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Abstract: Monitoring carbon emissions is crucial for assessing and addressing economic development
and climate change, particularly in regions like the nine provinces along the Yellow River in China,
which experiences significant urbanization and development. However, to the best of our knowledge,
existing studies mainly focus on national and provincial scales, with fewer studies on municipal
and county scales. To address this issue, we established a carbon emission assessment model based
on the “NPP-VIIRS-like” nighttime light data, aiming to analyze the spatiotemporal variation of
carbon emissions in three different levels of nine provinces along the Yellow River since the 21st
century. Further, the spatial correlation of carbon emissions at the county level was explored using
the Moran’s I spatial analysis method. Results show that, from 2000 to 2021, carbon emissions in this
region continued to rise, but the growth rate declined, showing an overall convergence trend. Per
capita carbon emission intensity showed an overall upward trend, while carbon emission intensity
per unit of GDP showed an overall downward trend. Its spatial distribution generally showed
high carbon emissions in the eastern region and low carbon emissions in the western region. The
carbon emissions of each city mainly showed a trend of “several”; that is, the urban area around the
Yellow River has higher carbon emissions. Meanwhile, there is a trend of higher carbon emissions in
provincial capitals. Moran’s I showed a trend of decreasing first and then increasing and gradually
tended to a stable state in the later stage, and the pattern of spatial agglomeration was relatively
fixed. “High–High” and “Low–Low” were the main types of local spatial autocorrelation, and the
number of counties with “High–High” agglomeration increased significantly, while the number of
counties with “Low–Low” agglomeration gradually decreased. The findings of this study provide
valuable insights into the carbon emission trends of the study area, as well as the references that help
to achieve carbon peaking and carbon neutrality goals proposed by China.

Keywords: carbon emissions; nighttime lights; spatiotemporal variation; spatial correlation; nine
provinces along the Yellow River

1. Introduction

Since the Industrial Revolution, increasing carbon emissions from human activities
have become a major contributor to global climate change. As a result, climate change has
become a pressing global issue, garnering attention from the international community [1–3].
To develop and implement climate change mitigation and adaptation policies and plans,
there is an urgent need for accurate, reliable, and real-time carbon emission data [4,5].
Consequently, monitoring and evaluating carbon emissions has become a critical priority
and research hotspot, which helps ecological environment protection and prompts high-
quality development.
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In recent years, a growing amount of research has been conducted on studying the
spatiotemporal characteristics, and monitoring and evaluation of carbon emissions [6–9].
Researchers have investigated various factors that influence carbon emissions in different
regions and proposed predictive models to forecast carbon emissions in specific areas. For
instance, Huang et al. [10] analyzed the carbon peak and carbon emission information of
the Yangtze River Economic Belt, and proposed a support vector regression (SVR) machine
prediction model to predict the carbon emission information in the region. Du et al. [11]
established a China Carbon Watch (CCW) system, enabling the monthly calculation of
carbon emissions from provincial-level urban and rural households between January and
May 2020. Liu et al. [12] used the Lasso regression model to screen out eight significant
factors affecting carbon emissions based on the data of Jiangsu province from 2001 to 2018
and used the BP neural network model to predict the carbon emissions of Jiangsu province
from 2019 to 2030. Ning et al. [13] established a prediction model for carbon emissions
in four representative provinces and cities in Beijing, Henan, Guangdong, and Zhejiang
from 1997 to 2017. However, the abovementioned research lacks the capability of achieving
small-scale refined monitoring, such as at the county level, and cannot provide real-time
monitoring and assessment of carbon emissions. Therefore, new methods and technologies
are highly needed to enable more granular, comprehensive, and real-time monitoring and
assessment of carbon emissions.

Nighttime light remote sensing is an optical remote sensing technology that detects
and obtains information on nighttime lights, providing a quick, accurate, and objective
view of the surface and human activities [14–16]. Unlike daytime remote sensing, nighttime
light remote sensing can reveal information that is not visible during the day [17,18].
Since most of the stable light at night comes from artificial sources in urban areas, remote
sensing images of nighttime lights can more intuitively reflect differences in human activity
at night [19–22]. Nighttime light data has become a new monitoring method with the
advantages of large coverage, fast timeliness, and convenient access, making it suitable for
multi-scale and long-term research on urban issues [23]. Nighttime light data has been used
in many studies related to disaster monitoring, urban sprawl, and human activity [24–28].
For instance, Fan et al. [29] used NPP-VIIRS nighttime light data to monitor recovery after
earthquakes and quickly assess earthquake damage. Li et al. [30] researched the variation
of nighttime illumination in different seismic regions and the influence of human activities
on nighttime illumination. Liu et al. [31] used NPP-VIIRS nighttime light data to explore
the resilience and post-disaster recovery of Zhengzhou City, using the extremely heavy
rainstorm in Zhengzhou City on July 20, 2021 as an example. Chen et al. [32] constructed
a new nighttime light landscape indicator, taking various townships in Fujian Province
as examples to reveal rural and urban economic development, and their differences and
economic expansion from multiple perspectives.

Nighttime light data has also been used to explore carbon emissions [33–37]. Doll et al. [38]
produced the world’s first 1 × 1 resolution carbon emission distribution map, revealing
the difference in carbon emission levels of countries at different stages of development
based on the correlation between DMSP-OLS nighttime light data and carbon emissions.
Sun et al. [39] monitored the variation in China’s city-level carbon emissions from 2000
to 2017 based on nighttime light data, and found that low-carbon cities are concentrated
in western and central China, while high-carbon-emission cities are mainly distributed
in the Beijing–Tianjin–Hebei and Yangtze River Delta regions. Yang et al. [40] established
a regional Chinese building carbon emission calculation model based on the nighttime
light data and building carbon emission data in the eastern, central, and western regions
of China. Guo et al. [41] analyzed the spatiotemporal variation patterns, correlations, and
heterogeneity of carbon emissions of three different administrative units from 2012 to
2019 based on nighttime light data and normalized difference vegetation index. Overall,
nighttime light remote sensing is an effective tool for monitoring human activity and
carbon emissions, providing valuable information for urban and environmental studies,
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and has the potential to contribute significantly to the development of urban planning and
environmental management policies.

Located in the central and western regions of China, the nine provinces along the
Yellow River are important areas for achieving coordinated regional development. This
region is China’s main energy and heavy chemical industry base, containing high-carbon
industries such as coal, oil, steel, and chemicals, resulting in the issues of carbon emissions
of this region being more prominent [42–44]. The development of this region can promote
the economic development of the western region, narrow the development gap between the
eastern and western regions, and achieve a balanced and coordinated national economy. In
addition, the development of this region also has a significant impact on the development
of the global economy, which can promote the vitality of global trade and investment. To
achieve the coordinated development of economic development and environmental protec-
tion, the Chinese government has adopted a series of policies and measures to promote the
construction of ecological civilization and energy conservation, and emission reduction,
and strive to achieve the goals of carbon peak and carbon neutrality. However, to the best
of our knowledge, existing studies mainly focus on the national and provincial scales and
fewer studies are conducted at the municipal and county scales. This inevitably ignores
the development stage and regional differences, which is not conducive to the national
level and all levels of government developing practical carbon reduction and pollution
reduction programs based on local conditions while improving the quality of economic
development and steadily promoting the urbanization process. Therefore, the monitoring
and analysis of carbon emissions at the municipal and county levels in the region will help
the government adjust its policies on time, optimize the industrial and energy structures,
accelerate green and low-carbon development, promote economic transformation and
upgrading, and achieve sustainable economic development.

This study aims to investigate the spatiotemporal variation, per capita carbon emission
intensity, and carbon emission intensity per unit of GDP in the nine provinces along the
Yellow River since the 21st century. We first build a fitting model for carbon emission
monitoring and evaluation using “NPP-VIIRS-like” nighttime light data and other multi-
source data. The spatiotemporal evolution characteristics of carbon emissions at municipal
and county levels are monitored and assessed. Furthermore, Moran’s I is employed to
investigate the spatial correlations of carbon emissions at county levels in the region.
This study provides important reference information for decision-making departments to
formulate more reasonable and effective carbon emission reduction policies to optimize the
industrial structure of this region and reduce carbon emissions.

This study has the following three main objectives:

1. Construct a fitting model of the nighttime lighting index and carbon emissions for the
timely and accurate prediction of carbon emissions;

2. Investigate the spatiotemporal characteristics and trends of carbon emissions in the
nine provinces along the Yellow River of China since the 21st century;

3. Explore the spatial correlation of carbon emissions at the county level using Moran’s I
statistical method.

The rest of this study is organized as follows: Section 2 describes the study area
and data. Section 3 introduces the calculation method of carbon emissions, the processing
method of nighttime lighting data, the fitting model construction, and the spatial correlation
analysis method. Section 4 introduces the spatiotemporal variation of carbon emissions
and the fitting model of the nine provinces along the Yellow River. The discussion and
conclusion are presented in Sections 5 and 6, respectively.

2. Study Area and Data
2.1. Study Area

The Yellow River is considered the “mother river” of China. This massive river, one
of the longest in the world and the second longest in China, is located in the northern
part of the country. The Yellow River basin encompasses a vast area that includes nine
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provinces: Shanxi, Inner Mongolia, Shandong, Henan, Sichuan, Shaanxi, Gansu, Qinghai,
and Ningxia, as depicted in Figure 1. This region covers a staggering 3,569,000 km2, which
constitutes around 37.2% of China’s entire territory. As of 2022, the population of this
region is approximately 420 million people, accounting for 29.8% of China’s total population.
Additionally, the GDP of this region is estimated at 28.7 trillion yuan, which is equivalent to
25.1% of China’s overall GDP. The Yellow River basin is a crucial area for China’s economy
and culture, with a rich history and a vibrant present. Moreover, this region is rich in
biodiversity and ecosystems, including wetlands, forests, grasslands, and rivers. These
ecosystems are vital to maintaining the ecological balance of the region, protecting rare
species, and preserving natural ecological functions. Protecting the ecosystems along the
nine Yellow Provinces will help maintain the stability of the global ecosystem.
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Figure 1. Geographical location of the study area.

2.2. Data

To conduct a comprehensive analysis of carbon emissions in the study area, various
energy data, including raw coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, natural
gas, heat, and electricity, were selected. The energy statistics were obtained from the Statis-
tical Yearbook, China Energy Statistical Yearbook, and Urban Greenhouse Gas Inventory
Research of nine provinces and cities from 2000 to 2021. To estimate carbon emissions in the
study area, “NPP-VIIRS-like” nighttime light data from 2000 to 2021 were obtained from
the AI-Earth Earth Science Cloud Platform (https://engine-aiearth.aliyun.com, accessed
on 15 March 2023). The spatial resolution of this data is 500 m, which has the advantages of
high spatial resolution, global coverage, long-term continuous observation, and strong data
consistency and comparability, and provides a powerful tool for researchers to analyze
and understand the distribution and changes of nighttime lights on the Earth’s surface,
and can be used to construct a reliable model for monitoring and evaluating carbon emis-
sions [45–47]. Population and GDP data were also collected from the Statistical Yearbooks
of nine provinces and cities from 2000 to 2021. Table 1 shows the data-related information,
including data name, time range, and sources of data.

https://engine-aiearth.aliyun.com
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Table 1. Data sources in this study.

Data Time Range Data Sources

Energy statistics 2000–2021

Statistical Yearbook,
China Energy Statistical Yearbook,

Urban Greenhouse Gas Inventory Research of
nine provinces and cities

“NPP-VIIRS-like” nighttime
light data 2000–2021 AI-Earth Earth Science Cloud Platform

(https://engine-aiearth.aliyun.com)

Population and GDP data 2000–2021 Statistical Yearbooks of nine provinces and cities

3. Methodology

In this study, we focused on assessing the spatiotemporal variation of the carbon
emissions in the nine provinces along the Yellow River since the 21st century based on
nighttime light remote sensing and multisource data. The overall workflow of this study is
presented in Figure 2.
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3.1. Calculation of Carbon Emissions

To estimate the carbon emissions of each province in the study area, this study uses
the 2006 Greenhouse Gas Emissions Inventory published by the IPCC (Intergovernmental
Panel on Climate Change) [48]. The carbon emissions are calculated using the following
equation:

CO2 =
44
12
×

10

∑
i=1

KiEi (1)

where i is 10 energy types; Ei is the consumption of energy i in terms of standard coal
(10,000 tons); and Ki is the carbon emission factor of energy i (10,000 carbon)/(10,000 stan-
dard coal), from the default value of IPCC carbon emission calculation guidelines, where the
original data unit is J. To be consistent with the statistical data unit, it is converted into stan-
dard coal with a conversion factor of 1 × 104 tons of standard coal equal to 2.93 × 105 GJ.
The carbon emission factors for each type of energy are presented in Table 2 [49].

https://engine-aiearth.aliyun.com
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Table 2. Energy carbon emission factors.

Energy Type Raw Coal Coke Crude Oil Gasoline Kerosene Diesel Fuel Oil Natural Gas Heat Electricity

Converted to standard coal
(tons of standard coal/ton) 0.7143 0.9714 1.4286 1.4714 1.4714 1.4751 1.4286 1.33 34.12 0.345

Carbon emission factor
(104 tons carbon/104 tons

standard coal)
0.7559 0.855 0.5857 0.5538 0.5714 0.5921 0.6185 0.4483 0.67 0.272

3.2. Per Capita Carbon Emission Intensity and Carbon Emission Intensity Per Unit of GDP

To obtain a comprehensive understanding of carbon emission patterns and mecha-
nisms, this study integrates the demographic and economic statistics of each province. The
aim is to investigate the spatiotemporal distribution characteristics and influence factors of
per capita carbon emission intensity and carbon emission intensity per unit of GDP in each
province, with the following equations:

Per capita carbon emission intensity = CO2/p (2)

Carbon emission intensity per unit of GDP = CO2/GDP (3)

where CO2 is total carbon emissions (10,000 tons); p is the year-end resident population
data (10,000 people); and GDP is gross regional product (10,000 yuan).

3.3. Nighttime Light Index Calculation

For this study, the total nighttime light index (TNLI) is selected as the index for
calculation and analysis. TNLI is calculated as the sum of the light digital number (DN)
values of administrative units, as presented by the following equation:

TNLI =
n

∑
i=1

DNi (4)

where n is the number of rasters and DNi is the radiation value of the image element
corresponding to each raster.

3.4. Establishing the Fitting Model

Given the significant correlation between TNLI and carbon emissions, we used a
linear regression model to fit the TNLI and total carbon emissions of the study area. In this
model, the intercept was set to 0, reflecting the absence of energy-related carbon emissions
in unlit regions. The equation for the linear regression model is as follows:

CO2 = a× TNLI (5)

where CO2 is the total carbon emission, TNLI is the total nighttime light index, and a is the
fitting factor.

From 2000 to 2021, the TNLI and carbon emissions of nine provinces showed an
approximate linear growth in the early years, and then reached the inflection point and
gradually slowed down. Moreover, carbon emissions were affected by the phased emission
reduction targets and tasks proposed by China’s government in 2009 and 2015, and the
growth rate had shown a rapid downward trend. Therefore, considering the inherent
attributes of the data in conjunction with the temporal milestones associated with carbon
emission mitigation policies, it has been delineated into seven distinct temporal intervals
to conduct a comprehensive fitting analysis. The outcomes of this analysis are presented
in Table 3, where a denotes the fitting coefficient of carbon emissions and TNLI, and R2

denotes the correlation coefficient of carbon emissions and TNLI: the larger this value, the
stronger the correlation.
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Table 3. Parameters of the quadratic polynomial model of carbon emissions from 2000 to 2021.

Year a R2

2000–2004 0.1465 0.9208
2005–2008 0.1763 0.9483
2009–2012 0.2079 0.9602
2013–2014 0.1410 0.9016
2015–2016 0.1439 0.9007
2017–2018 0.1059 0.8485
2019–2021 0.0858 0.7813

3.5. Spatial Correlation

To investigate the spatiotemporal dynamics of carbon emissions, we employ global
Moran’s I and local indicators of spatial association (LISA). Global Moran’s I is calculated
using Equation (6), with values ranging from −1 to 1. Values closer to 1 indicate a stronger
positive correlation, while values closer to −1 indicate a stronger negative correlation.
Values close to 0 indicate a lack of significant correlation. Local Moran’s I is calculated
using Equation (7). LISA analysis is used to describe the correlation of spatial units
based on five attributes: “High–High”, “Low–Low”, “High–Low”, “Low–High”, and “Not
Significant”.

I =
∑n

i=1 ∑n
j=1 ωij(xi − x)

(
xj − x

)
1
n ∑n

i=1(xi − x)2·∑n
i=1 ∑n

j=1 ωij
(6)

Ii =
xi − x

1
n ∑n

i=1(xi − x)2

n

∑
j=1,j 6=i

ωij
(

xj − x
)

(7)

where n is the number of regions, xi is the carbon emissions of the ith region, the upper
horizontal line represents the mean value, and ωij is the spatial symmetric weight.

4. Results
4.1. Temporal Characteristics of Provincial-Level Carbon Emissions

The carbon emissions of the study area from 2000 to 2021 are presented in Figure 3.
Since the 21st century, the total carbon emissions of this region have continued to rise,
but the growth rate has gradually decreased, showing an overall trend of convergence.
It is worth noting that, despite this convergence, the region has not yet reached peak
carbon. In 2000, the total carbon emissions were 890.849 million tons; in 2012, they reached
3440.83 million tons; and, in 2021, they increased to 3787.586 million tons. The total carbon
emissions continued to rise, but the average annual growth rate showed a downward trend:
the average annual growth rate of carbon emissions from 2000 to 2012 was 12.01%, and
it fell rapidly to 1.10% from 2012 to 2021. This demonstrates that the emission reduction
targets and tasks established by China at the Copenhagen Conference in 2009 and the
75th session of the United Nations General Assembly in 2020 [50] have an important
impact on carbon emission reduction in the Yellow River Basin. Figure 4 shows the share
of carbon emissions upstream of the Yellow River (including Qinghai, Inner Mongolia,
Sichuan, Gansu, and Ningxia), the midstream (including Shaanxi and Shanxi), and the
downstream (including Henan and Shandong). From 2000 to 2021, the difference between
upstream and downstream carbon emission levels was small, accounting for about 80%
of the carbon emissions of the nine Yellow River provinces, while the midstream carbon
emissions accounted for a relatively small amount, about 20%. The proportion of upstream
and midstream carbon emissions has gradually increased, from 31.41% in 2001 to 41.07% in
2021, and from 20.96% in 2005 to 22.14% in 2021. The upstream and midstream have been in
pursuit of rapid economic development, and the resulting energy consumption has led to
an increase in carbon emissions. The proportion of downstream carbon emissions showed
a trend of first rising and then decreasing, rising from 43.88% in 2001 to 48.75% in 2005 and
36.79% in 2021. This is closely related to the shift of the focus of its economic development
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from the early pursuit of rapid economic development to improving the high-quality and
efficiency of economic development and optimizing the economic structure.
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4.2. Spatial Characteristics of Provincial-Level Carbon Emissions

The spatial trends of carbon emissions of the study area from 2000 to 2021 are displayed
in Figure 5. To investigate the spatial variation of carbon emissions across different regions
and years, we employed the natural interruption point method to categorize the carbon
emission data. Overall, carbon emissions from the nine Yellow River provinces show a
trend of high in the east and low in the west. Specifically, the total carbon emissions of nine
provinces along the Yellow River in 2001 were relatively low. In 2005, carbon emissions from
Shandong, Shanxi, Henan, Inner Mongolia, Sichuan, and Gansu increased significantly,
with Shandong’s emissions exceeding 50 million tons. In 2013, carbon emissions in all four
eastern provinces were at high levels. Shanxi’s carbon emissions fell in 2017. This reduction
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can be attributed to the successful implementation of an innovative initiative in Taiyuan,
the provincial capital, wherein all taxis were electrified in 2016. However, carbon emissions
in Shanxi and Shaanxi gradually increased in 2021, while those in Henan declined. This
divergence can be attributed to the implementation of the “Notice on the Implementation of
the Three-Year Action Plan for Energy Conservation and Carbon Reduction Transformation
of Key Energy-using Units” by Henan province in 2021. The notice pointed out that, by
2023, key energy-using units will achieve an energy-saving capacity of more than 6 million
tons of standard coal/year, and achieve maximum improvement in energy efficiency.
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4.3. Temporal Characteristics of Per Capita Carbon Emission Intensity and Carbon Emission
Intensity Per Unit of GDP

The per capita carbon emission intensity is a crucial indicator of carbon emission
levels and is the central critical issue in climate negotiations. It is important for developing
effective carbon reduction strategies and for ensuring a sustainable future. The temporal
characteristics of per capita carbon emission intensity in the study area from 2000 to 2021
are presented in Figure 6. From 2000 to 2021, the per capita carbon emission intensity of
nine provinces along the Yellow River showed an overall upward trend. Among them,
Inner Mongolia has the highest per capita carbon emission intensity, reaching 34.7 tons
in 2021. Its growth trend is the largest, with an average annual growth rate of 10.94%.
This is mainly due to its development mode of “relying on energy and relying on heavy
energy”, the characteristics of heavy industrial structure and high carbonization of energy
structure, large stock and a high proportion of energy and raw material industries, and
high energy consumption and high emission industries; renewable energy has become the
main basic energy still to be developed, and the role of carbon emission reduction is not
sufficient. Moreover, Ningxia’s per capita carbon emission intensity is just below Inner
Mongolia’s, with a faster growth rate. Shanxi’s per capita carbon emission intensity is in
the middle of the range until it exceeds 15 tons in 2021. In contrast, Sichuan has the lowest
per capita carbon emission intensity, at 3.4 tons. Its growth trend is also the smallest, with
an average annual growth rate of 5.04%. This may be related to Sichuan’s relatively clean
industrial structure and relatively diversified energy structure, while Sichuan’s vigorous
development of renewable energy, such as hydropower and wind power, has also played a
positive role in reducing carbon emissions. The per capita carbon emission intensity of the
other provinces varies little, and they are all relatively low, located below 10 tons.
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The carbon emission intensity per unit of GDP is an internationally recognized indica-
tor for measuring the effectiveness of emission reduction. The temporal characteristics of
the carbon emission intensity per unit of GDP in the study area from 2000 to 2021 are pre-
sented in Figure 7. From 2000 to 2021, the carbon emission intensity per unit of GDP in the
study area showed an overall downward trend. Ningxia has the highest carbon emission
intensity per unit of GDP, reaching 4.9 tons/10,000 yuan in 2021. This is mainly because
the energy structure of Ningxia is mainly based on coal, which accounts for a relatively
high proportion of energy consumption. Moreover, Ningxia is a relatively underdeveloped
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economic region, and, to catch up with the development speed of other regions, it may
have neglected the importance of environmental protection in the process of economic
development. There may be some lag in the utilization of resources and transformation of
industrial structure, resulting in a high carbon emission intensity per unit GDP. Sichuan,
on the other hand, has the smallest carbon emission intensity per unit of GDP, as low as
0.5 tons/10,000 yuan in 2021. This is due to Sichuan’s active development of other new
energy sources, and the utilization of these clean energy sources has helped to reduce
its dependence on traditional high-carbon energy sources, further reducing the carbon
emission intensity per unit of GDP. Moreover, Sichuan’s economic structure is relatively
lightweight. Lightweight industries usually have a relatively low energy demand, thus
reducing the carbon emission intensity per unit of GDP. Henan has been actively restruc-
turing and transforming its energy mix over the past few years. Consequently, Henan has
the largest downward trend in carbon emission intensity per unit of GDP, with an average
annual reduction rate of 6.97%. By contrast, due to Ningxia’s relatively homogenous energy
structure, the energy transition and emission reduction efforts face greater challenges.
Consequently, Ningxia has the smallest downward trend in carbon emission intensity per
unit of GDP, with an average annual reduction rate of 1.48%.
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4.4. Spatial Characteristics of Municipal-Level Carbon Emissions

Based on the fitting model proposed above and the nighttime light index at the
municipal scale, the inversion obtained the spatial characteristics of municipal-level carbon
emissions in the study area from 2000 to 2021 (as presented in Figure 8). From 2000 to 2021,
the carbon emissions of this region mainly showed a trend of “several”; that is, the carbon
emissions of urban areas around the Yellow River were higher, and the carbon emissions of
provincial capitals were higher. From 2000 to 2009, carbon emissions increased rapidly, and
the proportion of cities with high carbon emissions increased from 4.35% in 2001 to 32.17%
in 2021. In 2001, only Jinan, Qingdao, Yantai, Zhengzhou, and Taiyuan had high levels of
carbon emissions. In 2021, only the eastern and northern cities had faster carbon emission
growth, while the southwestern cities had a slower growth rate. Shandong is a province
with a large population and rapid economic development, accounting for about 9% of the
country’s carbon emissions in 2020, making it the largest carbon emitter province in China.
Moreover, Shandong is also the largest coal power province in China, accounting for 9.5%
of the country’s installed capacity. More than 99% of its heat demand is met by coal, with
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the rest coming from oil and gas. Therefore, in 2021, only Rizhao in Shandong had carbon
emissions of less than 30 million tons.
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4.5. Spatial Characteristics of County-Level Carbon Emissions

The spatial characteristics of county-level carbon emissions in the study area from 2000
to 2021 are presented in Figure 9. From 2000 to 2021, the carbon emissions of all districts and
counties along this region increased significantly, showing a spatial distribution pattern of
“southeast high and northwest low”. Among them, counties in Shandong and Henan have
higher carbon emissions, accounting for 91.97% and 81.65% of the high-carbon-emission
counties in the two provinces in 2021. The growth rate of carbon emissions in each county
and district showed a trend of “first urgent and then slow”, with 2009 as the cut-off point.
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The proportion of counties with high carbon emissions increased from 12.72% in 2001 to
40.56% in 2009 and 55.68% in 2021.
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5. Discussion
5.1. Global Spatial Correlation

GeoDa software was utilized to establish the spatial weights, and the global spatial
correlation index (Moran’s I) of county-level carbon emissions in the study area from 2000
to 2021 was calculated. The results are presented in Table 4. All the Moran’s I of this
region is positive, and the p-values are all zero, indicating a significant spatial correlation
of county-level carbon emissions in the region. Moran’s I shows a trend of decreasing first
and then increasing and gradually tends to a stable state in the later stage, and the pattern
of spatial agglomeration is relatively fixed. Before 2013, there was an overall downward
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trend, from 0.314 in 2001 to 0.223 in 2013, indicating that counties with similar carbon
emissions are more likely to be dispersed. This is because, since the beginning of the 21st
century, all regions have made great efforts to build and develop, but the development has
been uneven, resulting in different carbon emission levels. After 2013, the overall trend
increased, from 0.223 in 2013 to 0.287 in 2021, and eventually stabilized, indicating that
counties with similar carbon emissions are more inclined to agglomerate.

Table 4. Moran’s I of county-level carbon emissions in the study area from 2000 to 2021.

Year Moran’s I p

2001 0.314 0
2005 0.351 0
2009 0.313 0
2013 0.223 0
2017 0.270 0
2021 0.287 0

5.2. Local Spatial Correlation

The LISA clustering maps of county-level carbon emissions in the study area are
presented in Figure 10. In general, the spatial agglomeration mode of county-level carbon
emissions was relatively fixed, “High–High” and “Low–Low” were the main types of
local spatial autocorrelation, and the number of counties and districts where “High–High”
agglomeration increased significantly, while the number of counties and districts where
“Low–Low” agglomeration gradually decreased. From 2000 to 2013, the “High–High”
and “Low–High” types of counties and districts were mainly distributed along the Yellow
River, and the number of “Low–High” types of districts and counties gradually increased,
mainly because the counties along the Yellow River developed rapidly, but, due to uneven
development caused by regional differences, most of the counties and districts along the
coast had a “radiation effect” on surrounding cities, and carbon emissions formed the
“High–High” type. Meanwhile, some counties and districts have a “siphon effect” on
surrounding cities, and carbon emissions with a “Low–High” type. The “Low–Low” type
is mainly distributed in Sichuan, which is because Sichuan’s clean energy accounts for more
than 80% to 90%, which is much higher than the national level, and the carbon emissions of
each county are low. From 2013 to 2021, Shanxi’s “High–High” and “Low–Low” gradually
disappeared. The Sichuan Basin gradually formed the “High–High” type centered on
Chengdu, and the number gradually increased. The “Low–Low” type in eastern Inner
Mongolia and Yan’an and Linfen in Shaanxi is gradually increasing.

5.3. Possible Strategies

To prompt the ecological protection and high-quality development of the Yellow River
Basin, the following strategies may be implemented:

(1) The upstream of the Yellow River should develop clean energy. The upstream
of the Yellow River is rich in hydropower and wind energy resources, and vigor-
ously develops hydropower and wind power to reduce the use of fossil energy and
carbon emissions.

(2) The midstream of the Yellow River should promote industrial transformation and
upgrading. The midstream of the Yellow River has a high degree of industrialization
and should promote industrial transformation and upgrading, promote clean produc-
tion technologies and circular economy models, reduce the use of fossil fuels, and
reduce carbon emissions.

(3) The downstream of the Yellow River should promote green development. The down-
stream of the Yellow River comprises China’s economic centers and urban agglomera-
tions and should promote green development, encourage low-carbon consumption
and lifestyles, and promote renewable energy and clean transportation.
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6. Conclusions

This study establishes a carbon emission assessment model based on the “NPP-VIIRS-
like” nighttime light data, investigating the spatiotemporal characteristics and trends of
carbon emissions, per capita carbon emission intensity, and carbon emission intensity
per unit of GDP in the study area since the 21st century. Further, the spatial correlation
of carbon emissions at the county level is explored using the Moran’s I spatial analysis
method. This comprehensive method overcomes the limitations of incomplete traditional
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statistics and differing statistical calibers, providing a reliable new tool for monitoring
carbon emissions. The main conclusions drawn from this study are as follows:

(1) TNLI and carbon emission models of the study area were constructed according
to different years. The model exhibited high accuracy with an average correlation
coefficient R2 of 0.8945. The model has proven effective in estimating carbon emissions
at the city and county levels, enabling the timely monitoring and assessment of carbon
emissions in small-scale areas.

(2) In terms of temporal variation, from 2000 to 2021, carbon emissions in the study
area continued to rise but the growth rate declined, showing an overall convergence
trend, but not yet reaching a carbon peak. The proportion of upstream and midstream
carbon emissions has gradually increased, while the proportion of downstream carbon
emissions has gradually decreased. Per capita carbon emission intensity is generally
on the rise, with Inner Mongolia having the largest per capita carbon intensity and
Sichuan having the smallest. The carbon emission intensity per unit of GDP is
generally declining. Ningxia has the highest carbon intensity per unit of GDP, while
Sichuan has the lowest carbon intensity per unit of GDP.

(3) In terms of spatial variation, the carbon emissions of the study area generally show
high carbon emissions in the eastern region and low carbon emissions in the western
region. The carbon emissions of each city mainly show a trend of “several”; that is, the
urban area around the Yellow River has higher carbon emissions. Meanwhile, there
is a trend of higher carbon emissions in provincial capitals. The proportion of cities
with high carbon emissions increased from 4.35% in 2001 to 32.17% in 2021. Counties
in Shandong and Henan have higher carbon emissions, accounting for 91.97% and
81.65% of the two provinces in 2021, respectively.

(4) In terms of spatial relationship, Moran’s I shows a trend of first decreasing and then
increasing and gradually tends to a stable state in the later stage, and the pattern of
spatial agglomeration is relatively fixed. “High–High” and “Low–Low” are the main
types of local spatial autocorrelation, and the number of counties with “High–High”
agglomeration increases significantly, while the number of counties with “Low–Low”
agglomeration gradually decreases. From 2000 to 2013, counties of the “High–High”
and “Low–High” types were mainly distributed along the Yellow River, and the “Low–
Low” type was mainly distributed in Sichuan. From 2013 to 2021, Shanxi’s “High–
High” and “Low–Low” gradually disappeared. The Sichuan Basin gradually formed
the “High–High” type centered on Chengdu, and the number gradually increased.

The spatial and temporal variations in carbon emissions show a converging trend of
decreasing growth rates. While emissions continue to rise, the declining rate of growth
suggests potential improvements in emission management and control measures. The rise
in the per capita carbon emission intensity indicates the need for more sustainable and
efficient use of resources. The decline in carbon emission intensity per unit of GDP indicates
progress in decoupling economic growth from carbon emissions. Spatial differences in
carbon emissions can be attributed to changes in economic activity, population density,
and energy sources. Understanding these spatial differences can help target emission
reduction strategies where they are most needed. Understanding the spatial relationships
and patterns of carbon emissions can help policymakers to identify areas where targeted
interventions are needed and to work together towards effective mitigation strategies.
Taken together, these findings can guide policymakers in developing strategies and policies
to mitigate carbon emissions, promote sustainable development, and achieve emission
reduction targets.

This study presents a unique perspective on carbon emissions monitoring, provid-
ing valuable data references and decision-making support for governmental entities and
businesses aiming to advance sustainable economic development and foster the estab-
lishment of ecological civilization. In our future research endeavors, we intend to delve
deeper into the analysis of influencing factors and mechanisms associated with carbon
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emissions, while also exploring effective monitoring technologies for carbon emissions
based on heterogeneous data from multiple sources.
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