Spatiotemporal Heterogeneity of Total Factor Productivity of Grain in the Yangtze River Delta, China
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Conceptual Framework of the Driving Mechanism of Spatiotemporal Evolution
3.2. Indicator Setting
3.2.1. Evaluation Index System for TFPG
3.2.2. Driving Factor Indicators for Factor Productivity of Grain
3.3. Data Sources
3.4. Study Methods
3.4.1. DEA Malmquist Index
3.4.2. Geographically and Temporally Weighted Regression Model
4. Results
4.1. Time Evolution Characteristics of Total Factor Productivity of Grain (TFPG)
4.2. Spatial Evolution Characteristics of TFPG
4.3. Possible Policy Recommendations
5. Discussion
5.1. Temporal Heterogeneity of Driving Factors
5.2. Spatial Heterogeneity of Driving Factors
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dios-Palomares, R.; Alcaide, D.; Diz, J.; Jurado, M.; Prieto, A.; Morantes, M.; Zuniga, C.A. Analysis of the Efficiency of Farming Systems in Latin America and the Caribbean Considering Environmental Issues. Rev. Cient. 2015, 25, 43–50. [Google Scholar]
- Michée, A.L.; Boris, E.; Bravo-Ureta Carlos, E.L. Ludena. Agricultural productivity growth in Latin America and the Caribbean: An analysis of climatic effects, catch-up and convergence. Int. Conf. Agric. Econ. 2020, 1, 1–59. [Google Scholar]
- Tan, M.H.; Li, X.B.; Xie, H.; Lu, C.H. Urban land expansion and arable land loss in China-a case study of Beijing-Tianjin-Hebei region. Land Use Policy 2005, 22, 187–197. [Google Scholar] [CrossRef]
- Wang, P.; Deng, X.Z.; Jiang, S.J. Global warming, grain production and its efficiency: Case study of main grain production region. Ecol. Indic. 2019, 105, 563–570. [Google Scholar] [CrossRef]
- Choi, S.W.; Sohngen, B.; Rose, S.; Hertel, T. Total factor productivity change in agriculture and emissions from deforestation. Am. J. Agric. Econ. 2011, 93, 349–355. [Google Scholar] [CrossRef]
- Yuan, T. Total factor productivity performance of chinese enterprises. Econ. Res. J. 2009, 6, 52–64. [Google Scholar]
- Li-Lian, L.I.; Zhang, L.G. Empirical analysis of the spatial-temporal evolution and driving factor of total factor productivity of grain of yangtze river economic belt. Prices Mon. 2017, 6, 77–82. [Google Scholar]
- Li, B.; Yang, W.; Zhu, X. Multilevel correlation analysis of influencing factors on total factor productivity of grain in main grain producing provinces of china. Open J. Appl. Sci. 2018, 8, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Liu, Z.; Zhang, Z. Spatial differences of grain production efficiency in china, 1987–1992. Econ. Change Restruct. 2001, 34, 139–157. [Google Scholar] [CrossRef]
- Yang, L. Comparison of agricultural tfp of the main grain production area in china from low-carbon angle of view: Based on the data of 13 provinces from 2002 to 2011. J. Hunan Agric. Univ. (Soc. Sci.) 2013, 14, 27–32. [Google Scholar] [CrossRef]
- Brugnaro, R.; Bacha, C. Análise da participao da agropecuária no pib dos eua de 1960 a 2001. Rev. Econ. Sociol. Rural. 2008, 46, 355–390. [Google Scholar] [CrossRef]
- Chatrath, R.; Mishra, B. Challenges to wheat production in South Asia. Euphytica 2007, 157, 447–456. [Google Scholar] [CrossRef]
- Bayarsaihan, T.; Coelli, T.J. Productivity growth in pre-1990 mongolian agriculture: Spiralling disaster or emerging success? Agric. Econ. 2003, 28, 121–137. [Google Scholar]
- James, O. Measuring technical efficiency and productivity growth: A comparison of SFA and DEA on Norwegian grain production data. Appl. Econ. 2007, 39, 2617–2630. [Google Scholar]
- Hossain, M.K.; Kamil, A.A.; Baten, M.A.; Mustafa, A. Stochastic frontier approach and data envelopment analysis to total factor productivity and efficiency measurement of bangladeshi rice. PLoS ONE 2012, 7, e46081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Han, Z.; Deng, X. Changes in productivity, efficiency and technology of china’s crop production under rural restructuring. J. Rural. Stud. 2016, 47, 563–576. [Google Scholar]
- Zhang, Q.; Zhang, F.; Chen, X. Study on production efficiency of main grain producing areas in China. Price Theory Pract. 2018, 9, 155–158. (In Chinese) [Google Scholar]
- Thuzar, L.; Broos, M. Measuring the Efficiency of Rice Production in Myanmar Using Data Envelopment Analysis. Asian J. Agric. Dev. 2019, 16, 1–24. [Google Scholar]
- Ge, L.; Zhao, Y.; Sheng, Z.; Wang, N.; Zhou, K.; Mu, X.; Guo, L.; Wang, T.; Yang, Z.; Huo, X. Construction of a seasonal difference-geographically and temporally weighted regression (sd-gtwr) model and comparative analysis with gwr-based models for hemorrhagic fever with renal syndrome (hfrs) in hubei province (China). Int. J. Environ. Res. Public Health 2016, 13, 1062. [Google Scholar] [CrossRef] [Green Version]
- Haiyan, X.; Anqi, Z.; Quanlu, L.; Jinshu, C. Affecting factors research of chinese provincial economic development—Based on gtwr model. J. Ind. Technol. Econ. 2016, 2, 154–160. [Google Scholar]
- Bo, H.; Bo, W.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar]
- Yao, S.; Li, H. Agricultural productivity changes induced by the sloping land conversion program: An analysis of wuqi county in the loess plateau region. Environ. Manag. 2010, 45, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhang, Y.; Zhan, J.; Glauben, T. Marginal revenue of land and total factor productivity in chinese agriculture: Evidence from spatial analysis. J. Geogr. Sci. 2012, 22, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Key, N. Farm size and productivity growth in the united states corn belt. Food Policy 2019, 84, 186–195. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Lou, S.; Zhong, S. Research on grain production efficiency in china’s main grain producing areas from the perspective of financial support. PLoS ONE 2021, 16, e0247610. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Cheng, S.; Henneberry, S.R. Total factor productivity change in China’s grain production sector: 1980–2018. Aust. J. Agric. Resour. Econ. 2023, 67, 38–55. [Google Scholar] [CrossRef]
- Myyrä, S.; Pihamaa, P.; Sipiläinen, T. Productivity growth on finnish grain farms from 1976 2006: A parametric approach. Agric. Food Sci. 2009, 18, 283–301. [Google Scholar] [CrossRef]
- Li, L.; Tsunekawa, A.; Tsubo, M.; Koike, A.; Wang, J. Assessing total factor productivity and efficiency change for farms participating in grain for green program in china: A case study from ansai, loess plateau. J. Food Agric. Environ. 2010, 8, 1185–1192. [Google Scholar]
- Elasraag, Y.H.; Alarcón, S. Global Malmquist indices of productivity change in Egyptian wheat production. Span. J. Agric. Res. 2017, 15, e0111. [Google Scholar] [CrossRef] [Green Version]
- Yoji, K.; Ryoji, K. Fluctuations in rice productivity caused by long and heavy rain under climate change in japan: Evidence from panel data regression analysis. Jpn. Agric. Res. Q. 2015, 49, 159–172. [Google Scholar]
- Eric, N.; Bravo-Ureta, B.E.; O’Donnell Christopher, J.; Rosenbloom, J.L. A new look at the decomposition of agricultural productivity growth incorporating weather effects. PLoS ONE 2018, 13, e0192432. [Google Scholar]
- Sheng, Y.; Chancellor, W. Exploring the relationship between farm size and productivity: Evidence from the Australian grains industry. Food Policy 2019, 84, 196–204. [Google Scholar] [CrossRef]
- Zuo, Y. Study on the difference of production and scale of agricultural total factor productivity based on TFP index. EKOLOJI 2019, 28, 107. [Google Scholar]
- Zheng, D.; An, Z.; Yan, C.; Wu, R. Spatial-temporal characteristics and influencing factors of food production efficiency based on wef nexus in china. J. Clean. Prod. 2022, 330, 129921. [Google Scholar] [CrossRef]
- Sánchez, L.O. A Parametric Decomposition of a Generalized Malmquist-Type Productivity Index; Documentos De Trabajo; Universidad de Oviedo, Facultad de Ciencias Económicas: Oviedo, Spain, 2002. [Google Scholar]
- Li, J.; Zhang, J.; Gong, L.; Miao, P. Research on the total factor productivity and decomposition of chinese coastal marine economy: Based on dea-malmquist index. J. Coast. Res. 2015, 73, 283–289. [Google Scholar] [CrossRef]
- Yang, J.; Wu, J.; Li, X.; Zhu, Q. Sustainability performance analysis of environment innovation systems using a two-stage network dea model with shared resources. Front. Eng. Manag. 2022, 9, 425–438. [Google Scholar] [CrossRef]
- Wu, J.; Sun, J.; Liang, L. Methods and applications of dea cross-efficiency:review and future perspectives. Front. Eng. Manag. 2021, 8, 199–211. [Google Scholar] [CrossRef]
- Lu, X.; Xu, C. The difference and convergence of total factor productivity of inter-provincial water resources in china based on three- stage dea-malmquist index model. Sustain. Comput. 2019, 22, 75–83. [Google Scholar] [CrossRef]
- Tang, D.; Tang, J.; Xiao, Z.; Ma, T.; Bethel, B.J. Environmental regulation efficiency and total factor productivity-effect analysis based on chinese data from 2003 to 2013. Ecol. Indic. Integr. Monit. Assess. Manag. 2017, 73, 312–318. [Google Scholar] [CrossRef]
- Wu, C.; Ren, F.; Hu, W.; Du, Q. Multiscale geographically and temporally weighted regression: Exploring the spatiotemporal determinants of housing prices. Int. J. Geogr. Inf. Sci. 2018, 33, 489–511. [Google Scholar] [CrossRef]
- Yuan, H.; Feng, Y.; Lee, J.; Liu, H. The spatio-temporal heterogeneity of financial agglomeration on green development in china cities using gtwr model. Sustainability 2020, 12, 6660. [Google Scholar] [CrossRef]
- Mirzaei, M.; Amanollahi, J.; Tzanis, C.G. Evaluation of linear, nonlinear, and hybrid models for predicting pm2.5 based on a gtwr model and modis aod data. Air Qual. Atmos. Health 2019, 12, 1215–1224. [Google Scholar] [CrossRef]
- Canhui, D.; Qiaoyun, M.A.; Xiaojie, F. Spatial-temporal evolution pattern of grain total factor productivity in henan province. Guizhou Agric. Sci. 2018, 46, 155–159. [Google Scholar]
- Li, H.; Huang, G.; Meng, Q.; Ma, L.; Yuan, L.; Wang, F.; Zhang, W.; Cui, Z.; Shen, J.; Chen, X.; et al. Integrated soil and plant phosphorus management for crop and environment in china. A review. Plant Soil 2011, 349, 157–167. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Wu, G.; Mai, Q. Spatial spillover effects of grain production efficiency in china: Measurement and scope. J. Clean. Prod. 2021, 278, 121062. [Google Scholar] [CrossRef]
- Gong, X. Analysis of green total factor productivity of grain and its dynamic distribution: Evidence from poyang lake basin, china. Agriculture 2021, 12, 8. [Google Scholar]
- Hai-Bo, Z.; Ying, L. Analysis on agricultural total factor productivity of grain-producing provinces in china. J. Huazhong Agric. Univ. 2011, 5, 35–38. [Google Scholar]
Indicator Type | Classification | Indicator Name | Specification | Unit |
---|---|---|---|---|
Output indicators | Grain yield | Grain yield | The total amount of grain produced by agricultural producers and operators within a calendar year | 10,000 tons |
Input indicators | Labor input | Number of employees in the primary industry | The number of employees engaged in agriculture, forestry, animal husbandry, and fisheries | 10,000 people |
Land input | Grain sown area | The planting or transplanting area of grain crops that agricultural producers and operators should harvest on (cultivated or non-cultivated land) within the calendar year | 10,000 hectares | |
Capital investment | Total power of agricultural machinery | The total power of various power machinery used in agriculture, forestry, animal husbandry, and fisheries | 10,000 kilowatt | |
Amount of agricultural fertilizer used (net amount) | The actual amount of fertilizers used in agricultural production in a given year, including nitrogen, phosphorus, total potassium, and compound fertilizers | 10,000 tons |
Indicator Name | Variable | Indicator Description | Unit |
---|---|---|---|
Development level of grain economy | X1 | The ratio of total agricultural output value to total agricultural, forestry, animal husbandry, and fishery output value multiplied by the sown area of grain crops/sown area of crops | % |
Fertilizer usage per unit area | X2 | The total amount of fertilizer used divided by the sown area of crops in the area | Tons/hectare |
GDP per capita | X3 | Total GDP divided by the total population of the same period | CNY |
Average labor operation scale | X4 | The area sown for grain divided by the number of labor force sown for grain, where the number of labor force sown for grain is expressed by multiplying the number of agricultural employees by the area sown for grain/the area sown for crops | Hectare per person |
Proportion of grain-growing population | X5 | Grain-sowing area divided by crop-sowing area | % |
Output of grain per hectare | X6 | Grain yield divided by grain-sown area | Tons/hectare |
Order Number | Area | Technical Efficiency | Technical Progress | Pure Technical Efficiency | Scale Efficiency | Total Factor Productivity |
---|---|---|---|---|---|---|
1 | Shanghai | 1.000 | 0.942 | 1.000 | 1.000 | 0.942 |
2 | Hangzhou | 0.999 | 0.957 | 1.000 | 1.000 | 0.957 |
3 | Ningbo | 1.015 | 0.991 | 1.013 | 1.002 | 1.006 |
4 | Wenzhou | 0.981 | 0.974 | 0.980 | 1.001 | 0.955 |
5 | Jiaxing | 1.000 | 1.023 | 1.000 | 1.000 | 1.023 |
6 | Huzhou | 1.000 | 0.993 | 1.000 | 1.000 | 0.993 |
7 | Shaoxing | 1.007 | 0.986 | 1.007 | 1.000 | 0.993 |
8 | Jinhua | 0.989 | 0.947 | 0.990 | 0.999 | 0.937 |
9 | Quzhou | 0.999 | 0.981 | 0.998 | 1.001 | 0.980 |
10 | Zhousan | 1.008 | 0.961 | 1.000 | 1.008 | 0.969 |
11 | Taizhou | 1.013 | 0.950 | 1.013 | 1.000 | 0.962 |
12 | Lishui | 0.978 | 0.971 | 0.975 | 1.002 | 0.949 |
13 | Nanjing | 0.989 | 1.010 | 0.991 | 0.998 | 0.998 |
14 | Wuxi | 0.999 | 1.006 | 1.000 | 0.999 | 1.005 |
15 | Xuzhou | 0.775 | 1.008 | 0.792 | 0.979 | 0.781 |
16 | Changzhou | 0.993 | 1.003 | 0.998 | 0.995 | 0.997 |
17 | Suzhou | 0.999 | 1.003 | 1.000 | 0.999 | 1.003 |
18 | Nantong | 1.002 | 1.008 | 1.008 | 0.994 | 1.010 |
19 | Lianyungang | 0.999 | 1.010 | 1.001 | 0.998 | 1.008 |
20 | Huaian | 1.001 | 1.020 | 0.998 | 1.002 | 1.021 |
21 | Yancheng | 1.003 | 0.999 | 1.000 | 1.003 | 1.002 |
22 | Yangzhou | 1.000 | 1.018 | 1.000 | 1.000 | 1.018 |
23 | Zhenjiang | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
24 | Taizhou | 1.000 | 1.009 | 1.000 | 1.000 | 1.009 |
25 | Suqian | 1.002 | 1.008 | 1.004 | 0.998 | 1.010 |
26 | Hefei | 0.997 | 1.012 | 0.997 | 1.000 | 1.010 |
27 | Wuhu | 0.979 | 1.009 | 0.979 | 1.000 | 0.988 |
28 | Bengbu | 0.991 | 1.010 | 0.992 | 1.000 | 1.001 |
29 | Huainan | 0.984 | 1.008 | 0.977 | 1.008 | 0.993 |
30 | Maanshan | 0.987 | 1.009 | 1.001 | 0.986 | 0.996 |
31 | Huaibei | 1.031 | 1.008 | 1.031 | 0.999 | 1.039 |
32 | Tongling | 1.007 | 1.009 | 1.000 | 1.007 | 1.016 |
33 | Anqing | 0.987 | 1.002 | 0.988 | 0.999 | 0.990 |
34 | Huangshan | 0.992 | 1.006 | 1.016 | 0.976 | 0.998 |
35 | Chuzhou | 1.007 | 1.010 | 1.004 | 1.003 | 1.017 |
36 | Fuyang | 1.006 | 0.996 | 0.994 | 1.012 | 1.002 |
37 | Suzhou | 1.023 | 0.996 | 1.026 | 0.997 | 1.019 |
38 | Liuan | 1.009 | 0.996 | 1.000 | 1.009 | 1.006 |
39 | Bozhou | 1.013 | 1.001 | 1.000 | 1.013 | 1.015 |
40 | Chizhou | 0.983 | 1.007 | 1.001 | 0.981 | 0.989 |
41 | Xuancheng | 0.994 | 1.008 | 0.996 | 0.999 | 1.002 |
42 | Average value | 0.993 | 1.008 | 0.996 | 0.999 | 0.989 |
Evaluating Indicator | Numerical Value |
---|---|
Goodness of fit (R2) | 0.794 |
Correction (R2) | 0.792 |
Akaike information criterion (AIC) | 54,203.800 |
Residual sum of squares (RSS) | 56,831.400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, F.; Lyu, D.; Huang, D. Spatiotemporal Heterogeneity of Total Factor Productivity of Grain in the Yangtze River Delta, China. Land 2023, 12, 1476. https://doi.org/10.3390/land12081476
Wen F, Lyu D, Huang D. Spatiotemporal Heterogeneity of Total Factor Productivity of Grain in the Yangtze River Delta, China. Land. 2023; 12(8):1476. https://doi.org/10.3390/land12081476
Chicago/Turabian StyleWen, Fenghua, Donghan Lyu, and Daohan Huang. 2023. "Spatiotemporal Heterogeneity of Total Factor Productivity of Grain in the Yangtze River Delta, China" Land 12, no. 8: 1476. https://doi.org/10.3390/land12081476
APA StyleWen, F., Lyu, D., & Huang, D. (2023). Spatiotemporal Heterogeneity of Total Factor Productivity of Grain in the Yangtze River Delta, China. Land, 12(8), 1476. https://doi.org/10.3390/land12081476