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Abstract: Soil erosion and sediment transport have significant consequences, including decreased
agricultural production, water quality degradation, and modification to stream channels. Under-
standing these processes and their interactions with contributing factors is crucial for assessing the
environmental impacts of erosion. The primary objective of this review is to identify a suitable soil
erosion and sediment transport model for catchment-scale application. The study considers various
model selection processes, including model capability and the spatial and temporal domains for
assessing spatiotemporal distributions. The review acknowledges the limitations, uncertainties, and
unrealistic assumptions associated with soil erosion and sediment transport models. Models are
usually developed with a particular objective, which demands an assessment of capabilities, spatial,
and temporal applicability, and catchment-scale applicability. Distributed models are often preferred
for catchment-scale applications, as they can adequately account for spatial variations in erosion
potential and sediment yield, aiding in the evaluation of erosion-contributing elements and planning
erosion control measures. Based on the findings of this study, the authors encourage utilizing models
(such as Soil and Water Assessment Tool (SWAT) or Automated Geospatial Watershed Assessment
Tool (AGWA)) that can forecast net erosion as a function of sediment output for catchment erosion
and sediment yield modeling. This review helps researchers and practitioners involved in erosion
and sediment modeling by guiding the selection of an appropriate model type based on specific
modeling purposes and basin scale. By choosing appropriate models, the accuracy and effectiveness
of sediment yield estimation and erosion control measures can be improved.

Keywords: models; model applicability; sediment transport; soil erosion; sediment yield

1. Introduction

Land and water resources are often threatened due to population growth that causes
deforestation, overgrazing, and soil erosion [1]. Soil erosion, land degradation, and sedi-
ment transport are common issues within catchments [2,3]. Soil erosion can be a significant
environmental concern in cultivated areas [4], as nutrients such as phosphorus attached to
sediment particles reach a river system and affect the water quality of the receiving water
bodies [5]. Water-induced soil erosion is still a worldwide issue reducing soil productivity
and water carrying capacity [6–8]. Increased upland erosion causes sediment deposition
in river channels and downstream reservoirs that reduces the water carrying capacity of
channels and reservoirs [9]. Furthermore, the decrease in carrying capacity of river chan-
nels can increase the frequency of bank overflow and inundation of the surrounding area.
Sediment deposition in reservoirs and other water bodies may lead to a reduction in the
optimal use of reservoirs and growth of seagrass, and increase the threat of eutrophication
that endangers aquatic life [10].
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Predicting erosion and sediment transport requires a comprehensive understanding
of sediment transport processes in surface water systems [11]. Sediment yield assessment
provides valuable information about the quantity and rate of sediment deposition in
estuaries and other surface water bodies [12]. This information is crucial for guiding natural
resource development and informing management strategies. The transport capacity of
sediment particles in moving water controls their erosion, transport, and deposition [13].
The spatially distributed and regional-scale nature of sedimentation processes makes it
challenging to measure sediment movement accurately. This difficulty not only hampers
the identification of sediment sources and sinks, but also makes it challenging to validate
the results of sediment transport models [14]. The investigation of erosion and deposition
processes has been greatly improved by the advance of remote sensing technologies,
allowing for the assessment of spatial and temporal changes in sediment transport and
providing valuable data for sediment modeling and management [15].

Sediment begins in the upstream channel network and upland areas as erosion, and
moves downstream when the channel has sufficient stream power. The amount of sediment
transported by water to downstream areas is directly related to the flow rate [16]. Higher
flow rates result in greater sediment transport capacity. Smaller flood events can transport
fine suspended particles, while larger flood events are needed to move larger sediment
particles such as gravel, cobbles, and boulders. During moderate-intensity storms, large
sediment particles are commonly trapped in the channel bed, leading to the formation
of sediment bars along the channel. These bars are accumulations of sediment that can
affect channel morphology. The detachment process of sediment from the catchment and
the transport capacity of the channel system influences the sediment load at a particular
location [17]. These factors are influenced by flow characteristics (such as flow velocity
and discharge), channel shape, and human activities. It is important to assess the impact
of flow characteristics, channel shape, and human activities on soil erosion and sediment
transport [18].

Erosion models are mostly used in agricultural fields to anticipate typical rates of
soil loss from a specified area such as a plot, a field, or a catchment/watershed. Sediment
transport models, on the other hand, concentrate on numerical modeling of sediment
mobilization, transportation, and settling in fluids [11]. Soil erosion models are crucial
tools for understanding erosion processes and their interactions with the contributing
factors [19]. They help assess the environmental impacts of erosion and sedimentation,
providing valuable insights for land management and planning. Soil erosion models can be
categorized into three groups based on their complexity and the level of dynamic physical
processes they incorporate: empirical, conceptual, and physical based models [8]. The
selection of a suitable model depends on the intended application and the characteristics
of the landscape under study. It is important to assess the strengths, limitations, and
uncertainties associated with each model and evaluate how well they align with study
objectives [20], because different models may perform better in different environmental
circumstances or spatiotemporal scales. This enables researchers and practitioners to make
more informed decisions when selecting a model that best meets their objective.

Reviews of existing erosion models with different dimensions have been conducted
by several scholars [13,21–26]. However, these have limitations in terms of selecting the
best-fit erosion model. For example, the review conducted by De Vente et al. [27] focused
specifically on models that were used for predicting soil erosion and sediment yield at
regional scales. This indicates a limited scope in terms of the spatial scale considered in
the review. Similarly, Pandey et al. [25] limited their review to physical soil erosion and
sediment yield models, excluding empirical and conceptual models. These limitations
highlight the need for a comprehensive review that considers various dimensions and types
of soil erosion model. It is important to evaluate the practical application and selection of
the best-fit erosion model based on a range of criteria, including model capabilities, spatial
and temporal scale applicability, data requirements, and uncertainties. As a result, the
objective of this review paper is to evaluate soil erosion and sediment transport models,
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and recommend a suitable model for catchment-scale application. The review was carried
out by analyzing the existing scientific publications on erosion and sediment transport
modeling, by selecting publications based on the relevance of the abstract, keywords, title,
and main document text. The following questions were addressed by this review: What
are the current soil erosion and transport models in various parts of the world? What are
the spatial and temporal scale applicability of the models? What erosion processes are
represented by the chosen model? This review helps streamline the model selection process,
saving time and effort for researchers and catchment management professionals embarking
on sediment modeling studies. By considering the characteristics and requirements of their
modeling task and case study basin, researchers can refer to the review to identify suitable
models that align with their objectives. A clearer understanding of the available models
and their strengths and limitations can enhance the accuracy and reliability of sediment
modeling studies. This promotes consistency and comparability across different studies,
and contributes to advancing knowledge and understanding in the field of erosion and
sediment transport.

2. Methods

This paper provides a review of the applicability, reliability, strengths, and limitations
of sediment transport models at different spatial and temporal scales using a systematic
literature review approach. The study employed two well-known databases, Scopus and
Web of Science, as well as the Google Scholar search engine, to gather relevant information.
These databases were chosen for their comprehensive coverage of academic literature [28]
and relevance to the study objectives. The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) 2020 approach, suggested by Page et al. [29], was utilized
during this study to screen and identify relevant articles. This technique provides a
structured framework and visual representation that helps track the selection process
of articles during a systematic review, ensuring transparency and reproducibility. Using
inclusion and exclusion criteria, the relevant and required published literature was acquired
from the selected relevant databases. The search criteria used were: (“catchment scale” OR
“watershed scale”) AND (“sediment yield” OR “erosion” OR “sediment transport” AND
model*), and the year of publication ranged from 1990 to 2022. By using a combination
of specific keywords and restricting the search to a defined timeframe, the study aimed
to identify relevant papers that focus on catchment- or watershed-scale sediment yield,
erosion, and sediment transport modeling.

The study followed a three-stage screening process (Figure 1). The initial screening
involved removing the duplicate records and evaluating the relevance of articles based
on their titles, abstracts, and keywords. Out of the total number of the articles considered,
approximately 154 were deemed relevant for further screening. The analysis removed
22 entries based on the relevance of the abstracts. The final level of screening includes a
comprehensive review of the full text of the remaining articles. Following a review of the
full text, 18 papers were removed based on the relevance and scope of the study. Following
this screening process, 112 articles that met the criteria and scope of the study remained for
further analysis and inclusion in the research. It is important to go through a systematic
screening process to ensure that the selected articles align with the research objectives and
criteria set forth by the study. This helps in maintaining the quality and relevance of the
literature review or research synthesis.

The increasing trends observed in the use of keywords and publication types reflect
the growing interest in soil erosion and sediment yield studies (Figure 2). The three types
of papers included in this review were research articles, reviews, and conference papers. In
terms of publication type, researchers publish more research articles than reviews (Figure 2).
However, assessing prior studies is necessary to provide critical evaluations of current
literature, identify research gaps, and contribute to the consolidation of knowledge on a
specific area.
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Our review approach employs first- and second-stage model selection to identify the
appropriate model that can be applied to most catchments. The first-stage model selection
was based on modeling purpose, whereas the second-stage model selection follows the
intercomparison of the first-stage-selected models according to watershed/catchment
applicability, as well as spatial and temporal applicability.

3. Results and Discussion
3.1. Erosion and Sediment Modeling

The processes of erosion, sediment delivery, and transport of sediment constitute
essential components and measurements of the earth system’s functioning [30], which
necessitate modeling and assessing its significance for potential management alternatives.
Investigating the amount of silt entering the water system allows for the optimum long-
term management approach for the utilization of the water resource [2]. The detachment
and transportation of soil particles by flowing water to downstream locations is a common
phenomenon [31]. These emphasize the need for sustainable land management practices,
erosion control measures, and integrated water resource management to mitigate the
negative impacts of water erosion and preserve the health of both terrestrial and aquatic
ecosystems. To understand and plan management strategies, it is crucial to have models
that can accurately model the effects of changes in agricultural land use, farming practices,
and conservation measures [32,33]. In addition to modeling approaches, experimental
investigations [34,35] are commonly used to study erosion and sediment transport. Ex-
perimental methods involve conducting physical experiments in controlled laboratory
settings or in the field to measure erosion rates, sediment yields, and other related parame-
ters [36,37]. Experimental investigations provide valuable data that can be used to validate
and compare with model-based estimations [38]. By comparing the results obtained from
experiments with those from erosion models, researchers can assess the accuracy and relia-
bility of the models and refine their parameters or assumptions. However, it is worth noting
that experimental methods for erosion and sediment yield estimations can be expensive
and time-consuming.

3.1.1. Description of Erosion and Sediment Models

Many models have been developed to estimate and evaluate erosion and sediment
yield problems [39] due to the model uncertainty, the assumptions and parameters that are
unsuitable for local conditions [8]. Erosion models are designed for describing the erosion
process and controlling factors with a specific model objective and output. The fundamental
erosion process induced by water includes the detachment, transport, and deposition that
can be described using models [40]. To understand how this occurs, process-based or
physics-based models are built [18]. Generally, based on the physical process and other
criteria, erosion and sediment transport models are classified into three types: empirical,
conceptual, and physically-based [8].

Empirical models, often referred to as black box models, are based on observed
data and rely on mathematical equations, such as regression relationships, to represent
the relationships between input variables and the predicted output [41]. The process of
computation is straightforward and the data requirement of empirical models is lower than
other models [8,21]. Furthermore, empirical models may make unrealistic assumptions
about the physics of the catchment system. These models often overlook the heterogeneity
of inputs such as rainfall patterns and soil types within a catchment. These simplifications
can affect the accuracy and reliability of the model’s predictions, particularly in situations
where the catchment exhibits significant spatial variability [8,21]. Despite these limitations,
empirical models still have practical utility, especially in cases where data availability
is limited or when only a quick assessment of erosion or sediment transport is required.
Therefore, it is essential to carefully consider the specific context and limitations of empirical
models when applying them in different regions or for more detailed analyses.
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Conceptual models, which are more general in nature, serve as a bridge between
empirical and physically-based models. The sediment continuity equation and spatially
lumped water forms are used to create these models. Conceptual models predict sediment
yield primarily using the unit hydrograph concept. Conceptual models combine broad
descriptions of catchment processes by incorporating the detailed catchment characteristics,
physical processes of runoff generation and sediment transport into their conceptual struc-
ture. The limitation of these models is their poor representation of physical processes [39].

Physically-based models are created using physical equations to predict runoff and
soil loss, using the local distribution of runoff and sediment during rainfall [41]. These
models are designed to denote the key mechanisms that control erosion using the majority
of the factors that influence erosion with temporal and spatial variability, and subprocesses
and their interconnections [39]. Approximately 55% of the models reviewed in this study
were physically-based models, whereas 27% and 18% of the models were conceptual and
empirical, respectively. Physically-based models are critical for identifying important
erosion processes and determining sediment concentration in space and time that allows
for the identification of erosion-prone areas.

Table 1 lists the models described in the studies this review examined and provides
details on their capabilities and limitations. According to a recent study by Borrelli et al. [22],
RUSLE, SWAT, and WaTEM/SEDEM are increasingly being employed worldwide.

3.1.2. Erosion Modeling Capability

Models have been developed to simulate one or more factors of erosion, including
sediment yield, sediment budget, stream bank erosion, riparian erosion, sheet, and rill
erosion. These modeling aspects predict either gross or net erosion within the study
catchment. In this review, 53 models were investigated and categorized depending on the
kind of erosion and modeling focus (Table 2). Several models, including AGNPS, AGWA,
AnnAGNPS, ANSWERS, STREAM, SWAT, and SedNet, have been used for sediment yield
modeling to estimate net erosion. Furthermore, models capable of simulating sediment
yield and runoff are essential for developing the relationship between sediment yield and
runoff because runoff is the primary contributor to the sediment transport process.
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Table 1. List of erosion and sediment transport models reviewed, with their capability and limitations indicated.

Model Acronym
Space
Domain

Time
Domain Scale GIS

Integration Modeling Capability Model Limitation Model Type Source
L D C E F W

AGNPS 3 3 3 High Er, SY, R, nutrient Suitable for catchments, simulates only single rainfall events Conceptual [42]

AnnAGNPS 3 3 3 High SY, R, nutrient Requires large data input, does not allow for spatial
variablity of rainfall Conceptual [43]

LASCAM 3 3 3 3 High SL, R, salt fluxes Low prediction capacity during calibration Conceptual [44]
MMMF 3 3 3 ER, R, SY, SD Conceptual [45]
RillGrow 3 3 3 Low Rill formation Simulates only single rainfall events Conceptual [46]
SedNet 3 3 3 SS, SD, overland flow Conceptual [47]
STREAM 3 3 3 Er, ST Simulates only single rainfall events Conceptual [48]

SWAT 3 3 3 3 High Er, SY, R, nutrient Requires large data input, low capacity in stream channel
erosion and deposition analysis Conceptual [49]

SWIM 3 3 3 High SL, R, nutrient Does not simulate gully erosion, relatively complex Conceptual [50]
SWM/HSPF 3 3 3 High SL, R, nutrient Requires calibration of several parameters Conceptual [51]

SWRRB 3 3 3 3 Moderate sediment, R, nutrient
and pesticide Uncertainty in model parameter estimations Conceptual [52]

TOPMODEL 3 3 3 3 High SY, R Suitable only for shallow homogenous soil watersheds Conceptual [53]
USPED 3 3 3 Er Conceptual [54]
WATEM/SEDEM 3 3 3 Moderate Er, Dp, ST Requires large data input Conceptual [55]
EGEM 3 3 3 3 3 High Gully formation Requires large data input Empirical [56]
EPIC 3 3 3 3 Low SL, nutrient Limited to field-scale application only Empirical [57]

EPM 3 3 3 EI, SP, ST Model performance subjected to specific characteristics and
sedimentary regime Empirical [58]

MUSLE 3 3 3 High Er, SY Complexity for calibration Empirical [59]

PSIAC 3 3 3
Upland and channel
Er, Dp Model is sensitive to changes of different factors Empirical [60]

RUSLE 3 3 3 High Er, process-based Does not simulate gully or stream-channel erosion, not
suitable for slope length factor more than 25 Empirical [61]

SEDD 3 3 3 SY Reliability of model decreases from the annual scale to the
event scale Empirical [62]

TMDL 3 3 3 SL, nutrients Needs conversion of transport capacity into erosion
coefficient, factor determination is difficult Empirical [63]

USLE 3 3 3 Er Does not simulate events that are likely to result in
large-scale erosion Empirical [61]

AGWA 3 3 3 High Er, SY, R, nutrients Physically-based [64]
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Table 1. Cont.

Model Acronym
Space
Domain

Time
Domain Scale GIS

Integration Modeling Capability Model Limitation Model Type Source
L D C E F W

ANSWERS 3 3 3 High Er, SY, R, nutrients Consider erodibility as a time-constant parameter Physically-based [65]
CAESAR 3 3 3 Er, ST No rainfall–runoff interaction Physically-based [66]

CASC2D 3 3 3 3 Low SY, Er/Dp Does not simulate sub-surface flow, reservoir flow and
channel sediment, and relies on a single storm event Physically-based [67]

CREAMS 3 3 3 3 Low Er, Dp Physically-based [68]

DWSM 3 3 3 Moderate Er, SY, R, flood,
agrochemical transport Slow computing speed, uncertainties in input parameter data Physically-based [69]

EROSION-2D/3D 3 3 3 High Sediment dynamics Needs maximum computational efforts Physically-based [70]
EUROSEM 3 3 3 High Er, SY, R Lesser precision for large catchments Physically-based [71]
GLEAMS 3 3 3 3 Low Er, SY Uncertainty in model validation and parameter estimation Physically-based [72]

GSSHA 3 3 3 3 High Er, Dp, ST, detachment,
raindrop impact Does not simulate the sub-surface flow component Physically-based [73]

GUEST 3 3 3 Low SS, R Requires large data input Physically-based [74]
HEM 3 3 3 High Er, SY, R, SC Need specific conditions Physically-based [75]
KINEROS 3 3 3 3 High Er, SY, R Sub-surface flow is not considered for estimating runoff Physically-based [76]
LISEM 3 3 3 High SY, R Requires large data input physical parameters Physically-based [77]

MEDALUS 3 3 3 3 Moderate Er, impact of land
use changes Relies on recent data inputs only Physically-based [78]

MIKE11 3 3 3 3 High SY, R Requires large data input and physical parameters, use of 1D
equations to represent 3D processes Physically-based [79]

MIKE-SHE 3 3 3 Er, SY Physically-based [80]
OPUS 3 3 3 High Er, SS, R, nutrient Physically-based [81]

PEPP-HILLFLOW 3 3 3 Moderate Er, Dp, sediment and
phosphorous transport

Simulates only single rainfall events, large data input
requirement Physically-based [82]

PERFECT 3 3 3 Low Er, SY, R Require detailed information on crop management and
tillage practices Physically-based [83]

PESERA 3 3 3 High Er, R Flow routing is not well developed Physically-based [84]

RUNOFF 3 3 3 High Er, R, crop yield Uncertainties in input parameter estimations and model
validation Physically-based [85]

SHE/SHESED 3 3 3 3 High Er, SY, R Does not simulate gully erosion Physically-based [86]

SHETRAN 3 3 3 High SY, Er/ Dp,
pollutants transport

Uses very large grids and does not simulate flow through an
unsaturated zone Physically-based [87]
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Table 1. Cont.

Model Acronym
Space
Domain

Time
Domain Scale GIS

Integration Modeling Capability Model Limitation Model Type Source
L D C E F W

TOPOG 3 3 3 Moderate
Erosion hazard, water
logging, solute
transport

Requires large data input and physical parameters Physically-based [88]

WEPP 3 3 3 3 Moderate Er, SY, R Requires large data input, does not simulate in permanent
channels Physically-based [89]

WESP 3 3 3 Moderate Er, SY, R Intensive computation of input parameters Physically-based [90]

APEX 3 3 3 High Er, land Management
strategy, soil quality

Suitable only for field-scale and small catchments, less
developed sub-surface drainage and water table fluctuation
routine

Physically-based [91]

IDEAL 3 3 3 Low SY, Er Simulates only single rainfall events Physically-based [92]

MEFIDIS 3 3 3 Low Er, R Soil erosion is based on extreme rainfall events, low potential
for GIS integration Physically-based [93]

L = lumped, D = distributed, C = continuous, E = event, F = field, W = watershed/catchment, Er = erosion, EI = erosion intensity, SY = sediment yield, SP = sediment production,
R = runoff, ST = sediment transport, SS = Suspended Sediment, Dp = Deposition, SC = sediment concentration, SD = sediment distribution, SL = sediment load.
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Table 2. Modeling capability and erosion type modeled by erosion and sediment models.

Modeling Focus Erosion Type Model Name

Sediment yield

Gross erosion GLEAMS, GUEST, HEM
PERFECT, PESERA, RUSLE, SWIM, USLE

Net erosion

AGNPS, AGWA, AnnAGNPS, ANSWERS, APEX, DWSM, EPM, HSPF,
KINEROS, LISEM, MEDALUS, MEFIDIS, MMF, MUSLE, PSIAC,

RUSLE/SEDD, RUSLE-SDR, SedNet, SHESED, SHETRAN, STREAM, SWAT,
TOPOG, USLE2D, WEPP

Sediment budget
Gross erosion DWSM, RMMF/SEDD, SEDEM, USLE

Net erosion CAESAR, EPM, Erosion2D/3D, EUROSEM, MUSLE, RUSLE-3D, RUSLE-SDR,
SedNet, STREAM, SWAT, USLE-SDR, WEPP-Road

Stream bank erosion
Gross erosion USLE, RUSLE

Net erosion WEPP, RUSLE-SDR, LISEM

Riparian erosion
Gross erosion MIKE-SHE, USLE, PESERA, RUSLE

Net erosion GLEAMS, SWAT

Rill erosion
Gross erosion RUSLE, EPIC

Net erosion USLE-SDR, RHEM

Sheet and rill

Gross erosion CREAMS, Erosion 3D, GLEAMS, PEPP, PERFECT, PESERA, RUSLE,
RUSLE-SEDD, STREAM, USLE,

Net erosion APEX, EPIC, HSPF, LISEM, MEDALUS, MMF, OPUS, RUSLE/SEDD,
RUSLE-SDR, SED, SEDD, SEDEM, SLEMSA, USLE-SDR, WEPP

Gully erosion Gross erosion CREAMS, EGEM, WEPP, AnnAGNPS-REGEM

Some models, such as RUSLE, SWAT, GLEAMS, PESERA, LISEM, MMF, STREAM,
and WEPP, can execute multiple modeling tasks. Similarly, the models PERFECT, APEX,
DWSM, EPM, HSPF, MEDALUS, MUSLE, and SedNet can simulate two modeling focuses.
The rest of the models are solely designed to model a single function. By considering the
specific requirements of the study, such as the available data, study area characteristics,
and research objectives, researchers can make an informed decision regarding the most
appropriate model to use. The purpose of erosion and deposition studies is primarily
on understanding the processes and estimating net erosion or sediment deposition in a
watershed [94]. There are several models that can simulate erosion and deposition processes
at different scales and levels of complexity. The majority of erosion models fail to explain
the gully formation process [95]. Different models have different strengths, weaknesses,
and application areas that must be understood before employing them for a certain task.
As a result, understanding the nature of the model and selecting a suitable model for a
certain case study is crucial in order to produce accurate and dependable results.

3.1.3. Spatial Scale of Models

The spatial representation of physical features, such as land cover, topography, soil
types, and hydrological networks, allows for a better understanding of hydrological and
sedimentological processes by capturing the spatial variability of erosion-contributing
elements within the catchment [18]. This information can help identify erosion hotspots,
prioritize management interventions, and assess the effectiveness of erosion control mea-
sures [18,96,97]. By considering spatial variability, decision makers can make informed
choices regarding the allocation of resources and the implementation of erosion control
practices at specific locations. Models such as SWAT, RUSLE, AGNPS, and SedNet are
widely used in erosion studies incorporating spatially distributed information and pro-
vide outputs that depict erosion rates, sediment transport, and deposition with spatial
variability [27,98].
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As noted earlier, erosion models can be applied at multiple scales, including plot or
field, catchment, watershed, basin, regional, and continental scales. When selecting a model
to perform a specified task, the spatial applicability of the model should also be considered,
as some models, such as PERFECT, APEX, EUROSEM, and GLEAMS, are developed only
for plot- or field-scale (small size catchment) application (Table 1). Watershed-scale erosion
models are more accurate at forecasting average soil loss per year, month, or across a
series of occurrences than they are at forecasting event-scale sediment yield. The spatial
heterogeneity in erosion-contributing factors and the random nature of the erosion process
produces variabilities in erosion and sediment yield [25].

The vast majority (36 of the total 53 models) of the erosion and sediment models
studied in this review were found to be distributed (Table 1). Lumped conceptual models
necessitate reasonably precise rainfall and runoff data, as well as the average areal physical
properties. Lumped models did not represent the various physical catchment characteristics
that influence model simulation and feature representation [23,65,99]. Some important
physical catchment parameters that distributed models consider include soil properties,
land use/land cover, geology, and topography, hydrometeorological data, and water
abstraction. The spatial representation of the physical features of the catchment aids
in demonstrating spatial monitoring and management practices based on model results.
Distributed models divide the catchment into smaller spatial units or grid cells, allowing
for the assessment of localized variations and the spatial patterns of erosion-contributing
factors. However, the successful application of distributed models relies on the availability
of relevant data. Distributed models enable the identification of erosion hotspots, the
assessment of spatial variations in sediment transport, and the evaluation of management
practices at localized scales. As a result, distributed models could be used in studies that
concentrate on the spatial effects of erosion-contributing elements.

3.1.4. Temporal Scale of Models

The temporal scale of model simulation is an important consideration when selecting
a model for erosion and sediment yield studies. Continuous models are designed for
long-term simulations and allow for the analysis of temporal variations over extended
periods. These models require a continuous approach to initialization, which involves
running the model during a warm-up phase to allow for the model states to reach values
that are no longer influenced by arbitrarily specified initial conditions. In this case, the
model states achieve equilibrium and are no longer dependent on initial values [100]. On
the other hand, event-based models are specifically designed to simulate individual events
or short-duration occurrences. These models require a unique method for generating
initial values of model states for each event. The initial values can be determined based on
recent measurements, values derived from climatology, or other relevant data sources that
represent the measurable physical properties of the system. Approximately 18 models were
identified as continuous models, primarily suitable for long-term simulations, while around
24 models were classified as event-based models, designed for capturing short-duration
events (Table 1). Additionally, there were 12 models that can operate at both continuous
and event scales, providing flexibility in addressing different temporal scales as needed.
Considering the appropriate temporal scale for the specific modeling objectives and the
availability of data at different time scales is crucial for selecting the most suitable model.
Continuous models are advantageous for analyzing long-term trends and changes, while
event-based models excel at capturing individual events and their associated impacts.

By understanding the temporal characteristics of different models and matching
them with the temporal variations in the erosion and sediment yield processes of interest,
researchers can make informed decisions regarding model selection and ensure that the
chosen model aligns with their desired temporal scale of analysis.
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3.1.5. Model Performance Evaluation

Model performance evaluation is crucial for ensuring that the simulated results align
with observed data and achieving a desired level of accuracy. Uncertainties in modeling
are common due to the representation in hydrological process, biased model structure,
data accuracy, and discrete location measurements [97]. Therefore, model calibration and
validation by comparing the simulated and observed results are required for attaining a
certain desired accuracy. Runoff calibration and validation are required prior to sediment
yield because runoff is the primary agent for sediment transport. Manual or automatic
calibration and verification techniques can be employed using a set of model performance
evaluation parameters. Statistical indicators for runoff and erosion estimation such as
Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), root mean square error
(RMSE), percent bias (PBIAS), and RMSE–observations standard deviation ratio (RSR) have
been used to evaluate model performance. These indicators provide quantitative measures
of how well the model reproduces the observed data [101]. NSE and R2 are the most used
performance evaluation statistics in hydrological and water resource research. Models may
include a built-in automated or manual calibration and validation tool. SWAT, WEPP, APEX,
EPIC, KINEROS, AGWA, HSPF, and MIKE-SHE models can be evaluated either manually
or automatically; however, SWIM, GLEAMS, and LISEM can only be evaluated manu-
ally [102]. Sediment yield and erosion studies using the SWAT model evaluated the model’s
performance in various case study catchments using R2, NSE, RSR, and PBias [103–105].
The model performance evaluation findings of SWAT, WaTEM/SEDEM, and LISEM are
provided with improved calibration and validation results [22]. As a result, while selecting
a model, it is vital to determine whether the model performance can be evaluated.

3.2. Model Selection

It is important to note that selecting the best-fit model is not a one-size-fits-all approach.
It requires careful evaluation, validation, and calibration of the model against observed
data and local conditions. Additionally, expert judgment and understanding of the specific
case study area play a significant role in the model selection and interpretation of results.
For the adoption of sustainable watershed management strategies, long-term continuous
simulations and studies of hydrological changes are necessary [106]. The model that best
fulfils the objectives of study must be carefully selected. The spatial (field, catchment,
hillslope, and regional) and temporal scales of the model should be given careful consider-
ation during the model selection process, since these are essential elements in selecting an
appropriate tool for a specific study. Approved and verified models are considered ideal
for simulating erosion and sediment processes under similar physiographic and climatic
circumstances. Furthermore, precise data are essential for erosion and sediment prediction
systems to produce credible results [8]. An erosion model must include all components
that contribute significantly to the erosion process at the geographical, temporal, and local
levels where the model is used. The following factors should be considered when selecting
a model: dataset requirements, fundamental assumptions, accuracy and validity, objectives
and capabilities, components, user-friendliness, model output scales, and model hardware
requirements [8,21,27].

During the initial stage of the model selection, the model’s ability to estimate sediment
output and net erosion was used. In the first screening, 23 models that satisfied the
initial selection criteria developed throughout this enquiry were identified (Table 3). The
preliminary models were subjected to additional testing in terms of temporal and spatial
domain applicability. Models with a distributed spatial domain, continuous time domain,
and watershed-scale applications were chosen for modeling erosion and sediment yield in
the second stage of screening.
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Table 3. First-stage-selected sediment yield models with the net erosion output.

Sediment Yield Models
(Net Erosion) Space Domain Time Domain Scale Model Type Source

SWAT Distributed Continuous Watershed Physically-based [49]
AGWA Distributed Continuous Watershed Physically-based [64]

AnnAGNPS Distributed Continuous Watershed Conceptual [43]
SedNet Distributed Continuous Watershed Conceptual [47]
WEPP Distributed Continuous Watershed Physically-based [89]

SHESED Distributed Continuous Watershed Physically-based [86]
EPM Distributed Continuous Watershed Empirical [58]
APEX Distributed Continuous Field Physically-based [91]

DWSM Distributed Event Watershed Physically-based [69]
SHETRAN Distributed Event Watershed Physically-based [87]

AGNPS Distributed Event Watershed Conceptual [107]
ANSWERS Distributed Event Watershed Physically-based [65]

TOPOG Distributed Event Watershed Physically-based [88]
KINEROS Distributed Event Watershed Physically-based [76]

LISEM Distributed Event Watershed Physically-based [77]
MEDALUS Distributed Event Plot Physically-based [78]
MEFIDIS Distributed Event Watershed Physically-based [93]

MMF Lumped Continuous Watershed Conceptual [108]
MUSLE Lumped Continuous Watershed Empirical [59]
PSIAC Lumped Continuous Watershed Empirical [60]

RUSLE/SEDD Lumped Continuous Watershed Empirical [62]
HSPF Lumped Continuous Watershed Empirical [51]

STREAM Distributed Event Watershed Conceptual [48]

During the second stage of the model selection, five models were identified with the
ability to model sediment yield at the watershed scale (Table 4). However, due to the
constraints listed in Table 4, this comparison suggests using either the AGWA or SWAT
model for modeling sediment yield for watershed-level investigations. The SWAT model
can predict overland and in-stream sediment formation, transport, and deposition, as well
as rainfall runoff and chemical-associated sediment transport [8].

Table 4. Second-stage-selected sediment models.

Sediment
Yield Models

Net
Erosion Distributed Continuous Watershed Process Remark

AGWA 3 3 3 3 Physically-based

AnnAGNPS 3 3 3 3 Conceptual Does not provide information
about deposition in reaches

SedNet 3 3 3 3 Conceptual Applicable to areas > 3000 km2

SHESED 3 3 3 3 Physically-based
SWAT 3 3 3 3 Physically-based
WEPP 3 3 3 3 Physically-based Applicable to areas < 2 km2

The comparison of the selected models suggests that either the AGWA or SWAT model
can be used for modeling sediment yield at the watershed scale, considering the constraints
listed. AGWA, SHESED, and SWAT are physically-based and distributed models that
can simulate diverse sediment processes with high GIS integration, and discretize the
watershed into sub-watersheds [109]. Their capacity to analyze land-use and climate
change impacts on flow and sediment processes at different temporal and spatial scales
adds to their attractiveness as a modeling tool [49].

4. Summary and Conclusions

In most catchments, problems like rapid population growth, deforestation, over-
grazing, soil erosion, sediment deposition, limited storage capacity, and flooding, pose
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substantial challenges to land and water supplies. The impacts of these factors are evident
in the form of soil erosion, land degradation, and sediment transport within catchments.
Erosion from upland areas plays a significant role in promoting the deposition of silt in
river systems and downstream reservoirs. The decrease in the carrying capacity of river
channels due to sediment deposition can lead to bank overflow and inundation of the sur-
rounding areas during periods of high flow. This indicates the importance of maintaining
an adequate channel capacity to mitigate the risk of flooding. Understanding sediment
movement is crucial for predicting the transport of sediments and contaminants in surface
water systems. Sediment yield assessment provides information on the volume and rate of
sediment deposition from the watershed to the estuary, and helps quantify the effects of
sediment transport on water quality, ecosystem health, and overall watershed functioning.

Soil erosion models are crucial in understanding and analyzing the erosion processes
and their interactions with contributing factors. Numerous models have been developed
for various erosion and sediment yield modeling tasks. However, no single model has
demonstrated an overall integrated approach that encompasses all relevant elements at
the required spatial and temporal scales. A variety of aspects must be considered when
selecting an appropriate model for modeling erosion and sediment yield in a specific
catchment. The modeling aim, spatial and temporal scale output requirements, watershed
size, and the availability of other contributing parameters should all considered. It is critical
to examine multiple models and select the most suitable based on the specific needs and
characteristics of the catchment under consideration.

It is essential for software development to consider the applicability of models, consid-
ering the spatially distributed nature of inputs and outputs. This consideration allows for
a more accurate representation of processes and dynamics across the catchment. Further-
more, incorporating long-term time series inputs is vital for capturing temporal variability
and understanding the long-term effects of erosion and sediment transport. By including
historical data, models can account for changes in land use, climate, and other factors
that influence erosion processes. The selection of an appropriate model for analyzing
high-resolution spatio-temporal data is also important. High-resolution data provide de-
tailed information on the landscape, allowing for a more precise representation of erosion
processes. By choosing a model that can effectively handle high-resolution data, researchers
can better analyze and understand erosion and deposition patterns and impacts.

The integration of model simulation results with multi-criteria decision analysis is
another valuable approach. This integration allows for the consideration of multiple factors
and objectives in decision-making processes related to erosion and sediment transport. By
combining modeling results with decision analysis, stakeholders can make more informed
and effective decisions regarding land and water management strategies. Indeed, continu-
ous and distributed models are often preferred for watershed scale erosion and sediment
transport modeling. These models offer the advantage of representing spatially distributed
processes and capturing the variability of erosion and sedimentation across the catchment.

This review contributes to future sediment modeling studies by offering insights into
various models and their applicability for certain modeling tasks and case study catchments.
This helps streamline the model selection process, saving time and effort for researchers
who are embarking on sediment modeling studies. By examining the findings of the
review, researchers can make informed decisions and select the most appropriate model for
their specific needs. Overall, the future improvement of erosion and sediment transport
modeling lies in better incorporating model applicability, utilizing high-resolution and
quality data, and integrating model results with decision analysis. These advancements will
contribute to more accurate and comprehensive assessments of erosion processes, enabling
better-informed decision-making and sustainable management of land and water resources.
This review, on the other hand, was limited to assessing models focused on soil erosion
by water. Future scientific studies should consider model integration and performance
employing high-resolution geographic data, which this review did not.
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Abbreviations

Model acronym Model Name
AGNPS Agricultural Nonpoint Source Model
AGWA Automated Geospatial Watershed Assessment
ANSWERS Areal Nonpoint Source Watershed Environment Response Simulation
AnnAGNPS Annualized Agricultural Nonpoint Source Model
APEX Agricultural Policy/ Environmental eXtender
CAESAR Cellular Automaton Evolutionary Slope and River model
CASC2D CASCade 2Dimentional
CREAMS Chemicals, Runoff, and Erosion from Agricultural Management Systems
DWSM Dynamic Watershed Simulation Model
EGEM Ephemeral Gully Erosion Model
EROSION-2D/3D No acronym
EPIC Erosion–Productivity Impact Calculator
EPM Erosion Potential Method
EUROSEM European Soil Erosion Model
GLEAMS Groundwater Loading Effects of Agricultural Management Systems
GSSHA Gridded Surface/ Subsurface Hydrologic Analysis
GUEST Griffiths University Erosion System Template
HEM Hillslope Erosion Model
IDEAL Integrated Design and Evaluation of Loading Models
KINEROS Kinematic Runoff and Erosion Model
LASCAM Large-Scale Catchment Model
LISEM Limburg Soil Erosion Model
MEDALUS Mediterranean Desertification and Land Use Research Programme Model
MEFIDIS Modelo de ErosaoFIsico e DIStribuido
MIKE11 Mike (named partially after the author Michael, Mike Abbott)
MIKE-SHE Systeme Hydrologique Europeen
MUSLE Modified Universal Soil Loss Equation
MMMF Modified Morgan, Morgan and Finney
OPUS No acronym
PEPP-HILLFLOW Process-Oriented Erosion Prediction Program
PERFECT Productivity, Erosion and Runoff, Functions to Evaluate Conservation Techniques
PESERA Pan-European Soil Erosion Risk Assessment Model
PSIAC Pacific Southwest Inter-aAency Committee Method
RillGrow No acronym
RUNOFF No acronym
RUSLE Revised Universal Soil Loss Equation
SEDD Sediment Delivery Distributed
SedNet Sediment river network model
SHE/SHESED Systeme Hydrologique Europian/Systeme Hydrologique Europian Sediment
SHETRAN European Distributed Basin Flow and Transport Modeling System
STREAM Sealing, Transfer, Runoff, Erosion, Agricultural Modification Model
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SWAT Soil and Water Assessment Tool
SWIM Soil and Water Integrated Model
SWM/HSPF Hydrologic Simulation Program, Fortran
SWRRB Simulator for Water Resources in Rural Basins
TMDL Total Maximum Daily Load
TOPOG The Terrain Analysis Hydrologic Model
TOPMODEL TOPMODEL
USLE Universal Soil Loss Equation
USPED Unit Stream Power-Based Erosion Deposition
WATEM/SEDEM Water and Tillage Erosion Model
WEPP Watershed Erosion Prediction Project
WESP Watershed Erosion Simulation Program
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