomic data, other
statistical data, and flow data, such as the Baidu index, population migration, traffic
flow, and time–cost distance. We designated the urban spatial interaction intensity as
a driving factor for the demand-driven FLUS model, subsequently simulating urban
expansion in metropolitan areas;

3. Evaluation of ecological quality. Ecological quality was assessed using the RSEI and
ERS coefficients, and this was used to determine the restricted development area,
which was set as a constraint for the expansion of urban clusters;

4. Creation of a coupled model for urban agglomeration expansion simulation experi-
ments. The accuracy of the simulation results was evaluated using the model valida-
tion method;

5. Analysis of the driving mechanism of urban agglomeration expansion. Factor analysis
and interaction analysis were performed for each driver using the OPGD model.
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2.1. Gravitational Field Model

Urban flows typically include bidirectional interchanges in population, information,
technologies, and goods among cities, which may affect the growth and spatial patterns
of hierarchical cities. From the perspective of each city, urban flows can be divided into
urban inflows and flows. Urban inflows reflect the cumulative effects of urban energy,
whereas urban outflows represent spillover effects. This study considers urban flows
as a driver of urban land development, linking urbanization to land change over large
geographical distances, aiming to consider the evolution of individual land cells and urban
flows between different cities in urban agglomerations.

In proposing the gravity model, physicist Stewart was inspired by Newton’s formula
for universal gravitation [42], which Reilly [42] applied to study intercity retail markets. As
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its application has expanded, more scholars have utilized it to study urban spatial structure
changes. The gravity model is expressed as follows:

Ii,j =
GQiQj

rij
β

(1)

where Ii,j is the gravitational force of cities i and j, rij is the distance between the two cities,
Qi,Qj is a socioeconomic measure (e.g., population or GDP), G is the gravitational force
coefficient, and β is the gravitational decay index.

However, the gravitational force model expresses the magnitude of the force acting
between two points. Guo et al. [43] argued that the nature of this force lies in the existence
of a gravitational potential field, akin to the universal gravitational potential field, at the
center of each city through which two cities or regions interact. Researchers have measured
urban interactions in a spatially explicit manner by constructing a gravitational field [44]:

Ui,x,y =
Fi

D(x, y, xi, yi)
β

(2)

where Ui,x,y are the spatial field intensities of the pixels (x, y) subjected to the image of the
city i, Fi is the urban influence of city i, and D(x, y, xi, yi) is the distance of the pixels (x, y)
from the center of city i (xi, yi).

A single indicator (population, GDP, etc.) is not sufficient to fully reflect a city’s
influence; therefore, a comprehensive system of indicators (Table 1) was constructed to
evaluate the size of a city’s influence. The equation is expressed as follows:

Fi = ∑m
k=1(WkPk) (3)

where Fi is the overall influence size of the city, Wk refers to the weight value of the k-th
factor influencing the city’s power, using the entropy weighting method to determine the
weight size of each indicator, Pk refers to the score size of the k-th factor influencing the
city’s power, Pk ∈ (0, 100), and m is the number of the types of factors (X1, X2, . . . , X15).

Wk =
1 + ln(n)−1 ∑n

i=1 Pijln
(
Pij
)

∑m
k=1

(
1 + ln(n)−1 ∑n

i=1 Pijln
(
Pij
)) (4)

Pij =
Xij

∑n
i=1 Xij

(5)

where Xij denotes the score of factor j of the city i, ∑n
i=1 Xij denotes the score of factor j of

the city i, and n denotes the number of cities.
Urban spatial interactions in the context of metropolitan areas, such as urban ag-

glomerations, can be quantified through urban spatial field intensities. However, urban
agglomerations are intricate systems, and relying on one or two city flow indicators alone
cannot adequately capture their spatial interactions. In this study, intercity flow data encom-
passing human, traffic, and information flows were comprehensively measured to construct
an intercity contact intensity matrix, which was utilized to assess the spatial field intensity.
The calculation of the spatial field intensity was carried out using the following formula:

FL(i, j) = ∑m
k=1 λk ×Rk

ij (6)

where FL(i, j) is the combined urban flow from city i to city j, λk is the weight of the k-th
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elemental flow, Rk
ij is the normalized flow from city i to city j, and m is the number of the

types of elemental flows.

λk =
1 + K ∑n×n

i=1 Plkln(Plk)

∑m
k=1
(
1 + K ∑n×n

i=1 Plkln(Plk)
) , K = 1/ln(n× n) (7)

Plk =
Rk

ij

∑n
i=1,J=1 Rk

ij
, l = i× j (8)

Rk
ij =

Xk
ij

∑n
i=1 Xk

ij
(9)

where Plk is the contribution of the l-th data point of the k-th element, Xk
ij is the urban flow

from city i to city j, ∑n
i=1 Xk

ij is the total outflow of element k from city i, and n indicates the
number of cities.

Table 1. Integrated City Impact Indicator System.

City Impact Evaluation Indicator System Indicators

Socioeconomic development Total GDP (X1), total retail sales of consumer goods (X2), average employee
wages (X3), population (X4)

Education and Health Number of students enrolled in higher education (X5), number of health
institutions (X6), number of higher education institutions (X7)

Industry and Energy Number of industrial enterprise units above scale (X8), electricity consumption
of the entire society (X9)

Transportation Passenger transport volume (X10), freight transport volume (X11), total post
and telecommunications services (X12)

City overview Area of built-up urban areas (X13), parkland area per capita (X14), greening
coverage of built-up areas (X15)

Considering the conservative nature of the data flow, the combined inflow FL(i,j)(in)
and outflow FL(i,j)(out) of the city were calculated.

Spatial interactions between cities are relatively independent, and together, they
influence regional development. Therefore, the cumulative effect is used to determine
the effect of urban flows on cells (x, y) in the city i. The final gravitational field model is
expressed as follows:

Ui,x,y(in) =
Fi

D(x, y, xi, yi)
β
× FL(i,j)(in) (10)

Ui,x,y(out) =
Fi

D(x, y, xi, yi)
β
× FL(i,j)(out) (11)

where Ui,x,y(in) denotes the total urban inflow of city i to grid (x, y) in the city i, Ui,x,y(out)
denotes the total urban outflow of the city i to grid (x, y) in the city i, and Fi denotes the
composite city strength index. FL(i,j)(in) is the total inflow to the city i, FL(i,j)(out) is the
total outflow from the city I, and β is the distance decay index, with a value of 2.

The cost distance is also used instead of the Euclidean distance, where D denotes the
cost distance. Speeds were allocated to different modes of travel and land use types. These
were: 120 km/h for highways, 100 km/h for railways, 80 km/h for national roads, 60 km/h
for provincial roads, 40 km/h for county roads, 30 km/h for built-up land, and 10 km/h
for non-built-up land.

cost =
Size of grid cells
Speed of travel

× 60 (12)



Land 2023, 12, 1189 7 of 23

2.2. Ecological Quality Assessment

The RSEI and ERS of urban expansion were used to evaluate the quality of the ecologi-
cal environment and as an ecological constraint on urban expansion. The RSEI provides an
objective measure of regional ecological conditions, while the ERS coefficient indicates the
challenges associated with managing and incorporating other urban landscapes.

2.2.1. RSEI

RSEI is an indicator initially proposed and applied by Xu Hanqiu [45]. It facilitates
visual assessment of the ecological environment by considering various factors such as
the normalized difference vegetation index (NDVI), WET, land surface temperature (LST),
and normalized differential build-up and bare soil index (NDBSI). This comprehensive
approach allows for a holistic representation of the regional ecological environment. The
calculation function for RSEI is as follows:

RSEI0 = 1− {PCA1[NDVI, WET, NDBSI, LST]} (13)

RSEI =
[RSEI0−RSEI0min]

[RSEI0max −RSEI0min]
(14)

where PCA1 is the principal component analysis. The closer the RSEI value is to 1, the
better the ecological quality, and vice versa.

2.2.2. ERS

Urban expansion is a process of competition for controlling urban landscapes relative
to other landscapes, and this control and coverage must be achieved by overcoming resis-
tance [9]. The RSEI objectively assesses regional ecological conditions, while the surface
resistance coefficient of ERS reflects the difficulty of controlling urban landscapes and
covering other landscapes. This study chose the built-up area at the city center point as
the source of ecological resistance to urban expansion. Factors such as soil erodibility, soil
erosion sensitivity, biodiversity service function, water conservation service function, soil
and water conservation service function, land use type, and slope were considered resis-
tance factors. The weight for each factor was determined using hierarchical analysis. The
minimum cumulative resistance model (MCR) was then employed to calculate ecological
resistance values and generate an ecological resistance surface for urban expansion. The
specific calculations were as follows:

(1) Soil erosion sensitivity:

Si =
4
√

R×K× LS× PV (15)

where Si is the sensitivity index for soil erosion, R is the rainfall erosion force
(MJ·mm·hm−2·h−1), K is the soil erodibility (t·m−2), LS is the slope length and factor,
and PV is the vegetation coverage (%).

(a) Rainfall erosion force:
R = ∑12

i=1 EIi (16)

EIi = 73.989×
(

Pi2

Pa

)0.7387

(17)

where EIi is the average monthly rainfall erosion force; Pi is the rainfall during the ith
month; and Pa is the average annual rainfall. The average annual rainfall erosion force is
the sum of the monthly rainfall erosion force values for a year.

(b) Slope length and slope factor:

LS = L× S (18)
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L =

(
λ

22.13

)m
(19)

m =
B

B + 1
(20)

B =
sinθ

3sinθ0.8 + 0.56
(21)

S =


10.8× sinθ+ 0.036, θ < 5

16.8× sinθ− 0.5, 5 ≤ θ < 10
21.9× sinθ− 0.96, θ ≥ 10

(22)

where S is the slope factor, L is the slope length factor, θ is the slope, λ is the slope length,
and m is the slope length index.

(c) Vegetation coverage:

PV =
NDVI−NDVIsoil

NDVIveg −NDVIsoil
(23)

where, PV is the vegetation coverage value of the image element, NDVI is the vegetation
index value of the mixed-image element, NDVIsoil is the vegetation index value of the
pure vegetation image element, and NDVIveg is the vegetation index value of the pure soil
image element. Here [46], the value with a cumulative frequency of 5% in the NDVI annual
maximum synthetic frequency accumulation table is denoted as NDVIveg, and the value
with a cumulative frequency of 95% in the NDVI annual maximum synthetic frequency
accumulation table is denoted as NDVIsoil.

(2) Biodiversity service function:

Sbio = NPPmean × Fpre × Ftem × (1− Falt) (24)

where Sbio is the service capacity of biodiversity, NPPmean is the average annual net primary
productivity of vegetation (g C·m−2·a−1), Fpre is the average annual precipitation (mm),
Ftem is the average annual temperature (◦C), and Falt is the elevation factor (m).

(3) Water conservation service function:

WR = NPPmean × Fsic × Fpre × (1− Fslo) (25)

where WR is the water conservation capacity index of the ecosystem, Fslo is the degree of
relief of the land surface, and Fsic is the soil seepage.

(4) Soil and water conservation service function:

Speo = NPPmean × (1−K)× (1− Fslo) (26)

where Speo is the soil and water conservation.
(5) Land use type and slope resistance values (Table 2):

Table 2. Resistance levels of the resistance factor, and values of the resistance of urban expansion ecology.

Value of Ecological Resistance to Urban Expansion Type of Land Use Slope (Degree)

1 Urban building land 0–3
3 Bare land, facility land 3–8
5 Arable land, grassland 8–15
7 Woodland 15–25
9 Water areas, nature reserves >25
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(6) Minimum cumulative resistance model:

MCR = fmin ∑i=m
j=n

(
Dij·Ri

)
(27)

where MCR is the minimum cumulative resistance model, f is a function reflecting the
positive relationship between MCR and the variables Dij and Ri, Dij is the spatial distance
of the ecological source from j across i, and Ri is the resistance value across the landscape
surface i.

2.3. Future Land Use Simulation (FLUS) Model
2.3.1. Introduction to the Model

The FLUS model, based on the CA principle proposed by Liu [24], is a comprehensive
model that integrates an artificial neural network (ANN) algorithm and a roulette wheel
selection mechanism derived from the stochastic dynamic (SD) and CA models. The
model’s fundamental principle involves estimating the development probability of each
land-use category within a region. This estimation is achieved by utilizing each driver’s
base period land-use data and data through an artificial neural network algorithm. The
development probability is then combined with the domain influence factor, adaptive
inertia coefficient, and conversion cost to determine the overall conversion probability of
each meta-cell. Subsequently, the simulation results are obtained using the roulette wheel
competition mechanism.

The FLUS model facilitates the effective coupling of human and natural influences to
simulate various land use scenarios. It enhances the performance of multiple land use and
land cover change modeling. As a result, the FLUS model has gained wide application
for simulating and predicting land use/cover changes influenced by human activities
and natural conditions [25]. It is particularly suitable for complex land-use simulations
involving multiple scenarios, multiple scales, and high accuracies [47].

2.3.2. FLUS Model Parameter Settings

(1) Prediction of the scale of future land demand
The total future land use demand represents the total number of pixels occupied by

each land use type during the forecast period. This study used the Markov Chain method
to forecast the total number of pixels for each land use type in 2030, based on the land use
type data from 2020, using the following equation:

St+1 = Pij × St (28)

where St and St+1 are the state matrices of the land at moments t and t + 1, respectively,
and Pij denotes the probability of transformation from site type i to site type j.

(2) Neighborhood impact factor setting
The neighborhood impact factor is an indicator that captures the interaction between

different site types and sites within a neighborhood. It is expressed as a dimensionless
value ranging from 0 to 1, with values closer to 1 indicating a stronger expansion of the
specific land use type. Wang et al. [48] demonstrated that the dimensionless values of
the Total Area (TA) variation satisfy the requirements of neighborhood weights in the
FLUS model in terms of both parameter significance and data structure. In this study, their
calculation method is referred to in order to determine the final domain weight values.
However, the weight values are adjusted to ensure they fall between 0.5 and 1.0, thus
avoiding zero weight values. The formula used for this adjustment is as follows:

TAi = ∑n
j=1 aij

(
1

10000

)
(29)

WOi =
TAi −min(TAi)

max(TAi)−min(TAi)
(30)
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Wi =
W0i

2
+ 0.5 (31)

where n is the number of patches, a is the area of the patches, WOi is the dimensionless
value of the TA change, and Wi is the final domain weight value.

(3) Conversion cost matrix:
The cost matrix refers to the rules of change between land types and indicates whether

land types can be converted into each other. Considering the realities of land-use change
and the economic costs and technical conditions of interconversion between land types
(such as the fact that built-up land cannot be converted to other land types), the following
land-type conversion matrix was developed (Table 3). In this conversion matrix, 0 means
that no interconversion is possible, and 1 means that interconversion is possible.

Table 3. Conversion cost matrix.

Cultivated
Land Forest Grassland Shrubland Wetland Water

Body
Artificial
Surfaces Bare Land

Cultivated Land 1 1 0 1 0 0 1 0
Forest 1 1 1 1 0 0 0 1

Grass Land 1 0 1 0 0 0 1 1
Shrubland 1 1 1 1 0 0 0 1
Wetland 1 0 1 0 1 1 1 1

Water Body 1 0 1 0 1 1 1 1
Artificial Surfaces 0 0 0 0 0 0 1 0

Bare Land 1 1 1 1 1 1 1 1

2.4. The OPGD Model

The geodetector, initially proposed by Wang Jinfeng [49], is a computational model
used to explain spatial heterogeneity and analyze the statistical aspects of its underlying
driving mechanisms. It has gained widespread use in studying the driving mechanisms
behind spatial differentiation [50–52]. The OPGD model [53] is an enhancement of the
geodetector that aims to find the maximum q-value of continuous variables through
different parameter combinations of discretization methods and interval numbers. This
model can be flexibly applied in exploring spatial factors and conducting heterogeneity
analysis on various spatial data types.

The central concept of this study is based on the assumption that if an independent
variable (e.g., DEM or slope) significantly influences the dependent variable (attitudes to-
ward urban land use dynamics), the spatial distribution of the independent and dependent
variables should exhibit similarities [54,55]. Therefore, the OPGD model was employed
in this study to measure the degree of similarity and analyze the driving mechanisms
behind urban land-use change. The calculation of urban land-use dynamics was performed
as follows:

kL =
Ln − Lm

S
× 1

t
× 100% (32)

where kL is the dynamic attitude of a land-use type during the study period, Ln is the area
of a land-use type at the end of the study period, Lm is the area of a land-use type at the
beginning of the study period, t is the period of land-use change, and S is the area of the
study unit.

3. Study Area and Data
3.1. Overview of the Study Area

Henan Province is situated in central China, spanning the middle and lower reaches
of the Yellow River (110◦21′–116◦39′ E, 31◦23′–36◦22′ N). The province features a diverse
topography, with higher elevations in the west and lower elevations in the east. It falls
within the transitional zone between the high-soil plateau and the North China Plain. The
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eastern-central region of Henan Province comprises the alluvial plain of the Yellow Huaihai
Sea, while the Nanyang Basin occupies the southwestern part. The northern, western, and
southern regions are characterized by the Taihang, Fuyu, Tongbai, and Dabie Mountains,
respectively, which are rich in ecological resources.

Henan Province holds strategic importance as a transportation hub in China, serving
as the intersection of multiple national highways and railways. The province has expe-
rienced rapid development in recent years, undergoing significant industrialization and
urbanization. As per the Henan Province New Urbanization Plan (2021–2035), in addition
to optimizing the “1 + 8” spatial pattern with Zhengzhou as the primary city, there is a focus
on promoting and cultivating the growth and influence of sub-centers such as Luoyang
and Nanyang. The plan also emphasizes the acceleration of constructing a development
pattern that involves one main center, two sub-centers, four synergistic zones, and multiple
support points, resulting in a complex urban ecosystem structure. The location of Henan
Province is illustrated in Figure 2.
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3.2. Data Sources and Processing

The spatial dataset required for this study consists of three main components: basic
data, gravitational field model data, and ecological constraint data (Table 4).

First, we extracted administrative boundaries, city points, district and county points,
township points, highways, railways, national roads, provincial roads, and county roads
from basic geospatial data downloaded from the National Geomatics Center of China. The
DEM and land use type data (2010 and 2020) were mosaicked and masked to extract the
slope data using DEM calculations, and all data were resampled to a 100 m resolution for
ease of calculation. The DEM, slope, distance from different urban centers (city centers,
district and county centers, and town centers), and distance from other types of roads
(highways, railways, national roads, provincial roads, and county roads) were chosen as
the basic spatial variables to measure the probability of urban land expansion (Figure 3).
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Table 4. Information and sources of data used in this study.

Data Type Resolution Source

Basic data

Basic geospatial data
(including administrative

areas, urban points, roads, etc.)
Vector —

National Geomatics Centre of China
(http://www.ngcc.cn/ngcc/)
(accessed on 24 August 2022)

Land use data Raster 30 m
GlobeLand30

(http://www.globallandcover.co
m/)(accessed on 24 August 2022)

DEM Raster 30 m
Geospatial Data Cloud

(http://www.gscloud.cn/search)
(accessed on 24 August 2022)

Gravitational field
model data

City Impact Evaluation
Indicators Properties year Henan Statistical Yearbook 2020

Baidu Index Data Properties 1 January 2020–
31 December 2020

Baidu Index official website (https://
index.baidu.com/v2/index.html#/)

Traffic Flow Data Properties —
http://www.114piaowu.com,

12306 China railway (accessed on
3 September 2022)

Population migration data Properties 1 January 2020–
31 December 2020

AutoNavi Maps Traffic Big Data
(https:

//trp.autonavi.com/home.html)
(accessed on 3 September 2022)

Ecological
constraints data

RESI (NDVI, WET,
NDBSI, LST) Raster 30 m Landsat-8 (obtained from Google

Earth Engine platform processing)

Soil erodibility (K) [56,57] Raster 7.5 arc s
National Tibetan Plateau Data
Center (http://data.tpdc.ac.cn)
(accessed on 9 September 2022)

Rainfall data and temperature
data [58] Raster 1 km

National Earth System Science Data
Center, National Science &

Technology Infrastructure of China.
(http://www.geodata.cn) (accessed

on 9 September 2022)

Average annual net primary
productivity of vegetation Raster 500 m

National Aeronautics and Space
Administration (https://ladsweb.mo

daps.eosdis.nasa.gov/search/)
(accessed on 9 September 2022)

Soil infiltration factor data Raster 1 km Global Soil Database
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The flow data were then calculated. The flow data (people, information, and traffic
flow) were set up as two-way flow data from city A as the starting point to city B, forming
a data flow intensity matrix between the two cities. In addition, each city’s influence
evaluation index statistics were obtained from the Henan Provincial Statistical Yearbook.

Finally, we used a calculation method for indicators related to ecological quality
assessment to obtain the RSEI and ERS.

4. Results and Analysis
4.1. Urban Spatial Field Strength

Statistical data obtained for each city’s influence evaluation indicator were used to
determine the weight of each indicator. This was performed using the entropy weighting
method to calculate the final comprehensive city influence. The collected 18 × 18 matrix
data for the people, traffic, and information flows were used to determine the weight values
for each type of flow data using the entropy weighting method. In this study, cars and
trains were weighed at a 0.5:1 ratio to obtain the final traffic flow data and calculate the
combined flow data. Figure 4 shows the distribution of the combined inflows, outflows,
total influence, and intercity linkage intensity for each city, indicating that the central city
of Zhengzhou has the strongest linkage intensity with other cities. Finally, the spatial
gravitational field intensity of the city is calculated according to the gravitational field
model described in Section 2.1. As shown in Figure 4, the cities differed slightly, with
Zhengzhou exhibiting the highest inflow and outflow intensities.
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4.2. Comprehensive Evaluation of Ecological Constraints

Landsat-8 image data were used to calculate each index, and images of the annual
means (May–October) were synthesized using the Gee platform code. The final RSEI values
were obtained using principal component analysis, as shown in Figure 5a–e.
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This study used the method described in Section 2.2.2 to calculate the ecological
resistance values for generating urban expansion, as shown in Figure 5f–m.

RSEI and ERS were categorized into five levels using the natural break method. Areas
identified as having the best ecological quality and the highest ecological resistance value
to urban expansion should not be developed but should instead be dedicated to ecological
conservation; thus, values of 0 and 1 were set as restricted areas (Figure 5n). A value of
0 indicates that the area is not allowed to undergo land type conversion, and a value of
1 indicates that conversion is allowed.

4.3. Simulation Accuracy Assessment

The underlying spatial data were used to evaluate the potential for land expansion.
Furthermore, the urban spatial gravitational field was used as spatial interaction data to
drive urban land expansion, ecological quality was evaluated using RSEI and ERS and was
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used as a constraint on urban land expansion, and the areas of restricted development were
where urban land conversion was not possible. In this study, experiments were conducted
using FLUS software, and the field factor weights for each land-use type are listed in
Table 5.

Table 5. Weighting values of factors for each land use type.

Cultivated
Land Forest Grassland Shrubland Wetland Water

Body
Artificial
Surfaces Bareland

Weight 0.5 0.71 0.75 0.74 0.76 0.76 1.0 0.75

Figure 6A shows the results of the urban land use simulations for 2010–2020 for
different coupling scenarios of the model. There were four scenarios in total: (a) base
FLUS model simulation results (land-use simulations using only the base spatial variables),
(b) coupled gravitational field model simulation results, (c) coupled ecological constraint
simulation results, and (d) coupled gravitational field models and ecological constraint
simulation results.
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By comparing the simulation results of five representative cities (Zhengzhou, Luoyang,
Xinxiang, Shangqiu, and Xinyang) with those of different cities, it was found that the impact
of varying coupling cases was greater for core cities than for non-core cities. The incorpo-
ration of inter-urban interaction forces and ecological constraints results in a significant
increase in urban land use and a more compact agglomeration, especially in urban areas
with a high intensity of urban gravitational fields. By evaluating the simulation results
using kappa coefficients, overall accuracy, and Figure of Merit (FOM) metrics (Table 6), it is
clear that the inclusion of the urban gravitational field model has a relatively insignificant
improvement in overall accuracy, whereas the inclusion of the ecological constraint results
in a significant improvement in the accuracy of the model. One reason for this may be
that the strength of the urban gravitational field is higher mainly in the built-up areas of
the city center; therefore, there is a greater drive for the expansion of built-up land closer
to the city center, which is better modeled. In contrast, the ecological environment plays
a greater role further away from the city center and is better modeled for discrete urban
sites away from the city center. This can lead to an improvement in overall accuracy when
the urban gravitational field model is added at the overall level, which does not yield a
significant improvement.

Table 6. Accuracy verification results for different coupling scenarios.

Kappa Coefficient Overall Accuracy FOM

A 0.723529 0.844612 0.068728
B 0.724108 0.845181 0.071257
C 0.730133 0.848536 0.082824
D 0.730844 0.848676 0.083005

To further validate the abovementioned idea, the regional FOM accuracy was validated
for five cities: Zhengzhou, Xinxiang, Shangqiu, Luoyang, and Xinyang, as shown in Figure 6.
For regional land-use simulations, the accuracy of the three urban areas of Zhengzhou,
Xinxiang, and Shangqiu improved significantly with the coupled gravitational field model,
whereas the highest regional simulation was achieved when both the gravitational field
and ecological constraints were considered. It is noteworthy that the cities of Luoyang and
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Xinyang decreased in FOM accuracy after considering both factors compared to when only
ecological constraints were considered, which exceeded what was expected. Considering
the land-use types and locations of the two areas, it can be seen that they have abundant
land-use types, are geographically located in mountains and water, and are rich in ecological
resources. This may have created a serious “potential gap” between ecological constraints
and inter-urban gravitational drivers, with ecological factors taking absolute precedence,
ultimately reducing the overall accuracy. In summary, land-use simulation by coupling the
gravitational field model and ecological constraints proposed in this study can improve the
model’s performance not only in the entire Henan Province but also in some local areas.

4.4. Simulation of Urban Expansion for 2020–2030

The Markov chain model was used to predict the number of urban land-use types
within Henan Province in 2030, and the coupled gravitational field model and ecologically
constrained FLUS model were used to predict changes in land use in Henan Province
in the same year. Calculating the change in the urban and non-urban land use areas in
Henan Province from 2010 to 2030 showed that urban land use increased from 2010 to
2030, reaching an urban land demand of 28,268.83 km2 in Henan Province by 2030 under
both urban interactions and ecological constraints. Figure 7 shows the distribution of
various land-use types modeled for Henan Province in 2030. It can be seen that the rate of
urban land expansion is greater in developed urban areas and that most of the increase in
urban land use comes at the expense of decreasing arable land owing to the saturation of
built-up space. Due to ecological constraints, there is less urban expansion in areas of high
ecological quality, mainly on the western and southern fringes. The results showed that
inter-urban interaction forces and ecological condition constraints incorporated into urban
expansion simulations can be better coordinated, with cities expanding mainly based on
urban construction centers while protecting areas of higher ecological quality. In this way,
the harmonious development of urbanization and ecological conservation can be achieved.
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4.5. Analysis of the Various Factor-Driven Mechanisms

To analyze the drivers of urban land use change on a fine scale, this study calculated
the dynamic attitude of urban land use within a 1000-m regular grid, and the OPGD
model was used to find the optimal combination of discretization parameters. The driving



Land 2023, 12, 1189 18 of 23

mechanisms of urban land use change were then analyzed using the factor detector and
interaction detector of the OPGD model to evaluate both the influence of different spatial
variables on urban land use change and the mechanism of influence on urban land use
change under the action of the two factors.

As shown in Table 7, the order of the top six spatial variables driving the urban
expansion simulation is as follows: ERS (ecological resistance surface to urban expansion)
> IN (urban inflow gravitational field) > OUT (urban outflow gravitational field) > county
(distance from district and county centers) > RSEI (remote sensing ecological index) > city
(distance from the city center). It can be seen that ecological constraints and the strength of
the interaction force field between cities have a strong influence on urban land use change,
followed by the distance from the district, county, and city centers. The dynamics of urban
land use in Henan Province are the result of a combination of factors. The interaction
of the drivers on urban land dynamics (Figure 8) shows bivariable enhancement and
nonlinear enhancement, except for the interaction of ERS with other factors, which shows a
univariable weakening effect. This indicates that ERS is the dominant factor among the
factors, and when interacting with other factors, the effect of ERS is weakened.

Table 7. Q-statistic values for each factor of the factor detection results.

Q-Statistic

ERS 0.5064 **
IN 0.152 **

OUT 0.1495 **
county 0.1148 **
RSEI 0.0992 **
city 0.0735 **

Slope 0.0678 **
dem 0.0661 **

railways 0.0593 **
S_ways 0.0489 **
G_ways 0.0469 **

highways 0.0338 **
town 0.0332 **

X_ways 0.0104 **
** represents Q values significant at the 0.001 level (p < 0.001).

Figure 8. Interaction of the drivers with the dynamics of urban land use.
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5. Discussion

The factors influencing urban land use change are diverse and influenced by inter-
city interactions, the ecological environment, and local urban drivers. This study has
implications for planning urban agglomerations in a macro sense and for the sustainable
development of reconciling urban expansion with ecological conservation.

Currently, most studies examine cities as individuals, while urban development is
not geographically or functionally isolated by local administrative boundaries [59]. The
expansion of urban land in a city is greatly affected, not only by local driving forces, but
also by intercity factors such as the distant influences of neighboring cities, especially the
surrounding regional core cities in metropolitan areas [60]. In addition, some scholars have
focused on the impact of ecology on urban expansion. However, most have considered
only one focal region or city as the object of study [6–9,32,33], and there are few large-scale
studies on the correlation between urban expansion and ecology. This study combines
intercity interactions and the ecological environment for urban expansion research, which
has vital practical and research significance.

Previous studies have indicated that the ecological environment and the strength of the
urban gravity field are the two most significant factors influencing the expansion of urban
agglomerations [28]. The simulation results of this study also demonstrate an improvement
in the accuracy of simulating urban agglomerations. However, we observed a decrease
in simulation accuracy when incorporating the urban spatial field strength factor after
coupling it with ecological constraints. This decrease can be attributed to two factors. Firstly,
the urban spatial field strength has been shown to enhance the accuracy of simulating
developed cities [28], as these cities tend to have higher levels of urbanization and stronger
urban spatial field intensities, attracting most resources to their vicinity, thereby exerting
a stronger driving force on urban expansion. Secondly, the local ecological environment
also plays a role. Ecologically rich areas require greater consideration for conservation
needs, imposing constraints on urban expansion. The significant “potential difference”
between ecological constraints and inter-city gravitational drivers allows ecological factors
to dominate, thus diminishing the simulation accuracy.

This study explored the driving mechanisms of various factors using the OPGD
model so that a more intuitive understanding of the influencing mechanisms of factors
associated with the urban expansion can guide solving the problems existing policies and
related factors may face. The analysis of factor-driven mechanisms of urban expansion
indicated that intercity mobility significantly affects urban growth, as shown in previous
studies [41,61].

The urban mobility data used in this study are a combination of population move-
ment, search activity, and transportation connections, which reflect not only population
interactions between cities, but also travel intentions and transportation connection con-
ditions. In addition, urban expansion is a complex process, and the urbanization process
generally destroys the ecological environment. This study uses RSEI and ERS to represent
ecological quality factors, the former reflects the ecological quality status of the region [33]
and the latter can reflect the spatial movement trend of urban expansion under ecological
constraints [9]. From a macro perspective, urban growth is positively influenced by urban
mobility, greater than the impact of ecological factors (RSEI) and other factors. Ecological
constraints also have a significant impact on urban expansion. From a micro perspective,
urban inflow is a stronger driver of urban expansion than the outflow of cities because
urban inflow represents a city that is more attractive to other cities and, therefore, has more
development opportunities. The driving effects of the ecological constraint factors, ERS
and RSEI, ranked first and fifth, respectively, with ERS playing the strongest role. From the
perspective of two-factor interaction, except for the weakening effect when ERS interact
with other factors, all other two-factor interactions are enhanced, indicating that ERS is
dominant in the urban expansion drive, which also indirectly explains why simulation
accuracy decreases after the introduction of urban mobility factors in ecologically rich areas.
The research results show that the urban gravitational field and ecological constraints have
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an important influence on urban expansion, which jointly affects cities’ scale and expansion
direction and needs to be considered in urban planning and management. At the same
time, the research results also provide a theoretical and practical basis for sustainable urban
development and have certain reference values for formulating relevant policies and plans.
According to the conclusion that urban interactions and ecological constraints jointly influ-
ence urban expansion, each region should consider local conditions and check and balance
between socioeconomic development and the ecological environment, especially in areas
with rapid urban development and a complex ecological environment. Rigid constraints
can be applied to control urban expansion in important food-producing areas or areas with
fragile ecologies, thereby achieving harmonious urbanization and ecological protection.

This study simulates urban land expansion in Henan Province by proposing a new
framework for land use simulation with a coupled gravitational field model and ecological
constraints and explores the effects of different factors on urban expansion. This may be
useful for urban development and planning; however, some shortcomings exist. First, the
expansion of urban agglomerations was influenced by policies in addition to topography,
economy, and ecology. Policy data were not included in our experimental design due to
a lack of data availability. Second, for the models adopted in this study, the urban flows
in the micro-driving force analysis were derived from the calculated results based on the
gravity model, which were different from the actual flow data and might have led to biased
results. This study idealized urban spatial field strength, used constant values for the
parameters, and ignored the influence of spatial and temporal disparities [62,63]. However,
many scholars have adopted this calculation method because reasonable fixed parameters
can reflect the overall field intensities of different cities [64]. In addition, this study uses
the coupled gravitational field model and ecologically constrained land use model to
simulate and predict urban use changes in Henan Province in 2020 and 2030. However,
this does not mean that the model is applicable to other regions, and comparing the
absolute contributions of the spatial interaction among inter-cities, ecological constraints,
and other factors on urban expansion requires additional empirical and historical data to
design a highly accurate model. The urban expansion simulation should be based on the
actual ecological environment and social background and should be carried out to ensure
the practicability of urban expansion [65] through the construction of social, ecological,
economic, and other multi-indicators and multi-dimensional analysis. In future studies,
to gain a more comprehensive and in-depth understanding, we propose the application
of more detailed data to enable a more detailed examination. For example, multi-source
heterogeneous spatial data can be fused to rationalize policies meticulously into urban
simulation models to build more accurate models that reproduce the urban expansion
modeling process.

6. Conclusions

This study constructed a new framework for land-use simulation with a coupled grav-
itational field model and ecological constraints from the perspective of urban interactions
and the ecological environment. The experiment was conducted in Henan Province, China,
to verify the feasibility of the method and to use the OPGD model to reveal the driving
mechanism of urban land use change in the spatiotemporal pattern of Henan Province. The
main conclusions are as follows:

(1) The proposed method can improve simulation accuracy at the scale of cities
and urban agglomerations, particularly for the central cities of urban agglomerations
(e.g., Zhengzhou);

(2) For local areas, the simulation results of the method are different when the gravita-
tional field model and ecological constraints are coupled; the simulation results are better
for urban developed areas after coupling the gravitational field model, and the simulation
results are better for ecologically developed areas after coupling ecological constraints.
Therefore, for cities with smaller scales and rich ecological resources, the simulation effect
may be better if only a single factor of coupling ecological constraints is considered;
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(3) The prediction of urban expansion in Henan Province in 2030 shows that inter-
urban interaction forces and ecological condition constraints incorporated into urban
expansion simulations can be better coordinated. The urban land use in Henan Province
will increase from 2010 to 2030, and the urban land demand in Henan Province will reach
28,268.83 km2 by 2030;

(4) Through the analysis of the driving mechanism of urban land expansion, it was
found that the intensity of urban spatial intensity and ecological constraints are two im-
portant factors affecting the expansion of urban agglomeration: urban interaction has a
promoting effect on urban expansion, while the need for ecological protection has a re-
straining effect on urban expansion, and both work jointly to affect the expansion behavior
of urban agglomeration.

To address the sustainable development issues of urban expansion and ecological
protection, future urban development planning needs to consider both urban interactions
and ecological environmental protection factors based on the actual socioeconomic and eco-
logical environment and proactively take targeted measures to coordinate the relationship
between urban, ecological, and sustainable development according to local conditions.
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