Can Agricultural Productive Services Inhibit Carbon Emissions? Evidence from China
Abstract
:1. Introduction
2. Concept Definition and Research Hypothesis
2.1. Concept Definition
2.2. Research Hypothesis
3. Materials and Methods
3.1. Research Methodology
3.1.1. Kernel Density Analysis Method
3.1.2. Spatial Weight Matrix Setting
3.1.3. Global Spatial Autocorrelation
3.1.4. Spatial Durbin Model Specification
3.1.5. Spatial Spillover Effect Specification
3.1.6. Threshold Effect Specification
3.2. Variable Selection
3.3. Data Sources
4. Results and Analysis
4.1. Spatial and Temporal Evolution of ACE
4.2. Spatial Correlation of ACE and APS
4.3. Impact of APS on ACE and Spatial Spillover Effect
4.4. Robustness Test
5. Discussion
5.1. Threshold Effect Based on the Scale of Arable Land Operation
5.2. Implications for China
5.3. Shortcomings and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, J.; Oreskes, N.; Doran, P.; Anderegg, W.; Verheggen, B.; Maibach, E.; Carlton, J.; Lewandowsky, S.; Skuce, A.; Green, S.; et al. Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 2016, 11, 048002. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Tao, X.; Peng, X.; Li, N.; Zhu, Z. China greenhouse gas emissions from agricultural activities and its mitigation strategy. Trans. Chin. Soc. Agric. Eng. 2008, 24, 269–273. [Google Scholar] [CrossRef]
- IPCC. Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1996; p. 69. [Google Scholar]
- Jiang, T.; Huang, S.; Yang, J. Structural carbon emissions from industry and energy systems in China: An input-output analysis. J. Clean. Prod. 2019, 240, 118116. [Google Scholar] [CrossRef]
- Yang, J.; Luo, P. Review on international comparison of carbon financial market. Green Financ. 2020, 2, 55–74. [Google Scholar] [CrossRef]
- Xue, Y.; Xu, Y.; Lyu, J.; Liu, H. The effect of uncertainty of risks on farmers’ contractual choice behavior for agricultural productive services: An empirical analysis from the black soil in northeast China. Agronomy 2022, 12, 2677. [Google Scholar] [CrossRef]
- Gorelick, J.; Walmsley, N. The greening of municipal infrastructure investments: Technical assistance, instruments, and city champions. Green Financ. 2020, 2, 114–134. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Zou, C. How does agricultural specialization affect carbon emissions in China? J. Clean. Prod. 2022, 370, 133463. [Google Scholar] [CrossRef]
- Mi, Q.; Li, X.; Gao, J. How to improve the welfare of smallholders through agricultural production outsourcing: Evidence from cotton farmers in Xinjiang, Northwest China. J. Clean. Prod. 2020, 256, 120636. [Google Scholar] [CrossRef]
- Zhang, C.; Chang, Q.; Huo, X. How productive services affect apple production technical efficiency: Promote or inhibit? Sustainability 2019, 11, 5411. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Zheng, J.; Hu, B.; Lin, Q. Study on the spatiotemporal evolution and influencing factors of agricultural carbon emissions in the counties of zhejiang province. Int. J. Environ. Res. Public Health 2022, 20, 189. [Google Scholar] [CrossRef]
- Charkovska, N.; Horabik-Pyzel, J.; Bun, R.; Danylo, O.; Nahorski, Z.; Jonas, M.; Xiangyang, X. High-resolution spatial distribution and associated uncertainties of greenhouse gas emissions from the agricultural sector. Mitig. Adapt. Strateg. Glob. Chang. 2018, 24, 881–905. [Google Scholar] [CrossRef] [Green Version]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J.; Li, H. Study on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China. Chin. J. Popul. Resour. Environ. 2011, 21, 80–86. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; He, Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Pang, J.; Chen, X.; Lu, Z. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci. Total Environ. 2019, 665, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xu, X.; Wang, Q.; Zhang, L.; Gao, X.; Chen, L. Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997–2016. Int. J. Environ. Res. Public Health 2019, 16, 3105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Cui, H.; Zhao, T.; Shi, H. STIRPAT-based driving factor decomposition analysis of agricultural carbon emissions in hebei, China. Pol. J. Environ. Stud. 2018, 27, 1449–1461. [Google Scholar] [CrossRef]
- Gerlagh, R. Measuring the value of induced technological change. Energy Policy 2007, 35, 5287–5297. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, Y.; Tian, M.; Ding, M.; Cao, L.; Zhang, Z.; Chuai, X.; Xiao, L.; Yao, L. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Pol. 2018, 72, 480–492. [Google Scholar] [CrossRef]
- Chen, J.; Pang, D.; Jin, M.; Luo, Y.; Li, H.; Li, Y.; Wang, Z. Improved soil characteristics in the deeper plough layer can increase grain yield of winter wheat. J. Integr. Agric. 2020, 19, 1215–1226. [Google Scholar] [CrossRef]
- Yadav, G.S.; Babu, S.; Das, A.; Mohapatra, K.P.; Singh, R.; Avasthe, R.K.; Roy, S. No-till and mulching enhance energy use efficiency and reduce carbon footprint of a direct-seeded upland rice production system. J. Clean. Prod. 2020, 271, 122700. [Google Scholar] [CrossRef]
- Li, J.; Lin, Q. Can the adjustment of China’s grain purchase and storage policy improve its green productivity? Int. J. Environ. Res. Public Health 2022, 19, 6310. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Liu, L.; Gao, S.; Yuan, S.; Shen, Q.; Chen, H. Impact of carbon trading on agricultural green total factor productivity in China. J. Clean. Prod. 2022, 367, 132789. [Google Scholar] [CrossRef]
- Yu, Z.; Lin, Q.; Huang, C. Re-measurement of agriculture green total factor productivity in China from a carbon sink perspective. Agronomy 2022, 12, 2025. [Google Scholar] [CrossRef]
- Gooroochurn, N.; Hanley, A. A tale of two literatures: Transaction costs and property rights in innovation outsourcing. Res. Policy 2007, 36, 1483–1495. [Google Scholar] [CrossRef]
- Lyne, M.C.; Jonas, N.; Ortmann, G.F. A quantitative assessment of an outsourced agricultural extension service in the Umzimkhulu District of KwaZulu-Natal, South Africa. J. Agric. Educ. Ext. 2017, 24, 51–64. [Google Scholar] [CrossRef]
- Belton, B.; Win, M.T.; Zhang, X.; Filipski, M. The rapid rise of agricultural mechanization in Myanmar. Food Policy 2021, 101, 102095. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does outsourcing affect agricultural productivity of farmer households? Evidence from China. China Agric. Econ. Rev. 2020, 12, 673–688. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, P.; Tang, L. Agricultural services: Another way of farmland utilization and its effect on agricultural green total factor productivity in China. Land 2022, 11, 1170. [Google Scholar] [CrossRef]
- Li, C.; Xu, J.; Wang, Y. Can socialized service of agricultural green production improve agricultural green productivity? Agric. Tech. Econ. 2021, 317, 36–49. [Google Scholar] [CrossRef]
- Zhang, M.; Tong, T.; Chen, Z. Do socialized agricultural services help to improve green productivity in agriculture? South China J. Econ. 2023, 400, 135–152. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Z.; Weng, Z.; Zhang, Y. Research on the impact of socialized agricultural services on fertilizer reduction application: An analysis of the regulation effect based on factor allocation. Agric. Tech. Econ. 2023, 335, 104–123. [Google Scholar] [CrossRef]
- Ji, M. Agricultural productive service industry:the third dynamic energy in the history of China’s agricultural modernization. Issues Agric. Econ. 2018, 3, 9–15. [Google Scholar] [CrossRef]
- Zhu, Y.; Deng, J.; Wang, M.; Tan, Y.; Yao, W.; Zhang, Y. Can agricultural productive services promote agricultural environmental efficiency in China? Int. J. Environ. Res. Public Health 2022, 19, 9339. [Google Scholar] [CrossRef]
- Li, X.; Guan, R. How does agricultural mechanization service affect agricultural green transformation in China? Int. J. Environ. Res. Public Health 2023, 20, 1655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Guo, X. Agricultural productive services development and total factor productivity improvement in agriculture: Regional variability and spatial effects. Agric. Tech. Econ. 2021, 5, 93–107. [Google Scholar] [CrossRef]
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef]
- Xiong, C.; Chen, S.; Yang, D. Selecting counties to participate in agricultural carbon compensation in China. Pol. J. Environ. Stud. 2019, 28, 1443–1449. [Google Scholar] [CrossRef]
- Johnson, J.; Franzluebbers, A.; Weyers, S.; Reicosky, D. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, S.; Song, Y.; Tang, M.; Li, H. Green finance, chemical fertilizer use and carbon emissions from agricultural production. Agriculture 2022, 12, 313. [Google Scholar] [CrossRef]
- Kaldor, D. Transforming traditional agriculture. Science 1964, 144, 688–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Huang, Z.; Zhang, X.; Reardon, T. The rapid rise of cross-regional agricultural mechanization services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Qing, Y.; Chen, M.; Sheng, Y.; Huang, J. Mechanization services, farm productivity and institutional innovation in China. China Agric. Econ. Rev. 2019, 11, 536–554. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, R. Is China’s economic growth decoupled from carbon emissions? J. Clean. Prod. 2019, 225, 1194–1208. [Google Scholar] [CrossRef]
- Wu, Z.; Dang, J.; Pang, Y.; Xu, W. Threshold effect or spatial spillover? The impact of agricultural mechanization on grain production. J. Appl. Econ. 2021, 24, 478–503. [Google Scholar] [CrossRef]
- Lesiv, M.; Laso Bayas, J.C.; See, L.; Duerauer, M.; Dahlia, D.; Durando, N.; Hazarika, R.; Kumar Sahariah, P.; Vakolyuk, M.y.; Blyshchyk, V.; et al. Estimating the global distribution of field size using crowdsourcing. Glob. Chang. Biol. 2018, 25, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of agricultural innovations in developing countries: A survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.; Liu, S.; Grinsven, H.V.; Reis, S.; Jin, S.; Liu, H.; Gu, B. The impact of farm size on agricultural sustainability. J. Clean. Prod. 2019, 220, 357–367. [Google Scholar] [CrossRef]
- Chambers, R.; Chung, Y.; Färe, R. Benefit and distance functions. J. Econ. Theory 1996, 70, 407–419. [Google Scholar] [CrossRef]
- Anselin, L. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr. Anal. 2010, 20, 1–17. [Google Scholar] [CrossRef]
- Anselin, L. Model validation in spatial econometrics: A review and evaluation of alternative approaches. Int. Reg. Sci. Rev. 1988, 11, 279–316. [Google Scholar] [CrossRef]
- Elhorst, J.P. Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- Elhorst, J. Spatial panel data models. In SpringerBriefs in Regional Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 37–93. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R. Spatial econometric modeling of origin-destination flows. J. Reg. Sci. 2008, 48, 941–967. [Google Scholar] [CrossRef]
- Yu, N.; de Jong, M.; Storm, S.; Mi, J. Spatial spillover effects of transport infrastructure: Evidence from Chinese regions. J. Transp. Geogr. 2013, 28, 56–66. [Google Scholar] [CrossRef]
- Zhong, R.; He, Q.; Qi, Y. Digital economy, agricultural technological progress, and agricultural carbon intensity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 6488. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Yang, D.; Huo, J.; Zhao, Y. The relationship between agricultural carbon emissions and agricultural economic growth and policy recommendations of a low-carbon agriculture economy. Pol. J. Environ. Stud. 2016, 25, 2187–2195. [Google Scholar] [CrossRef]
- Lu, X.; Kuang, B.; Li, J.; Han, J.; Zhang, Z. Dynamic Evolution of regional discrepancies in carbon emissions from agricultural land utilization: Evidence from Chinese provincial data. Sustainability 2018, 10, 552. [Google Scholar] [CrossRef] [Green Version]
- Su, P.; Wang, L. Spatial effect of digital inclusive finance on agricultural carbon emission intensity and mechanism. Res. Sci. 2023, 45, 593–608. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Elhorst, J. Applied spatial econometrics: Raising the bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Gao, L.; Tian, Q.; Meng, F. The impact of green finance on industrial reasonability in China: Empirical research based on the spatial panel Durbin model. Environ. Sci. Pollut. Res. 2022, 30, 61394–61410. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, S. Energy investment, economic growth and carbon emissions in China—Empirical analysis based on spatial Durbin model. Energy Policy 2020, 140, 111425. [Google Scholar] [CrossRef]
- Qiu, T.; Choy, S.T.B.; Li, Y.; Luo, B.; Li, J. Farmers’ exit from land operation in rural China: Does the price of agricultural mechanization services matter? China World Econ. 2021, 29, 99–122. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, C.; Liu, B.; Liu, P.; Zhang, X. Can socialized services reduce agricultural carbon emissions in the context of appropriate scale land management? Front. Environ. Sci. 2022, 10, 1039760. [Google Scholar] [CrossRef]
- Geng, S.; Ren, T.; Wang, M. Technology and infrastructure considerations for e-commerce in Chinese agriculture. Agric. Sci. China 2007, 6, 1–10. [Google Scholar] [CrossRef]
- Li, W.; Zhang, P. Relationship and integrated development of low-carbon economy, food safety, and agricultural mechanization. Environ. Sci. Pollut. Res. 2021, 28, 68679–68689. [Google Scholar] [CrossRef]
- Hu, C.; Ma, X.; Liu, Y.; Ge, J.; Zhang, X.; Li, Q. Mechanism and spatial spillover effect of new-type urbanization on urban CO2 emissions: Evidence from 250 cities in China. Land 2023, 12, 1047. [Google Scholar] [CrossRef]
Carbon Source | Coefficient Source | Emissions Coefficient |
---|---|---|
Fertilizer | Oak Ridge National Laboratory, United States | 0.8956 kg/kg |
Pesticides | Oak Ridge National Laboratory, United States | 4.9341 kg/kg |
Agricultural film | Intergovernmental Panel on Climate Change | 5.1800 kg/kg |
Diesel | Intergovernmental Panel on Climate Change | 0.5927 kg/kg |
Tillage | College of Agronomy and Biotechnology, China Agricultural University | 312.6000 kg/hm2 |
Irrigation | Rural Development Research Center of Hubei | 20.4760 kg/hm2 |
Variable | Unit | Mean | Std. Error | Min | Max |
---|---|---|---|---|---|
Explained variable | |||||
ACE | Million tons/Billion ¥ | −1.310 | 0.699 | −3.185 | 0.491 |
Core explanatory variable | |||||
APS | - | 0.119 | 0.080 | 0.022 | 0.537 |
Control variables | |||||
Urban | - | 0.542 | 0.174 | 0.209 | 0.896 |
Damage | - | 0.199 | 0.148 | 0.000 | 0.940 |
Grain | - | 0.663 | 0.136 | 0.355 | 0.971 |
Structure | - | 0.518 | 0.086 | 0.302 | 0.746 |
Develop | Billion CNY/10,000 people | −0.451 | 1.515 | −4.783 | 2.934 |
Support | Million CNY | 6.417 | 0.436 | 4.984 | 7.127 |
Education | Year | 1.999 | 0.133 | 1.175 | 2.268 |
Threshold variable | |||||
Area | hm2 | 1.148 | 1.040 | 0.956 | 1.246 |
Variable | Service | Urban | Damage | Grain |
VIF | 3.110 | 3.070 | 1.430 | 1.060 |
Variable | Structure | Develop | Support | Education |
VIF | 1.510 | 1.790 | 3.300 | 2.770 |
Test Method | Test Name | Test Statistic |
---|---|---|
F-test | F-Test | 42.150 *** |
LM test | LM–Error | 183.364 *** |
LM–Error Robust | 53.472 *** | |
LM–Lag | 155.343 *** | |
LM–Lag Robust | 25.451 *** | |
LR test | LR–Both–Ind | 52.890 *** |
LR–Both–Time | 291.160 *** | |
LR–SDM–SEM | 32.810 *** | |
LR–SDM–SLM | 63.090 *** | |
Wald test | Wald–SDM–SEM | 32.860 *** |
Wald–SDM–SLM | 62.520 *** | |
Hausman test | Hausman | 51.830 *** |
OLS Model | Two-Way Fixed Effects SDM Model | |||
---|---|---|---|---|
Coefficient | Std. Error | Coefficient | Std. Error | |
Main effect | ||||
APS | −4.596 *** | 0.539 | −5.283 *** | 0.538 |
Urban | −0.657 ** | 0.290 | −2.222 *** | 0.789 |
Damage | 0.524 *** | 0.197 | 0.412 *** | 0.146 |
Grain | 0.662 *** | 0.184 | −3.142 *** | 0.463 |
Structure | 4.823 *** | 0.346 | 2.024 *** | 0.548 |
Develop | −0.025 | 0.021 | 0.009 | 0.016 |
Support | −0.157 | 0.101 | 0.443 * | 0.264 |
Education | 1.303 *** | 0.305 | −0.973 * | 0.543 |
Constants | −5.059 *** | 0.684 | ||
Spatial effect | ||||
Wx APS | −3.413 *** | 1.088 | ||
Wx Urban | 1.211 | 1.603 | ||
Wx Damage | −0.515 ** | 0.266 | ||
Wx Grain | −2.756 *** | 0.863 | ||
Wx Structure | 1.107 | 1.103 | ||
Wx Develop | −0.041 | 0.036 | ||
Wx Support | −1.548 *** | 0.490 | ||
Wx Education | −2.391 ** | 1.186 | ||
ρ | 0.340 *** | 0.054 | ||
σ2 | 0.090 *** | 0.006 |
Variables | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
APS | −5.746 *** (0.527) | −7.477 *** (1.211) | −13.222 *** (1.209) |
Urban | −2.197 *** (0.743) | 0.795 (2.152) | −1.401 (2.265) |
Damage | 0.390 *** (0.141) | −0.559 (0.353) | −0.169 (0.394) |
Grain | −3.500 *** (0.449) | −5.468 *** (1.227) | −8.969 *** (1.355) |
Structure | 2.190 *** (0.555) | 2.516 (1.655) | 4.706 ** (1.946) |
Develop | 0.007 (0.018) | −0.050 (0.054) | −0.043 (0.065) |
Support | 0.310 (0.286) | −2.049 *** (0.699) | −1.739 ** (0.847) |
Education | −1.239 ** (0.525) | −3.841 ** (1.768) | −5.080 *** (1.984) |
Replace Core Explanatory Variables | Replace Weight Matrix | ||||||
---|---|---|---|---|---|---|---|
Main Effect | Spatial Effect | Main Effect | Spatial Effect | ||||
lnSer | −1.653 *** (0.067) | Wx lnSer | 0.008 (0.205) | APS | −6.264 *** (0.498) | Wx APS | −6.445 *** (1.466) |
Urban | −0.361 (0.682) | Wx Urban | 4.939 *** (1.483) | Urban | −1.588 * (0.897) | Wx Urban | 1.535 (1.948) |
Damage | 0.044 (0.116) | Wx Damage | −0.080 (0.265) | Damage | 0.248 * (0.151) | Wx Damage | −0.117 (0.347) |
Grain | −0.531 (0.392) | Wx Grain | −0.063 (0.746) | Grain | −3.240 *** (0.499) | Wx Grain | −3.425 *** (0.974) |
Structure | −0.810 * (0.434) | Wx Structure | −0.373 (1.067) | Structure | 1.935 *** (0.571) | Wx Structure | 2.517 * (1.399) |
Develop | 0.003 (0.013) | Wx Develop | −0.018 (0.036) | Develop | 0.001 (0.017) | Wx Develop | −0.008 (0.046) |
Support | 0.055 (0.211) | Wx Support | −1.478 ** (0.638) | Support | 0.223 (0.276) | Wx Support | −3.580 *** (0.835) |
Education | 0.289 (0.439) | Wx Education | −0.655 (1.321) | Education | −0.892 * (0.565) | Wx Education | −7.643 *** (1.703) |
ρ | 0.408 *** (0.066) | ρ | 0.284 *** (0.070) | ||||
σ2 | 0.057 *** (0.004) | σ2 | 0.097 *** (0.006) |
Replace Core Explanatory Variable | Replace Weight Matrix | |||||
---|---|---|---|---|---|---|
Variables | Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect |
APS | −1.705 *** (0.068) | −1.099 *** (0.262) | −2.804 *** (0.274) | −6.685 *** (0.499) | −11.216 *** (1.856) | −17.902 *** (1.920) |
Urban | 0.013 (0.625) | 7.994 *** (2.347) | 8.008 *** (2.320) | −1.552 * (0.829) | 1.658 (2.477) | 0.105 (2.372) |
Damage | 0.049 (0.112) | −0.120 (0.405) | −0.070 (0.435) | 0.258 * (0.144) | −0.089 (0.442) | 0.170 (0.466) |
Grain | −0.557 (0.407) | −0.407 (1.355) | −0.965 (1.567) | −3.474 *** (0.487) | −5.903 *** (1.421) | −9.377 *** (1.596) |
Structure | −0.867 * (0.450) | −1.275 (1.821) | −2.142 (2.037) | 2.100 *** (0.555) | 4.091 ** (1.985) | 6.191 *** (2.179) |
Develop | 0.003 (0.014) | −0.023 (0.063) | −0.020 (0.072) | 0.002 (0.018) | −0.006 (0.067) | −0.004 (0.078) |
Support | −0.070 (0.240) | −2.463 ** (1.122) | −2.533 ** (1.245) | 0.030 (0.300) | −4.871 *** (1.230) | −4.840 *** (1.367) |
Education | 0.230 (0.431) | −0.858 (2.251) | −0.628 (2.421) | −1.333 ** (0.535) | −10.760 *** (2.532) | −12.093 *** (2.686) |
Threshold Test | F Statistic | Bootstrap Times | Boundary Value | ||
---|---|---|---|---|---|
10% | 5% | 0% | |||
Single threshold | 49.130 ** | 300 | 34.532 | 44.594 | 50.168 |
Double threshold | 21.330 | 300 | 43.863 | 60.797 | 76.830 |
Triple threshold | 15.290 | 300 | 34.409 | 39.912 | 50.345 |
Variables | Coefficient | Std. Error | T Value | 95% Confidence Interval |
---|---|---|---|---|
APS (Area < 1.026) | 4.415 ** | 2.051 | 2.150 | [0.384, 8.445] |
APS (Area ≥ 1.026) | −8.247 *** | 0.593 | −13.910 | [−9.411, −7.082] |
Control variables | Controlled | |||
Observations | 480 | |||
F | 69.110 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Wang, T.; Xu, J.; Li, C. Can Agricultural Productive Services Inhibit Carbon Emissions? Evidence from China. Land 2023, 12, 1313. https://doi.org/10.3390/land12071313
Bai Z, Wang T, Xu J, Li C. Can Agricultural Productive Services Inhibit Carbon Emissions? Evidence from China. Land. 2023; 12(7):1313. https://doi.org/10.3390/land12071313
Chicago/Turabian StyleBai, Ziming, Tianyi Wang, Jiabin Xu, and Cuixia Li. 2023. "Can Agricultural Productive Services Inhibit Carbon Emissions? Evidence from China" Land 12, no. 7: 1313. https://doi.org/10.3390/land12071313
APA StyleBai, Z., Wang, T., Xu, J., & Li, C. (2023). Can Agricultural Productive Services Inhibit Carbon Emissions? Evidence from China. Land, 12(7), 1313. https://doi.org/10.3390/land12071313