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Abstract: Exploring the relationship between finance and economic growth is a key direction of
financial economics. However, most of the literature starts from the aggregate perspective and uses
the GDP or per capita GDP as the explained variable to study the role of finance. Such a perspective
ignores the heterogeneity of financial activities with respect to geographical distribution and makes
it difficult to distinguish the roles of factor input and efficiency improvement. Because of this, this
article introduces a “density” perspective on new economic geography and the measurement of the
efficiency of the transition of development economics into financial economics. This article uses
the stochastic frontier analysis (SFA) method to measure the technical efficiency (TE) of 272 cities in
China from 2005 to 2018 and then, based on “forward-looking” and “backward-looking” methods,
measures the impact of financial density on urban technical efficiency. This study found that overall,
before the financial crisis in 2008, the contribution of financial density to technical efficiency showed a
downward trend, and in the regional and provincial dimensions, the distribution of financial density’s
contribution to technical efficiency was generally in line with that of backward regions, with less
regularity in developed regions. In the urban dimension, the contribution rate of financial density to
resource-based cities with slow technological progress or advanced cities with rich financial resources
is not very prominent and may even play a negative role; however, cities that are at a medium level
of development, rich in population resources, have convenient transportation, and have a certain
industrial foundation can greatly promote the improvement of technical efficiency. Therefore, it may
be possible to optimize the marginal contribution of urban financial density to the technical efficiency
of Chinese cities by encouraging the flow of financial resources and activities from cities with small
marginal effects to those with large marginal effects.

Keywords: financial density; technical efficiency; stochastic frontier; backward-looking; forward-looking;
cities of the PR of China

1. Introduction

As the core of the modern economy, the importance of the financial sector is self-
evident. Exploring the relationship between finance and economic growth is also a key
direction of financial economics. Generally speaking, the role of finance can be roughly
divided into two categories. One is to promote the accumulation of capital, that is, to
boost economic growth by assisting with the transformation of savings into investment;
the other is to boost efficiency, that is, to optimize resources. The configuration brings
about an increase in output under the same technical conditions and factor inputs. In the
literature on the role of finance, most of the literature starts from the aggregate perspective
and uses the GDP or per capita GDP as the explained variable to study the role of finance.
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However, as this perspective ignores the heterogeneity of the geographical distribution of
financial activities, it is also difficult to distinguish the roles of factor input and efficiency
improvement. Among the few studies that explore the role of finance from the perspective
of technical efficiency, most start at the national or provincial level [1], and few studies
focus on cities. With the continuous advancement of urbanization, cities have become the
most important spatial form for economic and social development. A question derived
from this is how does financial density affect technical efficiency at the city level?

Because of this, this article introduces a “density” perspective on new economic geog-
raphy and the measurement of the efficiency of the transition of development economics
into financial economics. This article uses the stochastic frontier analysis (SFA) method to
calculate the technical efficiency (TE) of 272 cities in China that are above the prefecture
level from 2005 to 2018. Then based on the “forward-looking” and “backward-looking”
methods, this article measures the impact of financial density on urban technical efficiency.
The main contributions of this paper are as follows: (1) this article takes the city as the re-
search subject, and the spatial scale is more subtle; (2) focusing on the relationship between
financial density and urban technical efficiency fills gaps in the existing literature; and (3) in
terms of the research methods and the comprehensive use of the “forward-looking” and
“backward-looking” methods to measure the effect of financial density on urban technical
efficiency, the robustness of the conclusion is stronger.

2. Literature Review

The issue of growth lies at the core of economic research. Classical economics con-
sidered labor and capital as the primary sources of growth, with corresponding measures
mainly involving single-factor productivity, i.e., the output obtained per unit of input, such
as labor productivity and capital productivity. Although such measures are straightforward
and clear, they only reflect isolated and local production efficiency. For a more compre-
hensive measurement of social production efficiency, a comprehensive indicator needs to
be constructed to measure the output efficiency of all factor inputs, i.e., the total factor
productivity (TFP). Solow, R. M. (1957) [2] proposed a Hicks-neutral and constant-return-
to-scale Cobb–Douglas production function in his representative paper, characterizing the
total output as the result of the combined effect of capital, labor input, and the “Solow
Residual” and established a growth-accounting equation that can separate the contribution
of technological progress to economic growth. The “Solow Residual” can be understood as
a generalized TFP.

The advantage of the Solow Residual method is its clarity and simplicity, which have
led to its widespread adoption [3–6]. However, its underlying assumption of “no produc-
tion inefficiency” is too stringent. To remedy this, Aigner, D. J. and Chu, S. F. (1968) [7]
proposed the frontier analysis, which decomposes the source of TFP growth into the up-
ward movement of the technological frontier, i.e., technical progress, and the closeness of
the actual production face to the technological frontier, i.e., improvements in technical effi-
ciency. The concept of technical efficiency can be traced back to Koopmans, T. C. (1951) [8].
Koopmans proposed that an input–output vector is considered technically efficient if it is
technically impossible to increase any output without increasing other inputs. Building on
Koopmans’ research, different scholars have defined the connotation of technical efficiency.
Farell, P. (1957) [9] believed that “technical efficiency refers to the ratio of the minimum
cost required to produce a certain quantity of products to the actual cost, given a certain
factor input ratio, with unchanged output scale and market prices”. Uri, N. D. (2003) [10]
suggested that “technical efficiency refers to the proportion of actual input saved relative to
the optimal production frontier at the same output level”. Wu, Y. and Zhang, L. (2004) [11]
posited that “technical efficiency refers to the extent to which a producer’s production
activities approach the production frontier under the existing technology level”. By inte-
grating these scholars’ views, it is not difficult to see that although there are differences in
expression, the core idea of technical efficiency is the ratio of the actual economic output to
the maximum possible output.
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As shown in Figure 1, ft + 1(x) and ft(x) represent the production frontier at times
t + 1 and t, i.e., the maximum possible output. Due to the influence of various controllable
or uncontrollable factors, production on the production frontier is often an overly ideal
situation (points D or B). Most of the time, activities occur off the production frontier
(for example, points A and C). Therefore, given the level of technology, closeness to the
production frontier implies an improvement in technical efficiency (movement from point
A to B or from point C to D). Empirical research has found that most developing countries
produce at positions off the production frontier, far from achieving possible technical
efficiency [12].
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Given this, Aigner, D. et al. (1977) [13] and Meeusen, W. and Van Den Broeck, J.
(1977) [14] pioneered the path of using the frontier production function method for the
calculation of growth. A frontier analysis, depending on the setting of the frontier surface,
can be divided into deterministic frontier and stochastic frontier methods. The deterministic
frontier analysis implies that each production unit shares a fixed production frontier surface,
and all factors influencing the output are included as reflections of technical inefficiency. Its
advantage lies in simple calculations, but the main disadvantage is the absence of random
factors, and it is thus unable to further separate inefficiency values from the error term.

A stochastic frontier analysis (SFA), on the other hand, assumes a random setting
for the frontier production function. Each production unit does not need to share a fron-
tier surface, allowing the inefficient term in the error term to be distinguished from the
random error term, thus providing a more accurate calculation of the level of technical
efficiency [15]. Several studies have used the SFA method for the calculation of China’s
economic growth [16–20]. These studies focused on the decomposition of the sources of
China’s economic growth efficiency and the measurement of efficiency losses and not
specifically on the role of the financial sector.

In a research study performed from the financial perspective, Nourzad, F. (2002) [21]
argued that financial development could promote economic growth by reducing technical
inefficiency. He, F. et al. (2003) [22], based on the Cobb–Douglas production function setting,
concluded that financial development had promoted the improvement of technical efficiency.
Gu, N. (2010) [23], based on city panel data, analyzed and measured the channels and effects
of the productive service industry on industrial spillover effects from a micro-perspective.
Sheng, W. (2017) [1] used provincial panel data to study the relationship between financial
development and China’s technical efficiency of production, focusing on the role of the scale
and structure of the credit sector on the technical efficiency of production.
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Additionally, many scholars have used non-parametric methods for calculating growth,
the most typical of which is the Manquist index method, which is based on a data envelop-
ment analysis (DEA). This method began with Sten Malmquist and became widely used
after being optimized by Fare, R. et al. (1994) [24], with representative studies including
those by Xiaogang, C. et al. (2005), Guillaumont Jeanneney, S. et al. (2006), Bian, Y. and
Yang, F. (2010), Shuai, S. and Fan, Z. (2021), and Chang, K. et al. (2023) [25–29]. The DEA
method does not require the specification of the production function’s form nor distri-
bution assumption, thus avoiding potential setting errors. However, due to the lack of
a production function setting, any deviation from the production boundary is measured
as an inefficient component, which makes its decomposition and analytical capabilities
inferior to the SFA method. Fu, X. and Wu, L. (2007) [30] compared the applicability of the
DEA and SFA in the calculation of the TFP in China. They found that the DEA’s estimation
results are very sensitive to outliers, while the SFA’s results have good robustness and are
thus more suitable for China.

Upon conducting a review of the aforementioned literature, the current research
reveals several shortcomings.

First, from a research perspective, most of the literature on developmental economics
focuses on the decomposition of the sources of economic growth efficiency and the measure-
ment of efficiency loss rather than the role of the financial sector. Financial economics often
starts with financial development, lacking a geographical perspective in terms of density.
Therefore, this paper attempts to integrate the perspectives of developmental economics on
growth and economic geography on space, focusing on the impact of financial density on
technological efficiency.

Second, in terms of the research subject, most previous studies were limited to the
national or provincial dimensions, with a dearth of quantitative research based on the
city level.

Third, in terms of research methodology, most past studies used the setting of an
inefficiency function to measure the overall impact of finance on economic development,
without the ability to discuss the differential effects of finance in different cities. This paper
attempts to address these shortcomings in the existing literature.

3. Theoretical Analysis

Theoretically, equilibrium production in a perfectly competitive market should be on
an optimal production curve. However, due to “market defects” under the neoclassical
framework, such as market failures, public goods, externalities, asymmetric information,
transaction costs, price rigidity, irrational behavior, etc., actual production often deviates
from the optimal production curve. The progress of technical efficiency manifests as an
approach to the optimal production curve. Therefore, the promotional effect of finance
on technical efficiency should theoretically originate from overcoming “market defects”.
Referring to the analyses of financial functions by Merton, R. C. and Bodie, Z. (1995) and
Allen, F and Gale, D. (2001) [31,32], this article argues that the improvement of financial
density can correct “market defects” in terms of information failure and transaction costs
by exerting its functions of resource allocation and information transmission.

From the perspective of information failure, information economics summarizes the
issue of information failure as incomplete information [33]. In terms of manifestation,
incomplete information can be divided into two types: information distortion and infor-
mation asymmetry. Information distortion refers to the fact that due to human cognitive
limitations and the costs of obtaining information, the information grasped by each market
participant is incomplete and insufficient. Information asymmetry refers to the disparity
in the information possessed by different market participants, with some having more
information and some less. The problem caused by information distortion is making the
premise of a complete market untenable, thus hindering the achievement of an optimal
equilibrium. The main problem with information asymmetry is that it causes adverse
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selection and moral hazard issues. The information transmission function of finance can
effectively alleviate the problem of incomplete information [34,35].

From the perspective of transaction costs, transaction costs broadly refer to the costs
that need to be expended to achieve a transaction. Common forms include search costs,
information costs, bargaining costs, decision-making costs, and supervision costs. Their
specific forms will change with the specific transaction. The main mechanism through
which financial development reduces transaction costs is by pooling scattered individual
transactions and small transactions, leveraging economies of scale and scope to spread
transaction inputs such as venue rent, machinery and equipment, and labor costs, thereby
significantly reducing the costs of individual transactions [36].

In addition, the improvement of financial density will directly affect the technical
efficiencies of cities through external economies of scale. The idea of external economies of
scale originated from Marshall, A. (2009) [37]. He once pointed out that larger professional
labor markets, the sharing of intermediate inputs, and knowledge spillovers are the sources
of external economies of scale, as well as the reasons for agglomeration and high density.
And Duranton, G and Puga, D. (2004) [38] further refined it into three micro-mechanisms
of “sharing”, “matching”, and “learning”. Subsequent studies have demonstrated that
the impact of density is greatest among knowledge-based industries in which the sharing
of ideas is central to the production process [39]. In reality, there is indeed a significant
spatial agglomeration phenomenon in the financial industry which is specifically reflected
in the widespread existence of financial center cities and financial functional areas. As
the financial sector is an important economic component of a city, an increase in financial
density means that the degree of agglomeration has increased. On one hand, this will lead
to the improvement of the efficiency of the financial sector (through sharing, matching, and
learning mechanisms), which will directly affect the improvement of the city’s technical
efficiency; on the other hand, it will also indirectly affect the technical efficiency of other
sectors due to the improvement of the efficiency of the financial sector and the enhancement
of financial function.

In general, an increase in financial density will bring externalities and promote the
improvement of the technical efficiency of the local financial sector through sharing, match-
ing, and learning mechanisms. Moreover, it will also enhance financial functions, thus
optimizing issues of information failure and transaction costs, and provide support for
the actual production curve to approach the production possible curve, promoting the
improvement of technical efficiency.

4. Measurement of Financial Density and the Rate of Change in Urban
Technical Efficiency

This section focuses on the measurement of urban financial density and changes in
technical efficiency.

4.1. Setting beyond the Logarithmic Production Function

Referring to the approach of Aigner, D. et al. (1977) [13], the basic setting form for the
frontier production function in this section is as follows:

Yit = Xitβ · exp(vit − uit) (1)

Here, i represents the city, and t represents time; Y is the actual output level; X is the
combination of production factor inputs, and β is its coefficient. The error term consists of
two parts: the random error term vit and the technical inefficiency term uit. The two are
independent of each other. vit follows a standard normal distribution with a mean of 0 and
a variance of σ2

v , and uit follows a truncated normal distribution with a mean of 0 and a
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variance of σ2
u . By restricting the value of uit to be non-negative, the mean of the technical

inefficiency can be represented as a linear combination of a set of variables, as follows:

uit = Zitδ = δ0 +
M

∑
m=1

δmzm (2)

where Z = [Z1, · · · , ZM] is a combination of M factors causing technical inefficiency. On
this basis, Kumbhakar, S.C. (1991) [40] proposed using a one-stage maximum likelihood
estimation method to simultaneously estimate Equations (1) and (2), a method known as
the “one-step estimation method”. Battese, G.E. and Coelli, T.J. (1995) [41] further extended
this method to use panel data and defined technical efficiency (TE) as the ratio of the actual
output to the potential maximized output. The calculation formula is as follows:

TE = E[exp(−uit) | vit − uit] (3)

According to the specification, the TE value should range between 0 and 1, with values
closer to 1 indicating proximity to the optimal production frontier, while values closer to
0 indicate a deviation from the optimal production frontier. Following the approach of
Kumbhakar, S. C. and Wang, H-J. (2005) [42] in the specification of the production function,
we transform the production function in Equation (1) into a transcendental logarithmic
(trans-log) function form. The trans-log function was introduced by Christensen, L.R.
et al. (1973) [43] as a flexible production function that relaxes the assumption of constant
substitution elasticities among multiple inputs in the traditional C-D function. It allows
for the study of output elasticities, substitution elasticities, interaction effects, and techno-
logical differences within the production function. The effectiveness of using this function
was demonstrated in previous research [44]. The linearized form of the transcendental
logarithmic production function can be expressed as follows:

ln Yit = β0 + βKln Kit + βLln Lit +
1
2βKK(ln Kit)

2 + 1
2 βLL(ln Lit)

2

+βKL(ln Kit × ln Lit) + βKT(ln Kit × T) + βLT(ln Lit × T)
+βTT + 1

2βTST2 + (vit − uit)

(4)

In the above, i represents the city, and t represents time, Y denotes the actual output
level, and β represents the coefficient of production factors, in which L represents labor, K
represents capital, and T represents the time trend variable. Considering the non-monotonic
transformation of technology, the function also introduces quadratic terms. Additionally,
considering the non-neutral aspect of technological progress, interaction terms between the
time trend and input factors are included.

4.2. Setting the Technological Inefficiency Function

Referring to the existing literature [1,6], we select financial density, infrastructure, gov-
ernment expenditure, scientific research patents, and business environment as explanatory
variables for the inefficiency function. Therefore, the estimation equation for technological
inefficiency is as follows:

uit = δ0 + δ1FDit + δ2 INFRAit + δ3GOVit + δ4PAT it + δ5BSENV it (5)

4.3. Data Source and Statistical Description

Firstly, we introduce the sources and processing methods of the output, labor, and fixed
capital stock data used for the estimation of the production function. In terms of output,
many researchers use the GDP to measure output levels [16,45]. This article continues with
this approach, using the actual gross domestic product of each city at constant prices from
2005 as the measure of output level. For the calculation of labor, considering the impact
of education level on the quality of labor, we refer to Han, F. and Yang, L. (2020) [46] and
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measure the effective labor quantity obtained by multiplying the average years of education
by the actual number of employed personnel.

For data regarding the fixed capital stock, this article refers to the processing method
of Zhang, Z. (2019) [45] and uses the following formula: Kit = Ki(t−1)(1− δ) + Iit in which
Kit represents the fixed capital stock of a city i in the t-th year, δ is the depreciation rate,
and Iit represents the actual newly added fixed asset investment of the city i in the t-th year.
During the calculation, due to the lack of base period capital stock data, we need to estimate
a base period stock. Referring to Liu, C. et al. (2017) and Yu, Y. et al. (2019) and [47,48],
taking 1991 as the base year, the base year capital stock is determined as K0 = I0/(g + δ),
in which I0 is the base year investment amount, g is the annual average growth rate of a
real investment during the sample period, and δ is the depreciation rate (which is 9.6%,
referring to [49]).

In the inefficiency equation, the variables include financial density, infrastructure,
government expenditure, research patents, and business environment. Financial density is
represented in this study by the average scale of financial activity per square kilometer (in
billions of CNY/km2). The choice of this measure is due to the inclusion of the “density”
concept, making it more appropriate for reflecting the supply of financial services. Financial
activities can be divided into direct and indirect finance.

In terms of direct finance, this study, referencing existing research [50], categorizes
it into equity financing and debt financing. Equity financing includes IPOs, rights issues,
additional issues, and preferred shares. For debt financing, this study primarily measures
the scale of funds entering the real economy, hence selecting eight types of debts: corporate
bonds, company bonds, medium-term notes, short-term financing bonds, targeted tools,
asset-backed securities, convertible bonds, and exchangeable bonds. The data come from
the Wind database.

Indirect finance is measured using the end-of-year balances of various loans of financial
institutions in the urban district, with data sourced from the China Urban Statistical Yearbook.
After obtaining data for the scales of the direct and indirect financial activities for the year,
the sum of these two gives the scale of the city’s financial activity for that year. Dividing
this by the area of the district gives the financial density (FD) variable.

Variables such as government expenditure, infrastructure, and research patents are
calculated, respectively, as the logarithm of the current year’s fiscal expenditure as a
percentage of the GDP, the logarithm of the actual road area at year end, and the logarithm
of the number of new patents in the city each year. The data are sourced, respectively, from
the China Economic Database (CEIC), the Urban Statistical Yearbook of China, referring to
versions published in various years, and the China Research Data Services Platform. The
city business environment variable 1 is derived by collating data from the annual China
Provincial Marketization Index Report to obtain provincial-level data, which are then assigned
to cities under the province’s jurisdiction and extended to the entire research period using
the trend extrapolation method. Finally, this forms a panel data set covering 272 cities at
the prefecture level and above, spanning from the year 2005 to 2018. A description of the
data is provided in Table 1.

4.4. Estimation Results

Before estimating the model parameters, it is necessary to test the validity of the spec-
ified frontier production function model. To do this, we need to construct the test statistic
λ = −2[L(H0)− L(H1)], where L(H0) and L(H1) represent the log-likelihood function
values under the null hypothesis and the alternative hypothesis, respectively. The alternative
hypothesis H1 corresponds to the original model. If H0 holds, the test statistic λ follows
an asymptotic χ2 distribution with degrees of freedom equal to the number of constrained
variables. The first test is to examine the presence of inefficiency. The null hypothesis, in
this case, is that there is no inefficiency, which means the model can be reduced to ordinary
least squares (OLSs), implying that the coefficients of all variables in the inefficiency function,
as well as γ = δ2

µ/
(

δ2
µ + δ2

ν

)
, are zero, i.e., γ = δ0 = δ1=. . .=δr = 0. The second test aims
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to determine if the Cobb–Douglas production function is superior to the transcendental
logarithmic production function. The null hypothesis here is that all quadratic term coeffi-
cients in the production function are zero, while the first-order terms of capital, labor, and
the technological progress term T are retained. The third test investigates the existence of
technological progress. The null hypothesis in this case is there is no technological progress
but there exists interaction, meaning that all parameter coefficients associated with T are
zero. The fourth test examines whether technological progress is Hick-neutral. The null
hypothesis states that βKT = βLT = 0. The fifth test assesses if technological efficiency is a
fixed effect. If technological efficiency is a fixed effect, a non-time-varying model should be
selected; otherwise, a time-varying model is appropriate.

Table 1. Data sed for the measurement of city-level total factor productivity.

Variable
Code

Variable
Content Data Obs Mean Std Min Max

GDP Output Log of the actual GDP of the current year
(in billions) 3808 6.80 0.97 3.80 10.15

lnK Capital Log of the fixed capital stock of the
current year (in billions) 3808 7.92 1.08 1.79 11.19

lnL Effective
Labor Force

Log of the number of employees’ average
years of education (in tens of thousands) 3808 6.13 1.12 4.01 9.75

FD Financial
Density

Financial activity scale per square
kilometer (in billions/km2) 3808 0.30 1.08 0.00 30.41

INFRA Infrastructure
Log of the area of existing roads at the
end of the year (in tens of thousands of

square meters)
3808 6.90 1.01 0.69 10.32

GOV Government
Expenditure

The proportion of government fiscal
expenditure to the GDP (%) 3808 0.15 0.07 0.04 0.71

PAT Research
Patents

Log of the number of new patents in the
city each year 3808 6.53 1.80 1.61 11.85

BSENV Business
Environment Log of the business environment index 3808 4.14 0.22 2.16 4.55

Note: dates are collected from CEIC, WIND, Urban Statistical Yearbook of China, China Provincial Marketization Index
Report, and the National Bureau of Statistics.

The test results, as shown in Table 2, indicate that at a significance level of 1%, we
should reject the five null hypotheses mentioned above. This suggests that the specified
transcendental logarithmic production model and the maximum likelihood estimation
method employed in this study are reasonable, and the model does not exhibit any degen-
eracy. Subsequently, utilizing the compiled data from 272 cities at or above the prefecture
level for the years 2005–2018, the transcendental logarithmic production function and
production inefficiency function were estimated using the Frontier 4.1 software through
maximum likelihood estimation. The estimation results are presented in Table 3.

From the estimation results in Table 3, the γ of the model is 0.892, and it is significant
at the 1% level. This indicates that the model effectively captures the factors that cause
production inefficiency. Approximately 89.2% of the inefficiency can be explained by the
model variables, while the impact of random error terms is minimal. Secondly, based on
the results of the inefficiency production function, the regression coefficient of the financial
density is negative, suggesting that an increase in the local financial density helps alleviate
technical inefficiency and positively contributes to improving technical efficiency. On
the other hand, government expenditure has a significant negative effect, indicating that
government intervention often exhibits inefficiency, which is consistent with the conclusions
of Wang, Z. et al. (2006) [16] and Li, Q. et al. (2013) [51]. Furthermore, it is observed



Land 2023, 12, 1592 9 of 21

that scientific patents, business environment, and infrastructure play significant roles in
improving the state of production inefficiency, which aligns with empirical expectations.

Table 2. Testing the applicability of the transcendental logarithmic production function specifications.

Testing H0 H1 LR Degrees of
Freedom

1% Critical
Value

Test
Conclusion

T1: Test for the presence of
inefficiency −2040.83 1390.35 6862.35 3 10.501 Rejected

T2: Test for the form of the production
function 1142.37 1390.35 495.97 3 10.501 Rejected

T3: Test for the existence of
technological progress 1235.91 1390.35 308.87 3 10.501 Rejected

T4: Test for the Hicks neutrality of
technological progress 1255.70 1390.35 269.31 3 10.501 Rejected

T5: Test for the fixed effects of
technological efficiency 1064.27 1390.35 652.17 2 8.273 Rejected

Table 3. Estimation results for transcendental logarithmic production function and production
inefficiency function.

Variable Coefficient Standard Error T-Value

constant 8.504 *** 0.180 47.12
lnK 0.666 *** 0.042 16.00
lnL −0.410 *** 0.045 −9.14

t 0.183 *** 0.012 15.78
lnk2 −0.015 *** 0.003 −4.65
lnl2 0.081 *** 0.008 10.58
t2 −0.003 *** 0.001 −7.14

tlnk −0.008 *** 0.002 −5.30
tlnl −0.004 * 0.002 −1.78

lnklnl −0.051 *** 0.011 −4.79
constant 1.631 *** 0.100 16.33

FS −0.570 *** 0.011 −53.01
INFRA −0.078 *** 0.011 −6.89
GOV 2.667 *** 0.089 29.88
PAT −0.079 *** 0.005 −16.035

BSENV −0.098 *** 0.026 −3.722
σ2 0.109 *** 0.003 38.00
γ 0.892 *** 0.034 32.69

Log Likelihood −1045.5417

LR 1983.7106
Note: *** and * represent significance at the 1% and 10% levels, respectively.

5. Analysis of Estimation Results
5.1. National and Regional Dimensions

From Figure 2, it can be observed that the technical efficiency of Chinese cities exhibited
a fluctuating trend from 2005 to 2018. The first significant trough occurred in 2009, which
was influenced by the global financial crisis in 2008. The average technical efficiency of
Chinese cities experienced a substantial impact but began to rebound in 2010. The second
cycle within the sample period started around 2014, and the average technical efficiency
continued to decline for three years [52]. Finally, in the second half of 2015, stimulated by a
series of demand-stimulating policies, the average technical efficiency bottomed out and
rebounded in 2016.
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Figure 2. Evolution of the average technical efficiency of Chinese cities over time.

Of the six major regions in China, the Southeast region and the Bohai Bay region exhibit
superior technical efficiency compared to the national average, with the Southeast region’s
lead continuously expanding (Figure 3). The Northeast region initially outperformed the
national average in the early stage of the study period; however, it started to decline after
2011 and was gradually surpassed by other areas. Since 2016, its technical efficiency level
has been the lowest among the six major regions, indicating a significant gap between its
actual production curve and the production frontier. The Southwest region had the poorest
initial foundation but has shown significant improvement over the years. The Central
and Northwest regions had similar initial conditions, and their changes were relatively
synchronous from 2005 to 2013. However, after 2013, as the technical efficiency of the
Northwest region declined, it was gradually overtaken by the Central region.
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Figure 3. Evolution of national urban technical efficiency over time.

5.2. Provincial Level Dimensions

Looking at the situation across the provinces (Table 4), during the research period, on
average, Jiangsu, Zhejiang, Beijing, Tianjin, and Shanghai were among the top in terms
of overall technological efficiency. This aligns well with the stage characteristics of each
province in China. Among them, Zhejiang, Tianjin, and Guangdong started the research
period as the top three among all provincial administrative regions, while at the end of the
research period, the top three provinces (cities) in terms of technological efficiency changed
to Beijing, Shanghai, and Jiangsu. These three provinces (cities) have also made the most
absolute progress in catching up with the production frontier, improving by 0.319, 0.290,
and 0.249, respectively. Moreover, Chongqing and Zhejiang have seen relatively rapid
improvements in technological efficiency. Chongqing has seen the most improvement
in rankings; in 2005, Chongqing’s technological efficiency was at the bottom among all
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provinces (cities) with an absolute level of only 0.103. However, after 14 years of catching
up, Chongqing’s technological efficiency reached 0.253 in 2018, rising to fourth place.
Meanwhile, provinces such as Hebei, Jilin, Shanxi, Inner Mongolia, Gansu, Liaoning, and
Heilongjiang saw a decline in technological efficiency during the research period, indicating
a deviation from the production frontier.

Table 4. Performances of provinces in terms of technical efficiency.

Rank Province Average Province 2005 Province 2018 Province Change

1 Jiangsu 0.448 Zhejiang 0.390 Beijing 0.654 Beijing 0.319
2 Zhejiang 0.443 Tianjin 0.374 Shanghai 0.629 Shanghai 0.290
3 Beijing 0.441 Guangdong 0.374 Jiangsu 0.592 Jiangsu 0.249
4 Tianjin 0.434 Hainan 0.356 Zhejiang 0.524 Chongqing 0.151
5 Shanghai 0.432 Jiangsu 0.343 Tianjin 0.504 Zhejiang 0.134
6 Neimenggu 0.391 Shanghai 0.339 Fujian 0.440 Tianjin 0.129
7 Guangdong 0.380 Neimenggu 0.337 Guangdong 0.404 Fujian 0.117
8 Hai Nan 0.378 Beijing 0.335 Shandong 0.394 Guizhou 0.116
9 Shandong 0.363 Liaoning 0.330 Hainan 0.390 Shanxi 0.074

10 Fujian 0.357 Shandong 0.324 Yunnan 0.365 Shandong 0.070
11 Yunnan 0.321 Fujian 0.323 Hubei 0.326 Yunnan 0.066
12 Liao Ning 0.306 Heilong Jiang 0.305 Neimenggu 0.305 Hubei 0.062
13 Hu Bei 0.273 Yunnan 0.300 Guizhou 0.282 Hubei 0.050
14 Shan Xi 0.262 Shanxi 0.288 Shanxi 0.268 Jiangxi 0.041
15 Hei Long Jiang 0.253 Hubei 0.264 Jiangxi 0.265 Sichuan 0.040
16 He Nan 0.249 Hebei 0.243 Henan 0.263 Hainan 0.034
17 Ji Lin 0.249 Henan 0.241 Hunan 0.262 Guangdong 0.031
18 Jiang Xi 0.243 Anhui 0.232 Chongqing 0.253 Guangxi 0.023
19 Ning Xia 0.239 Jilin 0.227 Ningxia 0.241 Henan 0.022
20 Hu Nan 0.238 Jiangxi 0.224 Anhui 0.235 Ningxia 0.019
21 He Bei 0.235 Ningxia 0.222 Shanxi 0.230 Anhui 0.003
22 Anhui 0.229 Hunan 0.212 Liaoning 0.229 Hebei −0.015
23 Shanxi 0.228 Shanxi 0.194 Hebei 0.228 Jilin −0.019
24 Guizhou 0.211 Guangxi 0.186 Sichuan 0.219 Gansu −0.027
25 Guangxi 0.197 Sichuan 0.178 Guangxi 0.208 Neimenggu −0.033
26 Sichuan 0.196 Gansu 0.172 Jilin 0.207 Shanxi −0.059
27 Chongqing 0.164 Guizhou 0.166 Heilongjiang 0.193 Liaoning −0.101
28 Gansu 0.162 Chongqing 0.103 Gansu 0.145 Heilongjiang −0.112

5.3. City Dimension

From the city perspective, the technological efficiency performance and changes in
cities vividly reflect the economic and social development of China in the recent period.

As shown in Figure 4, cities with higher levels of technological efficiency exhibit two
characteristics. Firstly, they are distributed on two horizontal and two vertical axes. The
two horizontal axes are primarily formed around road and bridge connections and the
Yangtze River channel, while the two vertical axes consist of the eastern coastline and the
Beijing–Kowloon Railway. Secondly, cities with high levels of technological efficiency tend
to appear together, showing obvious aggregation characteristics. On the other hand, as
observed from Figure 4, cities with decreased levels of technological efficiency are mainly
concentrated in the northern region, forming a “V”-shaped distribution. The left wing
of the “V” represents the northwestern region, mainly involving Gansu, Inner Mongolia,
Shaanxi, Shanxi, and other provinces, while the right wing represents the northeastern
region, including Heilongjiang, Jilin, and Liaoning. In addition, there is a tendency for the
“V” shape to transform into a “Y” shape, extending from the north towards the central
China region, all the way to the Yangtze River.

Furthermore, as seen from Table 5, cities such as Zhuhai, Shenzhen, Guangzhou,
Foshan, Zhongshan, Dongguan, Suzhou, Changzhou, Zhenjiang, and Xiamen, which
are first-tier and strong second-tier cities, consistently rank at the forefront of national
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technological efficiency. Additionally, cities like Dongying, Daqing, and Ordos also have
relatively outstanding performances in technological efficiency due to their high per capita
incomes, which benefit from local energy industries.
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Table 5. Performances of key cities.

Top 20 TE in 2005 Top 20 TE in 2018 Top 20 in Avg Value Top 20 in Positive
Change

Top 20 in a Negative
Change

Zhuhai 0.899 Shenzhen 0.959 Zhuhai 0.888 Nanjing 0.363 Daqing −0.317
Daqing 0.864 Zhuhai 0.948 Dongying 0.835 Nantong 0.333 Benxi −0.262

Dongying 0.864 Wuxi 0.856 Shenzhen 0.798 Changzhou 0.323 Anshan −0.259
Panjin 0.657 Suzhou 0.809 Daqing 0.774 Beijing 0.319 Lvliang −0.248

Shenzhen 0.651 Dongying 0.802 Eerduosi 0.702 Wuhan 0.318 Panjin −0.243
Zhongshan 0.632 Changzhou 0.780 Wuxi 0.668 Suzhou 0.317 Wuhai −0.232

Xiamen 0.617 Nanjing 0.742 Foshan 0.647 Yulin 0.313 Tongling −0.208
Foshan 0.606 Hangzhou 0.696 Suzhou 0.613 Wuxi 0.311 Qitaihe −0.180
Baotou 0.587 Xiamen 0.691 Zhenjiang 0.610 Shenzhen 0.308 Yichun −0.176

Zhoushan 0.580 Foshan 0.689 Zhongshan 0.608 Changsha 0.296 Baotou −0.172
Weihai 0.574 Zhenjiang 0.676 Baotou 0.593 Shanghai 0.290 Jixi −0.168
Wuxi 0.545 Ningbo 0.671 Xiamen 0.592 Yangzhou 0.281 Hegang −0.166

Wuhai 0.542 Changsha 0.669 Changzhou 0.586 Ningbo 0.272 Liaoyang −0.154
Dongguan 0.531 Yangzhou 0.668 Zhoushan 0.569 Hangzhou 0.254 Fushun −0.135
Zhenjiang 0.530 Eerduosi 0.657 Panjin 0.549 Yichang 0.247 Yangquan −0.134
Tongling 0.530 Beijing 0.654 Weihai 0.548 Chengdu 0.236 Maanshan −0.122
Eerduosi 0.506 Wuhan 0.653 Guangzhou 0.545 Taizhou 0.235 Jingmen −0.117
Suzhou 0.492 Shanghai 0.629 Huhehaote 0.544 Huaian 0.213 Linfen −0.114
Taiyuan 0.487 Nantong 0.624 Changsha 0.528 Xian 0.209 Dandong −0.112

Maanshan 0.485 Guangzhou 0.619 Dongguan 0.516 Fuzhou 0.194 Huainan −0.110

Moreover, in terms of changes (Figure 5), cities that have seen a faster increase in
technological efficiency are mostly those in city clusters or regional center cities, such
as Nanjing, Nantong, Changzhou, Beijing, Wuhan, Suzhou, Wuxi, Shenzhen, Changsha,
Shanghai, Yangzhou, Ningbo, Hangzhou, Chengdu, Taizhou, and Xi’an. These are also
cities in which industrial development has been particularly noticeable in the past. Among
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them, Yulin, Yichang, and Huai’an are all cities that have emerged as stars in the transition
to development in recent years. Taking Yulin as an example, in recent years, under the
influence of the national energy revolution innovation demonstration zone, it has transi-
tioned to a modern, resource-leading city. Based on traditional industries in the chemical
energy industry, it’s the competitive advantage of its tertiary industry has gradually in-
creased, and the results of its high-quality economic development are significant. Huai’an
has accelerated the digital transformation of traditional manufacturing industries and
promoted the deep integration of the digital economy and the real economy. As a national
port-type logistics hub city, a regional central city in the middle and upper reaches of
the Yangtze River, and a sub-central city in Hubei province, Yichang is accelerating its
progress toward greener industries. Cities in which technological efficiency has declined
are mostly resource-based cities that have struggled with their transformations, such as
Daqing, Anshan, Benxi, Panjin, Hegang, Wuhai, and Qitaihe.
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6. Measurement of the Contribution of Financial Agglomeration to Urban Production
Technical Efficiency

To grasp the relationship between urban productivity and financial density more
precisely, this paper continues to calculate the impact of financial density on the technical
efficiencies of different cities. Coelli, T. et al. (1999) [53] and Henry, M. et al. (2009) [54] have,
respectively, proposed methods to measure the contributions of influencing factors to tech-
nical efficiency in the context of a stochastic frontier model, based on the “forward-looking”
and “backward-looking” principles. Firstly, based on Battese, G.E., Coelli, T.J. (1995) [41],
and Coelli, T. et al. (1999) [53], technical efficiency (TE) can be calculated through the
following formula:

TEit =

[
exp

(
−µit +

1
2
σ2
∗

)]
×
{[

1−Φ
(
σ∗ −

µit
σ∗

)]
/
[

1−Φ
(
−µit
σ∗

)]}
(6)
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)
− γεit (7)

σ2
∗ = γ(1− γ)σ2 (8)
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γ = σ2
u/
(
σ2

u + σ
2
v

)
(9)

In Equation (6), Φ represents the cumulative distribution function of standard, normal-
distribution variables; in Equation (7), [Z1, . . . Zm] is a combination of m factors that affect
technical inefficiency. According to the “forward-looking” method, to judge the contri-
bution rate of a certain influencing factor Zn, it can be assumed that the situation of this
influencing factor is completely the same for all individuals and is at the optimal level,
that is, when δnZn,it in Equation (7) takes the minimum value minδnZn,it, the calculated
technical efficiency (TE f ) is the potential technical efficiency under optimal conditions.
The higher the ratio of the potential technical efficiency to the actual technical efficiency
(TE f /TE-1) after conversion, the greater the contribution of this factor to the technical effi-
ciency. The drawback of this method is that because the assumption of the optimal level of
this influencing factor is based on the optimal situation of the existing observed individuals,
it may underestimate the potential optimal level, resulting in an underestimation of the
contribution rate.

The basic logic of the “backward-looking” calculation method can be described as
judging the contribution rate of a certain influencing factor Zn by excluding the effects of
all other influencing factors; the obtained technical efficiency (TEb) and the actual technical
efficiency are compared, and the difference (TEb/TE− 1) after conversion is the contri-
bution rate of the influencing factor Zn. For example, assuming that n = 1, i.e., Zn = Z1
when the promotion effect of other factors on technical efficiency is maximized, i.e., when
δ0 + ∑m

n=2 δnZn,it in Equation (7) takes max(δ0 + ∑m
n=2 δnZn,it), the contribution of the in-

fluencing factor Z1 is the smallest; on the contrary, when the promotion effect of the other
factors on the technical efficiency is the smallest, i.e., when it takes min(δ0 + ∑m

n=2 δnZn,it),
the contribution of Z1 is the largest. The average of the minimum and maximum con-
tributions is the average contribution rate of Z1. The drawback of this method is that
the combination of influencing factors in Equation (7) may not cover all the determinant
variables of technical efficiency, which may result in overestimating the contribution rate.

In response to this, Wang, M. and Wong, M.S. (2012) [55] comprehensively used the
“forward-looking” and “backward-looking” methods to analyze the evolutionary trend of
international R&D activities and their contribution to a country’s technical efficiency. The
results show that the contribution rates calculated by the “forward-looking” and “backward-
looking” methods have some differences, but the differences are systematic, and their results
have consistency in time and regional dimensions and the fitting effect with the actual
situation is good; overall, the robustness is strong. Therefore, this paper also comprehensively
uses the “forward-looking” and “backward-looking” methods to calculate the contribution
of financial agglomeration to the technical efficiency of Chinese cities.

6.1. Results and Comparison Based on “Forward-Looking” and “Backward-Looking” Calculations

The “forward-looking” and “backward-looking” methods have been used to measure
the impact of financial density on technical efficiency, and the results are summarized in
Figure 6.

Firstly, overall, financial density has a positive promoting effect on improving technical
efficiency. The calculation results based on the “forward-looking” method show that the
contribution rate of financial density is relatively small, and the fluctuation is gentle. The
highest value is 28.15% for 2006, and the lowest value is 19.79% for 2018, mainly showing
a slow downward trend during the sample period. The results calculated based on the
“backward-looking” method are systematically higher than those of the “forward-looking”
method, but its upper limit, lower limit, and average maintain a synchronized change trend.
For example, the average contribution rate reached its highest at 154.18% in 2009 and its
lowest at 129.65% in 2011, showing a fluctuating downward trend during the sample period.

In addition, based on their calculation logic, the results of the “forward-looking” and
“backward-looking” methods may be affected by extreme values; under the “forward-
looking” method, because it is assumed that the financial density (FD) is completely the
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same for all entities and is at the optimal level, the result is affected by the extreme values
of the financial density (FD); similarly, the “backward-looking” method is affected by
the extreme values of other factors. Therefore, to test the robustness of the results, this
paper conducted a robustness test after a basic calculation. The specific approach for the
“forward-looking” method is to take the smallest 10, 20, 30, 40, and 50 values and take the
average, replacing extreme values with the average; for the “backward-looking” method,
the approach is to take the maximum and minimum of 10, 20, 30, 40, 50 values of other
influencing factors and take the average, replacing extreme values with the average. Table 6
compares the calculated results with the original results after updating the statistics.
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Table 6. Robustness test.

Variables Observation Mean Std.Dev. Min Max

Backward-
Looking

Backward-looking average contribution rate
(baseline calculation) 3808 1.464 1.092 −0.279 8.046

Backward-looking average contribution rate
(10-item average) 3808 1.473 1.097 −0.278 8.091

Backward-looking average contribution rate
(20-item average) 3808 1.466 1.090 −0.276 8.036

Backward-looking average contribution rate
(30-item average) 3808 1.469 1.092 −0.275 8.045

Backward-looking average contribution rate
(40-item average) 3808 1.459 1.089 −0.280 8.023

Backward-looking average contribution rate
(50-item average) 3808 1.460 1.090 −0.280 8.030

Forward-
Looking

Forward-looking contribution rate (baseline
calculation) 3808 0.242 0.254 −0.519 1.208

Forward-looking contribution rate (10-item average) 3808 0.01 0.154 −0.483 0.543

Forward-looking contribution rate (20-item average) 3808 0.517 0.395 −0.562 2.232

Forward-looking contribution rate (30-item average) 3808 0.504 0.385 −0.556 2.154

Forward-looking contribution rate (40-item average) 3808 0.215 0.241 −0.514 1.122

Forward-looking contribution rate (50-item average) 3808 0.23 0.248 −0.516 1.168
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As can be seen from Table 6, within the research range of this study, the results
calculated by the “backward-looking” method show better robustness (the average is
relatively stable), while the results calculated by the “forward-looking” method are greatly
influenced by extreme values. Therefore, the analysis in this article will mainly be based on
the results calculated using the “backward-looking” method.

6.2. Results Based on the “Backward-Looking” Method

Overall, the contribution of financial density to technical efficiency had already shown
a declining trend before the 2008 financial crisis (Figure 7). After 2008, due to the 4 trillion
stimulus plan, the financial density in 2009 increased dramatically, which also led to
a surge in its contribution to technical efficiency. However, excessive financial density
caused distortion in the factor structure, so the contribution of financial density to technical
efficiency rapidly declined after 2010 and gradually recovered after 2013. But by 2018, it
only returned to its approximate level before the crisis.
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6.3. Regional Dimension

From the regional perspective, the efficiency contribution of financial density in each
region generally follows the rule that it is higher in less-developed areas and lower in
developed areas, which is consistent with the results of Sheng, W. (2017) [1], which were
calculated based on provincial data (Figure 8). Looking at the average annual contribution
rate during the research period, it is higher in the northwest and southwest regions,
followed by the central and northeast regions, with the Bohai Bay and Southeast regions
being the lowest. In terms of changes, after experiencing shocks, most regions show a trend
of declining and then rebounding with respect to the contribution rate of financial density;
the decline in the northeast in the second stage is not obvious, which may mainly stem from
the fact that the impact of the financial crisis and the four trillion stimuli mainly affected
foreign trade, industry, real estate, local finance, and employment but had a smaller impact
on fixed asset investment and consumer loans [56].

6.4. Provincial Dimension

As can be seen from Table 7, during the research period, the annual average contribu-
tion rate of financial density to urban production technical efficiency is lower in developed
provinces such as Zhejiang, Tianjin, Jiangsu, and Beijing and higher in developing provinces
like Gansu, Ningxia, Chongqing, Sichuan, Guangxi, and Guizhou. Over time, the positive
role of financial density generally decreases, but the positive role is expanding in certain
developing regions (Gansu, Heilongjiang, Hebei, Shanxi, Liaoning, etc.).
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Table 7. Contribution rate of FD to EF in provincial dimension based on the “forward-looking”
method.

Province 2005–2009 2010–2014 2015–2018 2005–2018

Zhejiang 0.52 0.39 0.36 0.43
Tianjin 0.53 0.42 0.44 0.47
Jiangsu 0.77 0.44 0.28 0.51
Jiangsu 0.77 0.44 0.28 0.51
Beijing 0.70 0.58 0.46 0.59
Hainan 0.65 0.72 0.85 0.73
Fujian 0.95 0.74 0.63 0.78

Yunnan 0.96 0.81 0.76 0.85
Shandong 0.99 0.79 0.74 0.85

Guangdong 0.87 0.89 0.93 0.90
Neimenggu 0.93 0.66 1.15 0.90

Shanghai 1.08 1.05 0.73 0.97
Liaoning 1.05 0.92 1.89 1.24

Hubei 1.60 1.28 1.20 1.37
Henan 1.47 1.40 1.33 1.40

Jilin 1.44 1.14 1.71 1.41
Shanxi 1.19 1.32 2.06 1.49
Hebei 1.44 1.48 1.59 1.50
Jiangxi 1.85 1.58 1.43 1.64
Hunan 1.82 1.61 1.61 1.68
Shannxi 2.05 1.71 1.70 1.83

Heilongjiang 1.34 1.72 2.72 1.87
Anhui 2.00 1.85 1.95 1.93

Guizhou 2.49 1.88 1.34 1.94
Guangxi 2.20 2.00 2.02 2.08
Sichuan 2.31 2.07 2.05 2.15

Chongqing 3.17 2.01 1.29 2.22
Ningxia 2.71 2.32 2.34 2.47
Gansu 3.13 3.18 3.75 3.33

6.5. City Dimension

Summarizing the annual average contribution rate of financial density to technical
efficiency by period and selecting the 10 cities with the highest and lowest contribution
rates in each period, as can be seen from Table 8, it can be seen that cities in which the role of
financial density in technical efficiency is relatively low can be divided into two categories.
The first category is represented by resource-based cities such as Ordos, Dongying, Baotou,
Daqing, and Panjin. Through research on resource-based cities in China, Sun, W. and Dong,
G. (2010) [57] found that due to the slow progress of technology, the technical efficiency of
resource-based cities in China is generally low and shows a downward trend. Combined
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with the findings of this article, the financial density in resource-based cities not only fails
to contribute to the improvement of technical efficiency but may also distort resource
allocation through distorted price signals, thereby affecting technical efficiency. The other
category is represented by advanced cities such as Shenzhen, Zhuhai, Suzhou, Wuxi,
Foshan, and Changzhou; a possible explanation for this categorization is that the financial
resources and activities in these cities are relatively abundant, so the contribution rate is
not particularly prominent. In contrast, the cities in which the role of financial density in
technical efficiency is relatively high are represented by Longnan, Bazhong, Dingxi, Fuyang,
Bozhou, Pingliang, Tianshui, Guyuan, and others, and the common feature of these cities is
that they are at a medium level of development and are often characterized by abundant
human resources, convenient transportation, and a certain industrial foundation. In these
cities, financial activity is relatively scarce. Therefore, the increase in financial density can
generate greater value in coordination with other resources, which manifests as a greater
role for financial density in promoting the improvement of technical efficiency.

Table 8. Contribution rate of FD to EF in at the city level, based on the “forward-looking” method.

Year 2005–2009 2010–2014 2015–2018 2005–2018

Content City Contribution
Rate City Contribution

Rate City Contribution
Rate City Contribution

Rate

Bottom 10

Dongying −0.23 Daqing −0.24 Dongying −0.15 Dongying −0.21
Zhuhai −0.21 Dongying −0.23 Zhuhai −0.12 Zhuhai −0.17
Daqing −0.21 Zhuhai −0.17 Eerduosi −0.11 Daqing −0.12
Baotou 0.01 Eerduosi −0.16 Wuxi −0.01 Eerduosi −0.08

Zhongshan 0.02 Baotou −0.04 Changzhou 0.00 Wuxi 0.04
Eerduosi 0.02 Wuxi 0.02 Suzhou 0.05 Baotou 0.06
Foshan 0.03 Zhenjiang 0.03 Zhenjiang 0.05 Zhenjiang 0.07
Panjin 0.08 Panjin 0.08 Shenzhen 0.06 Foshan 0.08

Zhoushan 0.10 Huhehaote 0.08 Yangzhou 0.06 Suzhou 0.12
Wuxi 0.11 Foshan 0.10 Changsha 0.06 Zhongshan 0.13

Top 10

Dingxi 6.96 Dingxi 6.98 Dingxi 7.69 Dingxi 7.18
Guyuan 6.62 Longnan 6.63 Longnan 6.66 Longnan 6.39
Longnan 5.93 Guyuan 5.43 Guyuan 5.00 Guyuan 5.73
Fuyang 4.16 Bazhong 4.37 Lvliang 4.85 Bazhong 4.20
Anshun 3.85 Fuyang 3.59 Yichun 4.80 Pingliang 3.79
Tianshui 3.74 Pingliang 3.57 Pingliang 4.61 Fuyang 3.79
Bazhong 3.72 Tianshui 3.55 Bazhong 4.59 Tianshui 3.74
Ankang 3.67 Haozhou 3.41 Tianshui 3.98 Hechi 3.45

Shangluo 3.56 Hechi 3.33 Hegang 3.84 Haozhou 3.38
Guangyuan 3.49 Shaoyang 3.32 Qitaihe 3.81 Guangyuan 3.34

7. Discussion

Although the research in this paper has obtained some early-stage results, due to the
limitation of the data and research methods, there are still some questions that cannot be
answered and some new thoughts to be explored.

7.1. Challenges Related to the Estimation of Urban Capital Stock and the Calculation of TE

Capital stock is an important variable in the process of calculating TE using the SFA
method. In the calculation process, the estimation of the base period capital stock, the
setting of the depreciation rate, and the selection of the price index will affect the settlement
result. At the same time, from the perspective of demand, the level of capital utilization will
also affect the authenticity of the estimation. Because even if the parameters from the supply
side are correct, the difference in the capacity utilization rate will greatly compromise the
authenticity of the calculated results. Since overcapacity is a common and differentiated
problem in China, taking this factor into account can improve the authenticity of the
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calculated results. However, there is no mature method for evaluating the rate of utilization
of urban fixed assets, which is a direction that can be promoted in the next stage of research.

7.2. Verification of the Mechanism though which Financial Density Acts on Technical Efficiency

After conducting a theoretical analysis, the authors of this article believe that financial
density can optimize the problems of information asymmetry and transaction cost by pro-
viding resource allocation and information transfer functions to push the actual production
curve closer to the production possibility curve and promote urban technical efficiency. The
empirical study in this paper focuses more on the phenomenon level, namely, the impact of
financial density on urban technical efficiency, but fails to verify it at the mechanism level.
This is another direction for the work that can be continued in the future.

8. Conclusions and Implications

The enhancement of financial density can exert resource allocation and information
transmission functions, optimize information asymmetry and transaction cost issues, and
thus provide support to help the actual production curve approach the maximum possibility
curve, promoting the improvement of technical efficiency. The research in this article finds
that the technical efficiency of Chinese cities shows a fluctuating trend from 2005 to 2018,
with two troughs appearing in 2009 and 2016, respectively. Cities with higher levels of
technical efficiency are distributed on two horizontal and two vertical axes and often appear
in clusters, exhibiting obvious aggregation characteristics. The Southeast region and the
Bohai Bay area lead the country in technical efficiency, and the leading advantage of the
Southeast region is constantly expanding. On the city level, first-tier and strong second-tier
cities always rank at the forefront of national technical efficiency; in terms of changes,
the cities with rapidly improved technical efficiency are mostly regional centers, cities
within city clusters, or those that have undergone important changes in recent years, while
cities with declining levels of technical efficiency are mostly resource-based cities facing
challenging transformations.

As for the role of financial density, in general, before the 2008 financial crisis, the
contribution of financial density to technical efficiency had already shown a downward
trend. After 2008, due to the distortion of factor structure caused by the 4 trillion stimulus
plan, a surge in 2009 and a rapid drop after 2010 occurred, gradually recovering only after
2013. From the regional and provincial perspectives, the efficiency contribution of financial
density in various regions generally conforms to a pattern of being higher in backward areas
and lower in developed areas. In the city dimension, the contribution of financial density
to resource-based cities with slow technological progress or advanced cities with abundant
financial density is not very prominent and may even have a negative effect. However,
for cities at a medium level of development with abundant human resources, convenient
transportation, and a certain industrial base, it can significantly promote the improvement
of technical efficiency. Therefore, it may be possible to optimize the marginal contribution
of urban financial density to the technical efficiency of Chinese cities by encouraging the
flow of financial resources and activities from cities with small marginal effects to those
with large marginal effects.
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Note
1 Please refer to Guo, J. et al. (2023) for more a detailed calculation of city business environment variables.
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