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Abstract: Insect pests pose a significant threat to alpine ecosystems, especially under rapid environ-
mental change conditions. Therefore, it is necessary to explore the effects of environmental factors on
insect pest risks and provide methods for pest management in alpine regions. Habitat heterogeneity
and topographic variation are the indicators of insect pest risks. However, few studies have explored
the effects of habitat heterogeneity and topographic variation on insect pest risks in alpine regions. We
used species distribution modeling (i.e., maxent modeling) to project the distributions of insect pests
in this alpine region based on occurrence records. Then, we delineated the high-risk areas for insect
pests based on the species distributions under a conceptual risk framework using Zonation software
for different ecoregional types. We determined the alpine conifer and mixed forests of the Nujiang
Langcang Gorge, the conifer forests of the Qilian Mountains, and the shrublands and meadows of
Southeast Tibet as the key areas requiring monitoring for insect pests in Qinghai province based on
the scoring of insect pest risk rank with >0.7. Habitat heterogeneity and topographic variation could
be developed as indicators of risk exposure to insect pests in alpine regions. Our study suggests that
the prevention and control of insect pests should be conducted in areas with high habitat heterogene-
ity and topographic roughness in alpine regions. We provided new insights into the application of
species distribution modeling based on habitat heterogeneity and topographic variation. The results
of our study indicate that habitat heterogeneity and topographic variation should be considered for
improving pest management effectiveness in alpine regions.

Keywords: alpine region; environmental heterogeneity; insect pest; risk assessment; Tibetan Plateau;
topography

1. Introduction

The biodiversity found in alpine ecosystems is vulnerable to global environmental
change [1,2]. Rapid environmental change (i.e., rapid climate change and land cover
change) can lead to high biological invasion risk, mainly affecting sensitive alpine ecosys-
tems [2–4]. Alpine ecosystems are beneficial to recreation, resource extraction, and seasonal
grazing of livestock [5,6]. Furthermore, the water that melts off glaciers and flows down
through the mountains is a major freshwater source for many populations in alpine regions.
Under global environmental change, biological invasion may be enhanced in alpine ecosys-
tems [7,8]. Numerous prediction studies have shown that ecosystem functions and services
may be lost under biological invasion [9,10]. For example, climate change could drive
species redistribution, which may drive invasive plants into regions of high altitude [11].
Predicting biological invasion can provide insight into biodiversity responses to rapid
environmental changes and inform the development of modeling for ecosystem services
across different spatial scales [12]. Hence, more detailed predictions on biological invasions
(e.g., insect pest invasion) in alpine regions are required to improve the effectiveness of
ecosystem management.
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Insect pests significantly threaten natural resources, societal development, and food
security in alpine regions [13]. Environmental changes (i.e., climate and land cover changes)
could result in pest outbreaks, and species distribution prediction modeling indicates that
the probability of pest outbreaks may increase under environmental changes [14,15]. Cli-
mate change, as one major factor of environmental change, has a large potential to cause a
high risk of insect pests, leading to the vulnerability of alpine ecosystems [13–15]. For ex-
ample, there may be northward range shifts and increased frequency of pest outbreaks (e.g.,
bark beetle) in the alpine regions under climate change [5]. Direct effects of temperature
warming include increases in the development and survival rates of bark beetles [16–18].
Moreover, landscape habitat fragmentation and ecosystem homogenization can exacerbate
new environmental damage, allowing for altered inter-species interactions while also en-
hancing ecosystem susceptibility to pests [19]. Hence, it is necessary to explore the effects of
ecological landscapes and fragmentation on insect pest species distributions for assessing
insect pest risk in alpine regions. Studies show that habitat heterogeneity and topographic
changes can affect natural habitat fragmentation and loss, which potentially affect insect
pest risk [20].

Indeed, a fundamental tenet of the theory of biodiversity and ecosystem functioning
is that there is also a positive correlation between habitat heterogeneity and ecosystem
stability [19–21]. Studies have shown that habitat specificity plays an important role in
maintaining biodiversity [22,23]. Habitat heterogeneity is a key factor influencing pest
species richness, abundance, and species composition among different types of habitats [21],
while higher vegetation richness in a habitat provides sufficient food resources and refuge
for natural enemies in the landscape, resulting in higher pest diversity [19–23]. Alpine
ecosystems are closely associated with redistribution in determining the relations between
landscape and patch-scale interaction [24–26]. Due to low-patch-scale interaction, the
constraints that control the ecological dynamics of alpine ecosystems are small for insect
pest damage [25,26]. Hence, an alpine ecosystem may develop into a more sensitive eco-
logical landscape, resulting in a limited ability to prevent and control ecological dynamics.
Topographic factors have a strong driving force on pest distribution patterns in alpine areas
due to the constant changes in hydrological, geomorphological, and biological processes in
the terrain [27]. Therefore, exploring the effects of habitat heterogeneity and topographic
variation on insect pest risks in alpine regions is necessary. Our study provides insight
into pest prevention and control using habitat heterogeneity and topographic variation as
ecological indicators of insect pest risks.

In this study, the areas at high risk of exposure to insect pests were identified for
insect pests in alpine regions based on habitat heterogeneity and topographic variation.
Furthermore, we determined potential risk areas for insect pest invasion. We propose
the central hypothesis that the risk levels of insect pests are different in high mountain
areas without habitat heterogeneity and topographic variation. To test this hypothesis, we
applied an adapted risk framework to insect pests to delineate the areas of high risk in
alpine regions based on Probert et al. and Wan and Wang [28,29].

2. Materials and Methods
2.1. Pest Species Data

The data on insect pest species were obtained from the study of Wang et al. [30].
Qinghai province is a region of the Qinghai–Tibetan Plateau. The altitude of this region
ranges from 1650 m to 6860 m, with an average altitude higher than 3000 m [31]. Damage
caused by insect pests has occurred widely in the alpine ecosystems of Qinghai. Vulnerable
ecosystems to insect pests include the Central Tibetan Plateau alpine steppe, the Qilian
Mountain conifer forests, the Qilian Mountain subalpine meadows, the Southeast Tibet
shrublands and meadows, and the Tibetan Plateau alpine shrublands and meadows. From
2014 to 2016, 5513 field plots were investigated for insect pest species in Qinghai, China
(Figure 1). In total, 58 insect pest species were studied for our analysis. We identified the
damage caused by a particular insect pest based on the percentage of leaf loss, levels of
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stunting, and proportion of seedling death in host species in the field, and we conducted
insect pest identification based on the knowledge of biocontrol and pest science experts.
The pest species with greater than 10 occurrence records were used as the input for species
distribution modeling (SDM). In total, 58 insect pest species were used as the input for
SDM for further analysis.

Land 2023, 12, x FOR PEER REVIEW 3 of 11 
 

 

2014 to 2016, 5513 field plots were investigated for insect pest species in Qinghai, China 
(Figure 1). In total, 58 insect pest species were studied for our analysis. We identified the 
damage caused by a particular insect pest based on the percentage of leaf loss, levels of 
stunting, and proportion of seedling death in host species in the field, and we conducted 
insect pest identification based on the knowledge of biocontrol and pest science experts. 
The pest species with greater than 10 occurrence records were used as the input for species 
distribution modeling (SDM). In total, 58 insect pest species were used as the input for 
SDM for further analysis. 

 
Figure 1. Ecoregions and ecoregional risk rank exposure to insect pests in Qinghai province, China. 
The upper and lower bars represent the 95% confidence interval ranges of ecoregional risk rank 
exposure to insect pests in Qinghai province, China, and the lines represent the mean values of 
ecoregional risk rank. 

2.2. Environmental Data 
Previous studies have shown that climate, topography, and habitat heterogeneity 

have strong explanatory power for pest distribution [32–35]. Therefore, we used climatic 
variables, topographic variables, and habitat heterogeneity as environmental variables in 
our species distribution model to predict the distribution of 105 pest species in Qinghai 
Province. Climatic variables were obtained from the WorldClim database 
(https://www.worldclim.org/, accessed on 20 June 2023) [36]. The WorldClim database 

Figure 1. Ecoregions and ecoregional risk rank exposure to insect pests in Qinghai province, China.
The upper and lower bars represent the 95% confidence interval ranges of ecoregional risk rank
exposure to insect pests in Qinghai province, China, and the lines represent the mean values of
ecoregional risk rank.

2.2. Environmental Data

Previous studies have shown that climate, topography, and habitat heterogeneity
have strong explanatory power for pest distribution [32–35]. Therefore, we used climatic
variables, topographic variables, and habitat heterogeneity as environmental variables in
our species distribution model to predict the distribution of 105 pest species in Qinghai
Province. Climatic variables were obtained from the WorldClim database (https://www.
worldclim.org/, accessed on 20 June 2023) [36]. The WorldClim database includes monthly
temperature (minimum, maximum, and average) and precipitation aggregated across a
target temporal range from 1970–2000, using data from between 9000 and 60,000 weather
stations. In this study, 19 bioclimatic variables were used in a Pearson correlation analysis
for 19 variables of climate to determine the relationship between various climate variables.

https://www.worldclim.org/
https://www.worldclim.org/
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Any climate variable with a correlation (r) ≥ |0.60| was removed from the analysis. The
final four bioclimatic variables (annual mean temperature, mean diurnal range (mean
of monthly (max temp—min temp)), temperature seasonality (standard deviation ×100),
annual precipitation, and precipitation seasonality (coefficient of variation) [36,37]) were
included in the analysis of this study [36–38]. These four climatic variables were extracted
as the mask of the Qinghai map.

Habitat heterogeneity index data were downloaded from https://www.earthenv.
org/, accessed on 20 June 2023). The four habitat heterogeneity indices we used were
coefficients of variations of Enhanced Vegetation Index (EVI), evenness of EVI, range of
EVI, and Shannon of EVI [39]. The topographic variation was downloaded from (https:
//www.earthenv.org/, accessed on 20 June 2023). We used Terrain Ruggedness Index (TRI),
Topographic Position Index (TPI), Vector Ruggedness Measure (VRM), and roughness,
respectively. These four indices can describe the heterogeneity of terrain profiles and
surface landscapes. The grid resolution is 2.5 arcmin (~5 km). Here, we used the occurrence
records of 105 pest species and data on habitat heterogeneity and topographic variability at
background points as inputs to the SDM.

2.3. Species Distribution Modeling

In Maxent SDM (Version 3.4.4; https://biodiversityinformatics.amnh.org/open_source/
maxent/, accessed on 1 January 2020), we ran the pest occurrence records of Qinghai
Province with four sets of environmental variables (i.e., climate (C), climate + heterogeneity
(C+H), climate + topography (C+T), and climate + heterogeneity + topography (C+H+T))
as input variables in the model. The distribution of pests in Qinghai Province was predicted
under four models (model C, model C+H, model C+T, and model C+H+T). We constructed
the ensemble of Maxent SDM as suggested by Merow et al. and Phillips et al. to produce
a relatively low modeling complexity to accomplish minimizing overfitting [40,41]. The
detailed set of Maxent modeling has the following points: (1) The regularization multiplier
(beta) 2.0 was used to produce a smooth and general response shape that is representative
of biologically realistic behavior; (2) The maximum number of background points was set to
10,000; (3) The output of Maxent modeling was set to complement log–log (clog–log); and
(4) Five replications were conducted with randomized training trial data (auctrain, 80%)
and test data (auctest, 20%) to remove bias from the pest species distribution records and,
thus, improve the accuracy of the SDM [40,41]. The results of the Maxent model indicated
that the species distribution probabilities ranged from 0 to 1. In this paper, the accuracy
of the model was assessed using AUC with a range of values from 0 to 1; the higher the
value, the greater the deviation of the species distribution from a random distribution
(i.e., AUC = 0.5). [38,42]. By maximizing the sensitivity and specificity in cross-validation,
the continuous prediction was set as a threshold for binary prediction [38,42]. Based on
the cross-validation approach, we evaluated SDM for each pest species using five AUCs.
Here, the SDM predicted 105 pest species in Qinghai Province with high accuracy, with all
AUCs exceeding 0.7 [42]. Previous studies have shown that the larger the AUC, the higher
the performance of the prediction model [42]. Based on maximizing training sensitivity
and specificity, the pest species map was quantified using presence thresholds [42]. We
calculated the area of presence of each pest by the number of grid cells.

2.4. Delineating the Risk Areas

We used Zonation software coupled with SDM to delineate the areas of high risk
for pest species based on the conceptual risk framework described by Probert et al. [28].
The use of this analysis provides a basis for assessing the ecological risk of pest species
in order to facilitate justifiable management decisions. Both the species and the potential
recipient areas should be considered for the delineation of high-risk areas. SDM can
predict the distribution of pest species across a landscape pre- or post-establishment.
Priority areas most at risk of exposure to the pest species can be identified using Zonation
software [43]. The Zonation framework identified the high-risk areas via a post-hoc analysis

https://www.earthenv.org/
https://www.earthenv.org/
https://www.earthenv.org/
https://www.earthenv.org/
https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
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of ecologically optimized prioritization and the removal of sites. We used the “core-area
Zonation” (CAZ) cell-removal rule, which maximizes core areas of high risk for each
individual pest species [44]. We set the warp factor to 1 to maintain output reliability [44].
The monitoring objectives of this study were the distributions of 58 pest species based on
Model C, Model C + H, Model C + T, and Model C + H + T; these were used as the input
for the Zonation software. We identified priority areas with different risks of exposure to
the pest species (exposed assets). Hence, we obtained four maps of the areas at risk for
insect pests based on the distributions of pest species from Model C, Model C + H, Model
C + T, and Model C + H + T.

2.5. Synthesis

We compared the effects of habitat heterogeneity and topographic variation on the risk
of exposure to pests using linear regression modeling. We used the fitted equations of linear
regression modeling between Model C, Model C + H, Model C + T, and Model C + H + T.
The slope of the linear regression model was applied to compare the risk of exposure to pests
with and without habitat heterogeneity and topographic variation. The ecoregion map was
downloaded from https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-
the-world, (accessed on 6 March 2020) [45]. The ecoregions of Qinghai province included
the alpine steppe of the Central Tibetan Plateau, the alpine desert of the North Tibetan
Plateau–Kunlun Mountains, the alpine conifer and mixed forests of the Nujiang Langcang
Gorge, the semi-desert of the Qaidam Basin, the conifer forests of the Qilian Mountains,
the subalpine meadows of the Qilian Mountains, and the shrublands and meadows of
Southeast Tibet (Figure 1). We used ANOVA tests to compare the mean of pest distribution
probabilities among four models (Model C, Model C+H, Model C+T, and Model C+H+T)
in the ecoregion. All analyses were performed in R (https://www.r-project.org/, accessed
on 6 March 2020), JMP 11.0 (https://www.jmp.com/en_us/software.html, accessed on 6
June 2019) and ArcGIS 10.6 (https://desktop.arcgis.com/es/, accessed on 2 May 2020).

3. Results

In Qinghai province, habitat heterogeneity and topographic variation could affect
the risk of plants being exposed to pests (Figure 2). There were significant relationships
of risk rank exposure to pests among Model C, Model C + H, Model C + T, and Model
C + H + T across different ecoregions (p < 0.05; Figure 2). The slope values were lower
than 1 for all the linear regression models except for Model C + T in conifer forests of the
Qilian Mountains (Figure 2). In Mode C + T, the risk rank of the Qaidam Basin semi-desert
is higher, and there is a significant difference in risk level compared with other models
(Table 1; Figure 3).

Table 1. Scoring of insect pest risk rank in ecoregions of Qinghai province, China.

Ecoregion Code Clim Clim + H Clim + T Clim + H + T

Central Tibetan Plateau alpine steppe CTPAS 0.424 0.413 0.415 0.419
North Tibetan Plateau–Kunlun Mountains

alpine desert NTPKMAD 0.070 0.087 0.110 0.101

Nujiang Langcang Gorge alpine conifer and
mixed forests NLGACMF 0.962 0.982 0.977 0.973

Qaidam Basin semi-desert QBSD 0.566 0.517 0.607 0.509
Qilian Mountains conifer forests QMCF 0.878 0.839 0.777 0.822

Qilian Mountains subalpine meadows QMSM 0.354 0.441 0.419 0.468
Southeast Tibet shrublands and meadows STSM 0.751 0.767 0.716 0.758

Tibetan Plateau alpine shrublands and
meadows TPASM 0.516 0.530 0.479 0.527

https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://www.r-project.org/
https://www.jmp.com/en_us/software.html
https://desktop.arcgis.com/es/
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There was a large area for high risk of plants being exposed to pests in Qinghai
province (Figure 3). The areas with high risk were distributed in Northeastern and South-
western Qinghai province (Figure 3). The areas with a high risk of plants being exposed to
pests included the alpine conifer and mixed forests of Nujiang Langcang Gorge, the conifer
forests of the Qilian Mountains, and the shrublands and meadows of Southeast Tibet for
Model C, Model C + H, Model C + T, and Model C + H + T, with the scoring of insect pest
risk rank over 0.7 (Table 1; Figure 3).

4. Discussion

We used the conceptual risk framework described by Probert et al. [28] to delineate
the areas of high-risk exposure to insect pests in alpine regions in Qinghai province,
China. Climatic factors are the main drivers of insect pests [2–4]. Hence, a map of the
climatic distribution of insect pests could guide the prevention and control of insect pests
in alpine regions. However, the effects of habitat heterogeneity and topographic variation
on insect pest distributions should be considered for pest management. Based on the
results of linear regression modeling, there were significant relationships among Model
C, Model C + H, Model C + T, and Model C + H + T across different ecoregions. The
linear regression modeling equations indicated that habitat heterogeneity and topographic
variation could correct the risk of exposure to insect pests in alpine regions. Considering the
relationships between habitat heterogeneity, topographic variation, and the probability of
insect pest distribution, habitat heterogeneity and topographic variation could be developed
as indicators for the prevention and control of insect pests in alpine regions. Therefore, our
study provides implications for pest management in alpine regions.

Qinghai province is a representative alpine region and is a part of the Qinghai–Tibetan
plateau [31]. However, the invasion of insect pests is a major threat to the ecosystems and
biodiversity of Qinghai. Tree species diversity mainly reduced the damage of specialist
insect herbivores in mixed stands with phylogenetically distant tree species [46–48]. In-
creasing forest diversity is a promising management tool to reduce pest damage across
different ecoregions [48–51]. Hence, it is recommended to increase tree species diversity to
enhance insect pest resistance in forest ecoregions. Furthermore, determining the regions
with a high risk of exposure to insect pests is urgent. Our study determined the alpine
conifer and mixed forests of the Nujiang Langcang Gorge, the conifer forests of the Qilian
Mountains, and the shrublands and meadows of Southeast Tibet as the key areas requiring
monitoring for insect pests in Qinghai province. Ecosystems of the Qinghai–Tibetan Plateau
have been damaged over the past decades [45,52]; therefore, habitats should be restored
for plant species in these ecoregions of Qinghai province. The recovery of plant diversity
could contribute to both the maintenance of ecosystem function and the prevention and
control of insect pests in alpine regions [51]. Furthermore, topographic conditions should
be considered for pest management in alpine regions. Based on the results of linear re-
gression modeling, we developed equations to determine the risk of exposure to insect
pests with and without habitat heterogeneity and topographic variation in alpine regions.
These equations provide references for the assessment of the risk of insect pests along the
gradient of habitat heterogeneity and topographic variation in alpine regions.

Pest management is urgent across different regions around the world. Our study
provides new evidence highlighting the urgency of pest management in alpine regions.
Stenberg developed a conceptual framework for integrated pest management (IPM) [53].
Our data suggest that actions should be implemented for at least two pest management
elements of IPM. Pest prevention and control should be used to reduce the population
density or impact of insect pests by predators, parasitoids, and pathogens.

Our study determined the areas where pest prevention and control efforts should be
focused. We considered the risk of multiple insect pest species for environmental manage-
ment, which benefit biodiversity conservation and ecosystem maintenance. Furthermore,
30% of lands should be monitored for insect pest risk due to the scoring of insect pest
risk rank over 0.7 considering biodiversity conservation requirements. In these lands,
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forest resources and diversity should be conserved for promoting ecosystem functions and
services [54,55]. Our results indicate that we should preferentially attend to the areas with
high habitat heterogeneity and topographic roughness in alpine regions. Land-cover and
land-use complexity have the potential for sustainable pest management with complete
prevention of pest damage on natural resources [56,57]. However, natural ecosystems may
not benefit from plant diversity and habitat heterogeneity in alpine regions because of the
potential increase in the diversity of host species [19,20]. In addition, the existing available
resources may support insect pests. For specific pest species, relevant indicators should be
developed based on the response curves of insect pest distribution probability to habitat
heterogeneity and topographic variation in alpine regions.

Although it is necessary to explore the effects of habitat heterogeneity and topographic
variation on insect pest risks in alpine regions, our study has the following limitations:
(1) A limitation of the consensus dataset on habitat heterogeneity and topographic variation
is its low resolution. We could not assess the effects of small-patch landscapes on insect
pest risks. (2) The sample size of the studied insect pest species is too small to make broad
conclusions, and the distribution data of each species are uneven. (3) This study only
considered the distribution probability of insect pest species, but the distributions of their
host species were not considered for risk assessment. Although our study has a limited
amount of ecological validation, such as field investigation and ecological monitoring, we
urgently need innovative evaluation approaches and tools to predict insect pest species
distributions and evaluate the pest risk. Finally, we hope that future studies can expand
the application of SDM to provide feasible suggestions for the impact of scale effect on pest
prevention and control.

5. Conclusions

This study provides some theoretical basis for the effects of habitat heterogeneity and
topographic changes on pest distribution in alpine regions. The risk levels of insect pests are
different in high mountain areas without habitat heterogeneity and topographic variation.
It improves the effectiveness and accuracy of pest management, and we suggest that future
studies should elucidate the musculature of habitat heterogeneity and topographic variation
affecting pest distribution. Based on the effects of habitat heterogeneity and topographic
variation on the insect pest species, we used the conceptual risk framework of Probert
et al. [18] to delineate the areas of high-risk exposure to insect pests in alpine regions in
Qinghai province, China. In future studies, habitat heterogeneity and topographic variation
should be used to delineate areas with high-risk exposure to insect pests in alpine regions
for biological control. Furthermore, we need to pay extra attention to the minor factors
(any sensitive plant species or high-risk insect species). Our study provides new insights
into pest management worldwide.
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