Reputation, Network, and Performance: Exploring the Diffusion Mechanism of Local Governments’ Behavior during Inter-Governmental Environmental Cooperation
Abstract
:1. Introduction
2. Research Hypothesis and Theoretical Framework
3. Variable Selection and Methodology
3.1. Variable Selection
3.1.1. Explained Variable
3.1.2. Core Explanatory Variables
3.1.3. Moderating Variable
3.1.4. Control Variables
3.2. Methodology
3.3. Data Source and Descriptive Statistics
4. Empirical Analysis
4.1. Spatial Autocorrelation Analysis
4.2. Spatial Regression Analysis
4.2.1. The Empirical Result of YRD Region
4.2.2. The Empirical Result of BTH Region
4.2.3. Robustness Check
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, F.; Hauert, C.; Nowak, M.A.; Wang, L. Reputation-based partner choice promotes cooperation in social networks. Phys. Rev. E 2008, 78, 026117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Chen, T.; Wu, Z. Promoting cooperation by reputation scoring mechanism based on historical donations in public goods game. Appl. Math. Comput. 2021, 390, 125605. [Google Scholar] [CrossRef]
- Franco, M.; Haase, H. The role of reputation in the business cooperation process: Multiple case studies in small and medium-sized enterprises. J. Strategy Manag. 2021, 14, 82–95. [Google Scholar] [CrossRef]
- Goldberg, A.I.; Cohen, G.; Fiegenbaum, A. Reputation building: Small business strategies for successful venture development. J. Small Bus. Manag. 2003, 41, 168–186. [Google Scholar] [CrossRef]
- Li, Y.; Wu, F. Understanding city-regionalism in China: Regional cooperation in the Yangtze River Delta. Reg. Stud. 2017, 3, 313–324. [Google Scholar] [CrossRef]
- Yang, L.; Chen, W.; Wu, F.; Li, Y.; Sun, W. State-guided city regionalism: The development of metro transit in the city region of Nanjing. Territ. Politics Gov. 2021, 1–21. [Google Scholar] [CrossRef]
- Chen, X.; Sullivan, A.A. Should I Stay or Should I Go? Why Participants Leave Collaborative Governance Arrangements. J. Public Adm. Res. Theory 2022, 33, 246–261. [Google Scholar] [CrossRef]
- Ye, C.; Chen, R.; Chen, M.; Ye, X. A new framework of regional collaborative governance for PM2.5. Stoch. Environ. Res. Risk Assess. 2019, 33, 1109–1116. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, X.; Cheung, P.T.; Xu, J. Influence of External Authorities on Collaborative Frictions. Public Adm. Rev. 2023, 83, 603–622. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y. Why Do They Say One Thing and Do Another? Exploring the Factors Influencing the Strategy Selection of Local Governments in the Process of Regional Public Service Cooperation; Working Paper. 2023; Unpublish. [Google Scholar]
- Xing, P.; Xing, H. Blood is thicker than water: Local favouritism and inter-local collaborative governance. Policy Stud. 2022, 1–19. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y. Is collaborative governance effective for air pollution prevention? A case study on the Yangtze river delta region of China. J. Environ. Manag. 2021, 292, 112709. [Google Scholar] [CrossRef]
- Huxham, C.; Vangen, S. Managing to Collaborate: The Theory and Practice of Collaborative Advantage; Routledge: London, UK, 2013. [Google Scholar]
- Havakhor, T.; Soror, A.A.; Sabherwal, R. Diffusion of knowledge in social media networks: Effects of reputation mechanisms and distribution of knowledge roles. Inf. Syst. J. 2018, 28, 104–141. [Google Scholar] [CrossRef] [Green Version]
- Yi, H. Network structure and governance performance: What makes a difference? Public Adm. Rev. 2018, 78, 195–205. [Google Scholar] [CrossRef]
- Huang, C.; Chen, W.; Yi, H. Collaborative networks and environmental governance performance: A social influence model. Public Manag. Rev. 2021, 23, 1878–1899. [Google Scholar] [CrossRef]
- Gao, X. Research on regional cooperation from the perspective of regional social capital. Contemp. World Social. 2013, 5, 123–126. (In Chinese) [Google Scholar]
- Shi, J.; Tang, D. Research on regional innovation networks based on social capital theory. Sci. Manag. Res. 2007, 5, 10–13. (In Chinese) [Google Scholar]
- Ferris, G.R.; Perrewe, P.L.; Douglas, C. Social effectiveness in organizations: Construct validity and research directions. J. Leadersh. Organ. Stud. 2002, 9, 49–63. [Google Scholar] [CrossRef]
- Andrew, S.A.; Carr, J.B. Mitigating uncertainty and risk in planning for regional preparedness: The role of bonding and bridging relationships. Urban Stud. 2013, 50, 709–724. [Google Scholar] [CrossRef]
- Feiock, R.C.; Lee, I.W.; Park, H.J. Administrators’ and elected officials’ collaboration networks: Selecting partners to reduce risk in economic development. Public Adm. Rev. 2012, 72, S58–S68. [Google Scholar] [CrossRef]
- Berardo, R.; Scholz, J.T. Self-organizing policy networks: Risk, partner selection, and cooperation in estuaries. Am. J. Political Sci. 2010, 54, 632–649. [Google Scholar] [CrossRef]
- Lee, I.W.; Feiock, R.C.; Lee, Y. Competitors and cooperators: A micro-level analysis of regional economic development collaboration networks. Public Adm. Rev. 2012, 72, 253–262. [Google Scholar] [CrossRef]
- Coleman, J.S. Social capital in the creation of human capital. Am. J. Sociol. 1988, 94, S95–S120. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y. Selective cooperation: The inter-governmental public service supply in regional governance of Yangtze River Delta. J. Shanghai Adm. Inst. 2022, 23, 27–37. (In Chinese) [Google Scholar]
- Lopez-Pintado, D.; Watts, D.J. Social influence, binary decisions and collective dynamics. Ration. Soc. 2008, 20, 399–443. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Chen, T.; Chen, Q. The impact of expressing willingness to cooperate on cooperation in public goods game. Chaos Solitons Fractals 2020, 140, 110258. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, T. Sustainable cooperation based on reputation and habituation in the public goods game. Biosystems 2017, 160, 33–38. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, T.; Wang, Y. Sustainable cooperation in Village Opera based on the public goods game. Chaos Solitons Fractals 2017, 103, 213–219. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, T.; Wang, Y. Leadership by example promotes the emergence of cooperation in public goods game. Chaos Solitons Fractals 2017, 101, 100–105. [Google Scholar] [CrossRef]
- Provan, K.G.; Sebastian, J.G. Networks within networks: Service link overlap, organizational cliques, and network effectiveness. Acad. Manag. J. 1998, 41, 453–463. [Google Scholar] [CrossRef]
- Meier, K.J.; O’Toole, L.J., Jr. Managerial strategies and behavior in networks: A model with evidence from US public education. J. Public Adm. Res. Theory 2001, 11, 271–294. [Google Scholar] [CrossRef] [Green Version]
- Burt, R.S. Brokerage and Closure: An Introduction to Social Capital; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Scholz, J.T.; Wang, C.L. Learning to cooperate: Learning networks and the problem of altruism. Am. J. Political Sci. 2009, 53, 572–587. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Feiock, R.C. Transaction cost, exchange embeddedness, and interlocal cooperation in local public goods supply. Political Res. Q. 2011, 64, 573–587. [Google Scholar] [CrossRef]
- Yi, H.; Scholz, J.T. Policy networks in complex governance subsystems: Observing and comparing hyperlink, media, and partnership networks. Policy Stud. J. 2016, 44, 248–279. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Freeman. In UCINET for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002. [Google Scholar]
- Tan, J.; Zhao, J.Z. The rise of public–private partnerships in China: An effective financing approach for infrastructure investment? Public Adm. Rev. 2019, 79, 514–518. [Google Scholar] [CrossRef]
- Tan, J.; Zhao, J.Z. Explaining the adoption rate of public-private partnerships in Chinese provinces: A transaction cost perspective. Public Manag. Rev. 2021, 23, 590–609. [Google Scholar] [CrossRef]
- Peng, J.; Zhong, W.; Sun, W. Policy measurement, policy collaborative evolution and economic performance: An empirical study based on innovation policies. J. Manag. World 2008, 180, 25–36. (In Chinese) [Google Scholar]
- Sun, W.; Peng, J.; Huang, Y. Evolution of technology policies in China: A comparative analysis between central and local levels. J. Sci. Technol. Policy China 2011, 2, 238–254. [Google Scholar] [CrossRef]
- He, L.; Zhang, X. The distribution effect of urbanization: Theoretical deduction and evidence from China. Habitat Int. 2022, 123, 102544. [Google Scholar] [CrossRef]
- Ord, K. Estimation methods for models of spatial interaction. J. Am. Stat. Assoc. 1975, 70, 120–126. [Google Scholar] [CrossRef]
- Young, H.P. Innovation diffusion in heterogeneous populations: Contagion, social influence, and social learning. Am. Econ. Rev. 2009, 99, 1899–1924. [Google Scholar] [CrossRef] [Green Version]
- Hammer, M.S.; van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A.M.; Hsu, N.C.; Levy, R.C.; Garay, M.J.; Kalashnikova, O.V.; Kahn, R.A.; et al. Global estimates and long-term trends of fine particulate matter concentrations (1998–2018). Environ. Sci. Technol. 2020, 54, 7879–7890. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Guo, Y.; Lin, Z.; Qiu, Y.; Xiao, X. Effects of the joint prevention and control of atmospheric pollution policy on air pollutants-A quantitative analysis of Chinese policy texts. J. Environ. Manag. 2021, 300, 113721. [Google Scholar] [CrossRef] [PubMed]
- Kar, M.; Nunes, S.; Ribeiro, C. Summarization of changes in dynamic text collections using Latent Dirichlet Allocation model. Inf. Process. Manag. 2015, 51, 809–833. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Zhang, J.; Wang, Z.; Sun, D. Spatio-temporal evolution and influencing factors of open economy development in the Yangtze River Delta area. Land 2022, 11, 1813. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, C.; Zhang, X. Positive or negative externalities? Exploring the spatial spillover and industrial agglomeration threshold effects of environmental regulation on haze pollution in China. Environ. Dev. Sustain. 2021, 23, 11335–11356. [Google Scholar] [CrossRef]
- Wang, H.; Ran, B. Network governance and collaborative governance: A thematic analysis on their similarities, differences, and entanglements. Public Manag. Rev. 2022, 25, 1187–1211. [Google Scholar] [CrossRef]
- Xiong, J. The administrative division’s logic of regional urban integration: Governing with administrative division and reforming administrative division with governance. J. Shanghai Adm. Inst. 2017, 23, 65–73. (In Chinese) [Google Scholar]
- Song, M.; Lai, Y.; Zhang, Y.; Li, L.; Wang, E. From Neighbors to Partners: A quantum game model for analyzing collaborative environmental governance in China. Expert Syst. Appl. 2022, 210, 118248. [Google Scholar] [CrossRef]
Variable | Observations | Mean | Std.Dev | Min | Max | |||||
---|---|---|---|---|---|---|---|---|---|---|
YRD | BTH | YRD | BTH | YRD | BTH | YRD | BTH | YRD | BTH | |
PM2.5 | 297 | 143 | 48.052 | 57.588 | 12.807 | 25.247 | 18 | 13 | 71.739 | 110.121 |
lnPM2.5 | 297 | 143 | 3.832 | 3.927 | 0.298 | 0.549 | 2.891 | 2.565 | 4.273 | 4.702 |
Sewage | 297 | 143 | 14,604.471 | 8833.378 | 14,538.510 | 6317.984 | 486 | 615 | 80,468 | 31,058 |
lnSewage | 297 | 143 | 9.148 | 8.786 | 0.983 | 0.857 | 6.186 | 6.422 | 11.296 | 10.344 |
degree | 297 | 143 | 5.529 | 7.748 | 10.169 | 9.655 | 0 | 0 | 94 | 54 |
cluster | 297 | 143 | 0.828 | 1.548 | 1.446 | 1.887 | 0 | 0 | 9 | 7 |
rate | 297 | 143 | 0.733 | 0.803 | 0.830 | 0.699 | 0 | 0 | 8 | 3.75 |
degree×rate | 297 | 143 | 4.720 | 6.378 | 10.538 | 11.021 | 0 | 0 | 92.932 | 83.464 |
cluster×rate | 297 | 143 | 0.699 | 1.324 | 2.054 | 2.485 | 0 | 0 | 20.8 | 18.75 |
lnpop | 297 | 143 | 6.055 | 6.531 | 0.629 | 0.467 | 4.301 | 5.66 | 7.293 | 7.244 |
lngdp | 297 | 143 | 1.262 | 17.219 | 0.969 | 0.941 | 14.714 | 15.691 | 19.639 | 19.573 |
lnsecond | 297 | 143 | 3.898 | 3.781 | 0.153 | 0.259 | 3.286 | 2.876 | 4.314 | 4.096 |
lnexp | 297 | 143 | 15.227 | 15.401 | 0.903 | 0.982 | 13.095 | 13.715 | 18.27 | 18.192 |
Year | YRD | BTH | ||||||
---|---|---|---|---|---|---|---|---|
PM2.5 | Industrial Sewage | PM2.5 | Industrial Sewage | |||||
Moran’s I | Prob. | Moran’s I | Prob. | Moran’s I | Prob. | Moran’s I | Prob. | |
2009 | 0.226 *** | 0.000 | 0.063 *** | 0.001 | 0.051 ** | 0.029 | 0.139 | 0.202 |
2010 | 0.205 *** | 0.000 | 0.054 *** | 0.002 | 0.086 *** | 0.007 | 0.123 | 0.178 |
2011 | 0.220 *** | 0.000 | 0.091 *** | 0.000 | 0.099 *** | 0.004 | 0.080 * | 0.059 |
2012 | 0.163 *** | 0.000 | 0.074 *** | 0.000 | 0.102 *** | 0.003 | 0.095 * | 0.086 |
2013 | 0.213 *** | 0.000 | 0.049 *** | 0.003 | 0.106 *** | 0.003 | 0.072 * | 0.089 |
2014 | 0.209 *** | 0.000 | 0.061 *** | 0.001 | 0.081 *** | 0.008 | 0.089 * | 0.098 |
2015 | 0.216 *** | 0.000 | 0.065 *** | 0.000 | 0.079 *** | 0.009 | 0.094 * | 0.079 |
2016 | 0.221 *** | 0.000 | 0.064 *** | 0.000 | 0.089 *** | 0.006 | 0.116 | 0.108 |
2017 | 0.228 *** | 0.000 | 0.071 *** | 0.000 | 0.109 *** | 0.002 | 0.140 * | 0.079 |
2018 | 0.242 *** | 0.000 | 0.067 *** | 0.000 | 0.093 *** | 0.005 | 0.162 | 0.134 |
2019 | 0.240 *** | 0.000 | 0.076 *** | 0.000 | 0.094 *** | 0.005 | 0.155 * | 0.084 |
Variables | PM2.5 | lnsewage | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Degree | −0.0175 *** | −0.0292 ** | −0.0062 *** | −0.0056 ** |
(−2.80) | (−2.08) | (−2.65) | (−2.36) | |
Cluster | −0.296 ** | −0.258 * | −0.0058 ** | −0.0035 ** |
(−2.06) | (−1.77) | (−2.35) | (−2.02) | |
Rate | 0.309 | 0.206 | 0.0608 | 0.0570 * |
(1.19) | (0.77) | (1.04) | (1.65) | |
Degree × Rate | −0.0049 ** | −0.0079 *** | −0.0044 ** | −0.0061 *** |
(−2.14) | (−3.23) | (−2.11) | (−3.49) | |
Cluster × Rate | 0.294 | 0.276 | −0.0056 | −0.0082 |
(1.55) | (0.98) | (−1.42) | (−1.62) | |
lnpop | −2.078 | 0.525 *** | ||
(−1.58) | (3.71) | |||
lngdp | 0.122 | 0.302 | ||
(1.07) | (1.30) | |||
lnsecond | 3.747 ** | 0.627 ** | ||
(2.611) | (2.16) | |||
lnexp | −0.686 ** | −0.270 | ||
(−2.56) | (−1.52) | |||
ρ | 0.928 *** | 0.889 *** | 0.679 *** | 0.601 *** |
(58.00) | (33.74) | (9.87) | (6.19) | |
Log likelihood | −755.1827 | −749.419 | −95.7470 | −85.9291 |
Adjusted-R2 | 0.1974 | 0.3179 | 0.4456 | 0.5244 |
observations | 297 | 297 | 297 | 297 |
Variables | PM2.5 | lnsewage | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Degree | −0.0442 ** | −0.0303 * | −0.00290 ** | −0.00316 ** |
(−2.42) | (−1.83) | (−2.05) | (−2.49) | |
Cluster | 0.00976 | 0.0105 | 0.0247 | 0.0251 |
(1.03) | (1.17) | (1.07) | (1.12) | |
Rate | 0.984 ** | 1.122 ** | 0.0129 * | 0.0147 * |
(2.04) | (2.18) | (1.82) | (1.65) | |
Degree × Rate | −0.329 *** | −0.441 ** | −0.0302 *** | −0.0291 * |
(−3.01) | (−2.32) | (−3.19) | (−1.95) | |
Cluster × Rate | 0.092 * | 0.115 * | 0.0011 ** | 0.00298 *** |
(1.71) | (1.85) | (2.20) | (2.57) | |
lnpop | 0.124 | −0.356 *** | ||
(1.01) | (−3.84) | |||
lngdp | 3.117 | −0.468 *** | ||
(0.41) | (−3.69) | |||
lnsecond | 1.629 ** | 0.318 ** | ||
(2.37) | (2.53) | |||
lnexp | −4.336 * | −0.362 ** | ||
(−1.88) | (−2.36) | |||
ρ | −0.881 *** | −0.827 *** | −1.385 *** | −1.285 *** |
(−3.61) | (−3.78) | (−4.92) | (−5.11) | |
Log likelihood | −483.4208 | −477.2383 | −139.8291 | −81.9675 |
Adjusted-R2 | 0.3482 | 0.4050 | 0.1788 | 0.4315 |
observations | 143 | 143 | 143 | 143 |
Variables | YRD | BTH | ||
---|---|---|---|---|
PM2.5 | lnsewage | PM2.5 | lnsewage | |
(1) | (2) | (3) | (4) | |
Degree | −0.00945 ** | −0.00434 ** | −0.0411 *** | −0.00328 * |
(−2.44) | (−2.09) | (−2.56) | (−1.70) | |
Cluster | −0.158 * | −0.00418 ** | 0.060 | 0.0281 |
(−1.81) | (−2.26) | (1.24) | (0.66) | |
Rate | 0.142 | 0.0555 * | 0.893 * | 0.00823 |
(0.89) | (1.86) | (1.77) | (1.24) | |
Degree × Rate | −0.0274 ** | −0.0039 * | −0.206 * | −0.0062 ** |
(−2.30) | (−1.93) | (−1.89) | (−2.52) | |
Cluster × Rate | 0.0906 | −0.00464 | 0.0836 ** | 0.00303 * |
(1.32) | (−0.36) | (2.32) | (1.82) | |
lnpop | −1.301 | 0.427 *** | 0.780 | −0.286 *** |
(−1.52) | (2.68) | (1.08) | (−3.91) | |
lngdp | −1.028 | −0.279 | −3.001 | −0.315 *** |
(−0.87) | (−1.27) | (−0.53) | (−3.45) | |
lnsecond | 1.214 * | 0.815 *** | 6.249 ** | 0.209 ** |
(1.77) | (2.83) | (2.09) | (2.32) | |
lnexp | −0.567 *** | −0.0044 ** | −0.322 ** | −0.329 *** |
(−2.61) | (−2.03) | (−2.09) | (−2.78) | |
ρ | 0.901 *** | 0.144 ** | −0.885 *** | −0.605 *** |
(52.88) | (2.20) | (−32.23) | (−6.22) | |
Log likelihood | −571.0521 | −14.7855 | −439.4345 | −79.3500 |
Adjusted-R2 | 0.2819 | 0.3381 | 0.2520 | 0.4331 |
observations | 297 | 297 | 143 | 143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xiong, J.; Hu, D. Reputation, Network, and Performance: Exploring the Diffusion Mechanism of Local Governments’ Behavior during Inter-Governmental Environmental Cooperation. Land 2023, 12, 1466. https://doi.org/10.3390/land12071466
Zhao Y, Xiong J, Hu D. Reputation, Network, and Performance: Exploring the Diffusion Mechanism of Local Governments’ Behavior during Inter-Governmental Environmental Cooperation. Land. 2023; 12(7):1466. https://doi.org/10.3390/land12071466
Chicago/Turabian StyleZhao, Yihang, Jing Xiong, and De Hu. 2023. "Reputation, Network, and Performance: Exploring the Diffusion Mechanism of Local Governments’ Behavior during Inter-Governmental Environmental Cooperation" Land 12, no. 7: 1466. https://doi.org/10.3390/land12071466
APA StyleZhao, Y., Xiong, J., & Hu, D. (2023). Reputation, Network, and Performance: Exploring the Diffusion Mechanism of Local Governments’ Behavior during Inter-Governmental Environmental Cooperation. Land, 12(7), 1466. https://doi.org/10.3390/land12071466