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Abstract: The significant heterogeneity in the spatial distribution of point of interest (POI) data,
the absence of human socio-economic activity information in remote sensing images (RSI), and the
high cost of land use (LU) data acquisition restrict their application in PLES spatial identification.
Utilizing easily accessible data for detailed spatial identification of PLES remains an urgent challenge,
especially when selecting a study area that encompasses both urban built-up areas (UBUA) and
non-urban built-up areas (NUBUA). To address this issue, we proposed a PLES spatial identification
method that combines POI data and land cover (LC) data in this paper. The proposed method first
classified spatial analysis units (SAUs) into agricultural production space (APS), ecological space (ES),
and ambiguous space (AS) based on the rich surface physical information from LC data. Subsequently,
the AS was further classified into living space (LS) and non-agricultural production space (NAPS)
based on the rich human socioeconomic information from POI data. For the AS that contains no POI,
a simple rule was established to differentiate it into LS or NAPS. The effectiveness of the method
was verified by accuracy evaluation and visual comparison. Applying the method to the Jiaodong
Peninsula, we identified the PLES of the Jiaodong Peninsula for 2018 and 2022, further explored their
spatial distribution characteristics, and analyzed their changes. Finally, we conducted a discussion
on the real-world situations and driving mechanisms of the PLES changes and proposed several
policy insights. The results indicated that both the spatial distribution characteristics of PLES and
PLES change in the Jiaodong Peninsula were obvious and showed significant differentiation between
UBUA and NUBUA. Climatic and natural resource conditions, geographic location, macro-policies,
and governmental behaviors drove the PLES changes.

Keywords: land cover data; point of interest data; production-living-ecological space; regional land
use/cover change; urban-rural difference

1. Introduction

As a spatial carrier of human activities, land not only has the most basic survival
resources and production factors for social and economic development but also has the
function of maintaining an ecological balance between climate, soil, hydrology, and veg-
etation [1]. Production-living-ecological functions (PLEF) are the three aspects of land
use function [2]. Production-living-ecological space (PLES), including production space
(PS), living space (LS), and ecological space (ES), reflects the multifunctionality of land
use, which is the basic carrier of human economic and social development [3]. In 2012,
China proposed a development vision of intensive and efficient PS, livable and moderate
LS, and unspoiled and beautiful ES [4]. Since then, achieving coordinated and sustainable
development of PLES has become a major goal for the Chinese government in spatial
planning system establishment, land allocation optimization, and ecological civilization
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construction [3–5]. The dominant function conversion of land among production function,
living function, and ecological function is one of the manifestations of land use change [6].
Urbanization and land use changes led to significant regional changes in the PLES spatial
pattern [7]. Exploring regional changes in the PLES is of great significance for optimizing
the spatial allocation of regional resources. This will promote high-quality and sustainable
development in the region.

Rapid and accurate identification of PLES is the basis for exploring the characteristics
of PLES change. The existing related research used quantitative measurement and land
use consolidation methods primarily to identify PLES [5,8]. By constructing an Evaluation
Index System (EIS) to quantitatively measure the PLEF of land, the quantitative measure-
ment method could identify PLES based on a series of socio-economic statistical data. For
instance, Yang et al. [2] constructed an EIS containing 15 indicators to reveal the coordina-
tion of the PLES in the rural areas of the Beijing-Tianjin-Heibei region. This method takes
sufficient account of the characteristics of the study area when constructing the EIS and
evaluates the PLEF of land from multiple dimensions. However, the construction of the EIS
is cumbersome, and the socioeconomic statistical data have problems such as low spatial
resolution, low update frequency, and a strong time lag, which makes the application of
this method to fine-grained research challenging [9]. Compared to the quantitative mea-
surement method, the LU consolidation method is simpler and easier to implement [10].
It identifies the PLES by establishing the mapping relationship between LU types and
PLES types. The existing PLES-related studies utilizing LU data [2–4,6,7,10,11] primarily
obtained LU data through on-site investigations as well as by requesting land use data
products from institutions. For instance, Duan et al. [1] used participatory mapping based
on RSI to obtain LU data. The large number of on-site investigations undoubtedly leads
to expensive time and labor costs. Gao et al. [11], on the other hand, used the LU data
products published by the Chinese Academy of Sciences, which are generated through
manual visual interpretation based on RSI [12]. The significant involvement of manual
labor has led to escalated data acquisition costs and prolonged update intervals, rendering
users unable to access the LU data products freely and promptly.

Benefiting from the abundant surface physical information provided by RSI, several
scholars tried to acquire LU data based on RSI. For instance, Tao et al. [13] employed
long-term RSI spanning the years 1975 to 2020 to acquire LU data for five resource-based
cities and subsequently utilize the LU data to spatially identify PLES. However, the lack
of human socioeconomic information limits the number of land use types that can be
identified by RSI [14–16]. This limitation results in the inability of the method to accurately
and comprehensively identify PS and LS, which further leads to a potential precision
loss in results. While such precision loss is acceptable in resource-based cities domi-
nated by industrial activities, it may be unacceptable in other urban contexts, especially
in cities where the primary industry revolves around commercial and service sectors.
In contrast to LU, land cover (LC) indicates physical land types and can be directly de-
rived from RSI [17]. Automated LC mapping methods based on RSI were extensively
developed [18–20], and several institutions also published freely accessible LC data prod-
ucts [21]. The convenience of LC data acquisition piqued scholars’ interest in its application
to PLES spatial identification. Li et al. [22] utilized RSI to obtain LC data and identified
PLES by establishing a mapping relationship between LC types and PLES types. Simi-
lar to the method solely reliant on RSI, this method also faces challenges in accurately
and comprehensively identifying PS and LS due to the lack of human socioeconomic
activity information.

Social sensing data, represented by point-of-interest (POI) data, has the advantages
of furnishing both geographic and spatial information and rich socioeconomic insights.
The POI data provide new data support for revealing the urban internal spatial structure
and urban human activity patterns and have been widely used in fine-scale urban studies,
such as functional zone identification [23,24], urban boundary extraction [25,26], and land
use mapping [27,28]. Based on POI data, Fu et al. [29] used the analytic hierarchy process,
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spatial superposition method, and quadrat ratio method to identify the PLES in the central
urban area of Wuhan City. Yang et al. [5] constructed a two-level scoring evaluation model
for POI data to identify PLES in the main urban area of Hangzhou City. These studies have
validated the efficacy and potential of POI data in PLES spatial identification. However, a
strong heterogeneity is shown in the spatial distribution of POI data [30]. Due to significant
differences in the intensity of human socioeconomic activities, POIs are more densely
distributed in urban built-up areas (UBUA) and sparsely distributed in non-urban built-up
areas (NUBUA) [31]. The strong heterogeneity hinders the application of POI data in
NUBUA, and the results of the studies using POI data were mainly focused on UBUA.

Combining multi-source data can effectively break through the limitations of using
a single data source. RSI and POI data were combined to apply to urban studies such
as functional zone mapping [24], building function identification [32], and population
mapping [33]. In terms of combining multi-source data for PLES spatial identification,
Zhao et al. [34] combined POI data, LU data, taxi trajectory data, and area of interest
data to spatially identify PLES in the central area of Haikou City. Fu et al. [35] employed
high-resolution RSI, building vector data, POI data, and nighttime lighting data to spatially
identify PLES in the urban region of Ningbo City. These studies effectively identify PLES
in detail by fusing surface physical and socioeconomic information from multi-source
data. However, these methods have not effectively addressed the issues that limit the
application of POI data in NUBUA. Due to the significant discrepancies in development
degree, production mode, and land planning, significant differences exist in the LU mode
between UBUA and NUBUA [36]. These differences are reflected in the function and
landscape of the land, reflecting the differences between UBUA and NUBUA in economic
activities, human settlement environment, and ecological quality. Therefore, including
the NUBUA in the study area is helpful for policymakers to sufficiently understand the
overall development in the region, which is meaningful for the promotion of regionally
coordinated development.

Overall, with the selection of a region including UBUA and NUBUA as a study area,
how to use easily accessible data to spatially identify PLES in detail is still an urgent problem
to be solved. To address this issue, we proposed a method for the spatial identification of
regional PLES that combines POI data and LC data in this study. The method combines the
strengths of POI data and LC data while considering the differences between UBUA and
NUBUA. By applying the proposed method, we spatially identified the PLES in Jiaodong
Peninsula for 2018 and 2022, and the change areas were obtained by spatial overlay analysis.
Based on the results, we analyzed the spatial distribution characteristics of PLES and PLES
change. Through the exploration and discussion of the real-world situations and driving
mechanisms of the PLES changes, policy implications were proposed.

The outline of the rest of this paper is organized as follows: Section 2 introduces the
study area, data sources, and methodology. Section 3 presents the results of PLES iden-
tification and analyzes the spatial distribution characteristics of PLES and their changes.
Section 4 delves into the real-world situation and driving mechanisms of the PLES changes
and proposes policy implications. Additionally, this section also discusses the advantages
of the proposed method and the limitations and prospects of this study. Section 5 con-
cludes this paper by summarizing the results and discussions. Abbreviations provides a
compilation of acronyms in this paper.

2. Materials and Methods

In this study, the PLES was identified from the perspective of the dominant func-
tion of land. According to the definition of the PLES, the PS refers to the specific func-
tional area where people engage in production activities; the LS carries the residence,
consumption, leisure, and entertainment of residents; and the ES refers to the area that
can provide ecological products and ecological services with ecological protection func-
tions [2,29,37]. Due to the significant differences between agricultural production and non-
agricultural production in production methods, land use, and ecological impacts, the PS is
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further divided into agricultural production space (APS) and non-agricultural production
space (NAPS).

2.1. Study Area

As shown in Figure 1, the Jiaodong Peninsula is located in the eastern coastal area of
Shandong Province, adjacent to the Bohai Sea and the Yellow Sea. The Jiaodong Peninsula
is a vast area, including the cities of Qingdao, Yantai, and Weihai, with a total land area of
30,645.95 km2, accounting for 19% of Shandong Province. The Jiaodong Peninsula is rich in
marine resources, with a coastline length of 2711.88 km, accounting for about 74% of the
coastline length of Shandong Province. Meanwhile, Jiaodong Peninsula is also an important
production base for fruit, grain, and aquatic products in Shandong Province. Thanks to
its unique location advantages, Jiaodong Peninsula has a strong economy, with a gross
domestic product (GDP) of 278.447 billion Chinese yuan (CNY) in 2022, accounting for
about 32% of Shandong Province, and a permanent resident population of 20.319 million,
accounting for about 20% of Shandong Province.
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Figure 1. The location of the Jiaodong Peninsula.

Behind the rapid socioeconomic development, the expansion of built-up areas, re-
source production, land reclamation, and other human activities have led to significant
changes in the landscape pattern of the PLES in the Jiaodong Peninsula. The conflicts and
contradictions among the PLES in the Jiaodong Peninsula have become more and more
prominent. Exploring the dynamic characteristics of PLES in the Jiaodong Peninsula is of
great significance for optimizing the allocation of regional spatial resources and promoting
high-quality and sustainable development in the region.

The Jiaodong Peninsula area contains several offshore islands, such as Chang Island,
Liugong Island, and Jiming Island. Due to the low intensity of human activities and good
habitat on the offshore islands, only the land area of the Jiaodong Peninsula was considered
in this study.

2.2. Data Source and Preprocessing

The POI data for 2018 and 2022 were obtained from Amap via the application program
interface (API). The annual road network data for 2018 and 2022 was downloaded from the
Open Street Map (OSM) data platform. The LC data for 2018 and 2022 published by ESRI
was used in this study, which was generated by a deep learning land classification model
using billions of training pixels with an accuracy of more than 80% [38]. To avoid confusion
with UBUA, we refer to the type named “built area” in the LC data as “construction land”
in the following.
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Construction land is the result of urbanization and industrialization and carries the
daily lives of residents and non-agricultural economic activities, while non-construction
land is mainly used for agricultural production, ecological protection, and environmental
maintenance. Based on the definition of the PLES, the LC types were reclassified, and
the mapping relationship between the LC types and PLES types was established. The
reclassification results and the mapping relationship are shown in Table 1. Among them,
the construction land and bare land have no clear dominant function and were temporarily
reclassified into Ambiguous Space (AS).

Table 1. Reclassification results of LC data and mapping relationship between LC types and the types
of PLES.

Original Type Reclassified Type Classification of PLES

Construction land Construction land Ambiguous space
Bare land Bare land Ambiguous space
Cropland Cropland Agricultural production space

Trees
Vegetation Ecological spaceRangeland

Flooded vegetation
Water Water Ecological space

After data cleansing and coordinate transformation, the obtained POI data was re-
classified based on the definition of the PLES and relevant national standards, including
“Current land use classification” (GB/T 21010-2017) and “Code for classification of urban
and rural land use and planning standards of development land” (GB 50137-2019). The
reclassification results are shown in Table 2. The definition of the two reclassified types in
Table 2 can be found in the two relevant national standards mentioned above.

Table 2. Reclassification results of POI data.

Reclassified Type I Reclassified Type II Original Type

Code Name Code Name Name

1 Residential 11 Residential Villa, residential quarter, etc.

2
Public Administration

and public service

21 Governmental organization
and social group

Governmental organization, social group, public
security organization, etc.

22 Science, culture and
education service

School, training institution,
research institution, etc.

23 Medical and healthy care
service Hospital, special hospital, plastic surgery, clinic, etc.

24 Public facility Public toilet, emergency shelter, etc.

3 Commercial service

31 Finance and insurance
service

securities company, insurance company, automatic
teller machine (ATM), bank, etc.

32 Food and beverages Restaurant, coffee house, bakery, teahouse, etc.

33 Shopping service Shopping plaza, home building materials market,
convenience store, supermarket, etc.

34 Daily life service Ticket office, post office, telecom office, beauty and
hairdressing store, etc.

35 Auto service Filling station, auto dealers, auto repair, etc.
36 Motorcycle service Motorcycle sales, motorcycle repair, etc.

37 Sports and recreation Sports stadium, theatre and cinema, holiday and
nursing resort, recreation center, etc.

38 Accommodation Service Hotel, hostel, etc.

4 Industry-related

41 Enterprise Enterprise, company, etc.
42 Factory and industrial park Factory, industrial park, etc.
43 Business Office Building Business office building, etc.

44 Farming, forestry, animal
husbandry, and fishery base

Farm, fishing farm, forest farm, flower
nursery base, etc.
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Table 2. Cont.

Reclassified Type I Reclassified Type II Original Type

Code Name Code Name Name

5 Transportation 51 Road furniture Toll gate, expressway service area, etc.
52 Transportation service Railway station, bus station, port, marina, etc.

6 Scenic tourism
61 Tourist attraction Memorial hall, beach, scenery spot, etc.
62 Park and square City plaza, park, square, zoo, etc.

2.3. UBUA Extraction and Spatial Analysis Unit Division
2.3.1. UBUA Extraction

According to the national standard “Standard for Terminology of Urban Planning”
(GB/T 50280-98), the UBUA was defined as the area that has actually been continuously
developed and constructed, where municipal utilities and public facilities are basically
available. Traditionally, the extraction of UBUA is mostly based on remote sensing products,
such as panchromatic images, multispectral images, and nighttime lighting data [39].
The arrival of the big data era has brought new data and methods for UBUA extraction.
Xu et al. [25] proposed a method named Densi-Graph to extract UBUA by analyzing the
kernel density contour of POI data. The extraction process of Densi-Graph is relatively
simple and easy, and it can quickly carry out the extraction of UBUA. However, the method
is based on kernel density contours and ignores the surface physical characteristics of
UBUA, resulting in overly smooth boundaries in the extraction results [40]. Therefore, we
used non-construction land to refine the boundaries of the initial UBUA extraction results
obtained by using the Densi-Graph method. Specifically, the initial UBUA extraction results
were first obtained by using the Densi-Graph method, then the initial results were erased
by utilizing non-construction land vector data, and the final UBUA extraction results were
obtained by filling the holes inside the erased initial results.

2.3.2. Spatial Analysis Unit Division

The division of the Spatial Analysis Unit (SAU) is a key step in fine-grained regional
research. Currently, regular geographic grids and blocks are commonly used as SAUs.
Previous studies prioritized regular geographic grids as the SAU [5,29] because of their
advantages, such as simple construction, flexible spatial scale, and comparability with
identical morphologies [41]. However, the significant heterogeneity of land use hinders the
accurate representation of complex surface environments in regular grids [24]. In addition,
the scale choice of regular geographic grids is crucial, and scale effects may lead to different
results appearing in SAUs at different scales [5].

In recent years, as the coverage and quality of road network data provided by OSM
have been improving year by year [42], many scholars have utilized irregular blocks
segmented by road network data as SAUs [43,44]. However, similar to the POI data, a
strong spatial heterogeneity was shown in the road network data provided by OSM [31],
which makes it challenging to use the road network data alone for the SAU division. In
addition, the functional differences between different road segments cannot be ignored [45].
One of the basic assumptions of spatial theory is stated in Tobler’s first law of geography:
“Everything is related to everything else, but near things are more related than distant
things” [46,47]. Based on this, the PLEF of a road segment was considered to be dependent
on the PLEF of its adjacent block in this study. Specifically, we divided SAUs using
the centerline of the road. The purpose of adopting this division method is to consider
the correlation between the PLEF of the road and the adjacent block while ensuring the
adjacency of adjacent blocks in spatial topological relationships, which facilitates the
construction of spatial weight matrixes in the subsequent spatial autocorrelation analysis.

In summary, in this study, based on the UBUA extraction results, irregular blocks
segmented by road network data were used as the SAUs in the UBUA, and the regular
geographic grids were used as the SAUs in the NUBUA. The size of the regular geographic
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grids was set to 1 km × 1 km by referring to the literature [10,48] and taking into account
the actual situation.

2.4. PLES Identification
2.4.1. Rating and Scoring System for POI Data

Based on the previous studies [2,5,49] and the investigations for Jiaodong Peninsula
based on RSI, the Rating and Scoring System (RSS) for POIs was constructed after several
experiments (Table 3). The RSS consists of an area-based score and a function-based score,
in which the area-based scores were obtained by rating and scoring based on the average
physical area of POIs in different types, with a range of 0 to 100. According to the PLEF
strength of the different types of POIs, the function-based scores were obtained by dividing
the POIs into four grades of strong function, general function, weak function, and no
function with scores of 5, 3, 1, 0, respectively.

Table 3. Rating and scoring system for POI data.

Reclassified Type II 1 Area-Based Score Function-Based Score

Code Name
Average
Physical

Area (hm2)

Area
Score

Production
Function
Score 2

Living
Function

Score

Ecological
Function

Score

UBUA NUBUA UBUA NUBUA UBUA NUBUA

11 Residential 2 40 0 0 5 5 0 0

21 Governmental organization
and social group 1.5 30 1 1 5 5 0 0

22 Science, culture, and
education service 1.5 30 3 1 5 5 0 0

23 Medical and healthy
care service 0.5 10 3 1 5 5 0 0

24 Public facility 0.1 2 0 0 5 5 0 0
31 Finance and insurance service 1 20 5 5 1 1 0 0
32 Food and beverages 0.5 10 3 3 5 5 0 0
33 Shopping service 1.5 30 5 3 3 5 0 0
34 Daily life service 0.5 10 1 1 5 5 0 0
35 Auto service 0.5 10 3 3 3 3 0 0
36 Motorcycle service 0.5 10 3 3 3 3 0 0
37 Sports and recreation 1 20 1 1 5 5 0 0
38 Accommodation Service 1 20 3 3 3 3 0 0
41 Enterprises 1 20 5 5 0 0 0 0
42 Factory and industrial park 5 100 5 5 0 0 0 0
43 Business Office Building 3 60 5 5 0 0 0 0

44 Farming, forestry, animal
husbandry, and fishery base 2 40 3 3 0 0 3 3

51 Road furniture 2 40 3 3 3 3 0 0
52 Transportation service 1 20 3 3 3 3 0 0
61 Tourist attraction 5 100 0 0 1 1 5 5
62 Park and square 4 80 0 0 3 3 5 5

1 The reclassified type II in this table corresponds to the reclassified type II in Table 2. 2 The production function
score for the type coded 44 refers to agricultural production function, and the production function scores for the
other types refer to non-agricultural production function.

Based on the differences between UBUA and NUBUA, including the differences in the
styles of production and living and the differences in the spatial distribution of the POI
data, the three types of POIs, namely, “Science, culture, and education service (SCES)”,
“Medical and Healthy Care Service (MHCS)”, and “Shopping Service (SS)”, were assigned
different function-based scores. In NUBUA, the majority of POIs in the SCES type were
POIs of public basic education, such as primary and secondary schools, which show a
significant living function. In contrast, in UBUA, besides public basic education, the POIs
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of SCES showed a wider range, including extra-curricular tutorial organizations, training
institutions, and other types with more significant production functions. Similarly, the
MHCS within NUBUA were mostly for public healthcare, while those within UBUA include
beauty salons, plastic surgery, and other types that have a more production function. For
SS, the SS within UBUA showed more commercial function, that is, the production function
was more prominent, while the POIs of SS within NUBUA were mainly convenience stores,
which mainly serve the daily lives of residents in NUBUA.

Based on the area-based score and the function-based score, the final score of each type
of POI was calculated using the geometric mean method [50] with the following formula:

Si =
√

Sia × Si f (1)

where Si is the final score of the i-th POI type, Sia is the area-based score of the i-th POI
type, and Sif is the function-based score of the i-th POI type.

2.4.2. Spatial Identification of PLES Based on LC Data and POI Data

The spatial identification process of PLES in this study is shown in Figure 2, and the
detailed steps are as follows:

Land 2023, 12, x FOR PEER REVIEW 9 of 28 
 

 
Figure 2. Illustration of the spatial identification process of PLES. 

Step 1: Based on Table 1, the LC data were used to calculate the ratios of land area 
corresponding to APS, ES, and AS in each SAU. If the ratio of AS was less than 50%, then 
the SAU was identified as the PLES type corresponding to the type with the highest ratio 
in the calculation result. Otherwise, the SAU was defined as an ambiguous SAU (ASAU), 
and POI data were used for the next step to determine the PLES type of ASAU. 

Step 2: Based on the final scores of the POI data for each type, the POI data were used 
to calculate the functional values in each ASAU, and subsequently, the ratio of each type 
of functional value to the total functional value in the ASAU was calculated. For each 
ASAU, the calculation formula was as follows: 

n

i j j
j

V N S= ×  (2) 

4

1

i
i

i
i

VR
V

=

=


 
(3) 

where Vi is the functional value of the i-th type of PLES within the ASAU, Ri is the ratio of 
the Vi within the ASAU, Nj is the total number of the j-th type of POI data, and Sj is the 

Figure 2. Illustration of the spatial identification process of PLES.



Land 2023, 12, 1748 9 of 26

Step 1: Based on Table 1, the LC data were used to calculate the ratios of land area
corresponding to APS, ES, and AS in each SAU. If the ratio of AS was less than 50%, then
the SAU was identified as the PLES type corresponding to the type with the highest ratio
in the calculation result. Otherwise, the SAU was defined as an ambiguous SAU (ASAU),
and POI data were used for the next step to determine the PLES type of ASAU.

Step 2: Based on the final scores of the POI data for each type, the POI data were used
to calculate the functional values in each ASAU, and subsequently, the ratio of each type of
functional value to the total functional value in the ASAU was calculated. For each ASAU,
the calculation formula was as follows:

Vi =
n

∑
j

Nj × Sj (2)

Ri =
Vi

4
∑

i=1
Vi

(3)

where Vi is the functional value of the i-th type of PLES within the ASAU, Ri is the ratio
of the Vi within the ASAU, Nj is the total number of the j-th type of POI data, and Sj is
the final score of the j-th type of POI data. When the Ri within the ASAU is higher than
50%, the ASAU is identified as the corresponding i-th type of PLES. While the ratios of all
types of Ri within the ASAU are lower than 50%, the ASAU is identified as a mixed space,
and further identification is carried out manually based on remote sensing images and
POI data.

Due to the limitation of POI data, the ASAUs that do not contain any POI remain
unidentified even after the previous two steps. After the investigation of these ASAUs
based on POI data, RSIs, and LC data, two main types of this phenomenon were observed,
including rural settlements (Figure 3a) and large industrial bases (Figure 3b). Due to the
high cost of POI data collection, generation, and maintenance and the low intensity of
economic activities within rural settlements, data providers may be reluctant to invest
resources in rural settlements to collect and update POI data. For some large industrial
bases with large physical footprints, such as steel plants, their representation in POI data
is one or a few points. From the SAU perspective, POIs that represent large industrial
bases may appear in only one or a few of the multiple SAUs that actually contain large
industrial bases.

Based on this investigation, we drew inspiration from Voxel-Based Region Growing
(VBRG) in point cloud segmentation algorithms [51] to establish a simple rule for differenti-
ating NAPS and LS in the ASAU without POI distribution. The illustrative diagram of the
rule is shown in Figure 4, and the detailed steps are as follows:

Step 1: The SAUs identified as NAPS and adjacent to the SAUs identified as AS were
selected as the initial seed SAUs.

Step 2: All the adjacent SAUs to the initial seed SAUs were traversed. If an adja-
cent SAU was identified as AS, it would be re-identified as NAPS and selected as a new
seed SAU.

Step 3: The new seed SAUs obtained in Step 2 were treated as the initial seed SAUs
for the next iteration.

Step 4: Repeat steps 2 and 3 until no new seed SAUs are generated.
Step 5: Stop traversing, and the remaining SAUs that were still identified as AS were

reidentified as LS.
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2.5. Methods for Characterizing the Characteristics of PLES and PLES Change
2.5.1. Kernel Density Estimation

Kernel Density Estimation (KDE) is a nonparametric statistical method that can explore
the distribution of data without a priori assumptions and has been widely used in spatial
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pattern analysis, criminal geography, and other studies [52]. In this study, the area of
each SAU was used as a weight to avoid biased results due to the neglect of significant
differences in the area of different SAUs. The calculation formula is as follows:

f (s) =
1

nh2

n

∑
i=1

K
(

wi × d(s, xi)

h

)
(4)

where n is the number of SAU, h refers to the bandwidth set artificially, K() refers to the
kernel function selected artificially, and d(s, xi) refers to the distance from the steel plant i to
the location s.

KDE requires the manual setting of two parameters: the kernel function K and the
bandwidth h. The choice of kernel function has little effect on the results; however, the
choice of bandwidth has a great impact on the results [53]. In this study, we refer to the
literature [50] for the dynamic selection of bandwidth according to the characteristics of
the data.

2.5.2. Land Use Transfer Matrix for PLES

As the most widely used method in land use/cover change (LUCC)-related studies,
the land use transfer matrix is able to comprehensively and specifically reflect the changes
in land use structure [54]. The single land use dynamic degree is able to quantitatively
represent the drastic degree of land use change over a period of time, which plays an
important role in land use-related research [55]. In this study, spatial overlay analysis
was used to obtain the changing regions of PLES. Based on the changing regions of PLES,
the area of PLES change and Single PLES Dynamic Degree (SPLESDD) were calculated
for constructing the PLES Transfer Matrix (PLESTM). The form of PLESTM is shown as
follows:

PLESTM =

PLES11 . . . PLES1n SPLESDD1
...

. . .
...

...
PLESn1 · · · PLESnn SPLESDDn

 , n = 4 (5)

where n is the number of PLES types, PLESij refers to the area converted from PLES type i to
PLES type j, and SPLESDDi refers to the SPLESDD of PLES type i, which can be calculated
by Formula (6).

SPLESDDi =
PLES(i, t2)− PLES(i, t1)

∆t × PLES(i, t1)
× 100% (6)

where SPLESDDi refers to the SPLESDD of the PLES type i, PLES(i, t1) and PLES(i,t2)
respectively refer to the area of PLES type i for the start year t1 and the end year t2,
∆t = t2 − t1.

2.5.3. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is able to quantitatively characterize the degree of
spatial correlation of one or more geographic variables and is widely used in PLES-related
studies [5,29,56]. In this study, Moran’s I and bivariate Moran’s I were used to explore the
spatial correlation of PLES. The calculated results fall within the range of [−1, 1]. After
passing the significance test, a positive calculated result indicates that the variables are
spatially positively correlated, while a negative calculated result indicates that the variables
are spatially negatively correlated. The larger the absolute value of the calculated result,
the stronger the correlation. When the calculation result equals 0, the variables have no
spatial correlation; that is, the spatial distribution is random. The calculations of Moran’s I
and bivariate Moran’s I were carried out using Geoda version 1.20.
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3. Results
3.1. Results of PLES Identification
3.1.1. Results of UBUA Extraction and SAU Division

The UBUA of Jiaodong Peninsula in 2022 was extracted using POI data and LC
data. As shown in Table 4, the actual UBUA area (marked as ground truth) disclosed in
the statistical yearbook was used to evaluate the effect of the UBUA extraction results,
including the results using solely the Densi-Graph method (marked as initial results) and
the results using LC data to optimize the UBUA boundaries of the initial results (marked
as final results). As can be seen from Table 4, the differences between the areas of the initial
results and the corresponding ground truth were significant, while the differences between
the areas of the final results and the corresponding ground truth were relatively reduced.

Table 4. The difference between the area of UBUA extraction results and ground truth.

Ground Truth 1 POI (Difference) 2 POI + LC (Difference) 3

Qingdao City 964.39 km2 1096.94 km2 (+13.74%) 932.69 km2 (−3.29%)
Yantai City 629.52 km2 707.57 km2 (+12.40%) 593.86 km2 (−5.66%)
Weihai City 293.02 km2 322.69 km2 (+10.13%) 289.99 km2 (−1.03%)

1 The ground truth was obtained from the urban construction statistical yearbook. 2 The POI refers to the initial
UBUA extraction results using the Densi-Graph method with POI data. 3 The POI + LC refers to the final UBUA
extraction results using land cover data to optimize the boundaries of the initial results.

The UBUA extraction results and the zoomed-in views of the verification areas are
shown in Figure 5. As can be seen from Figure 5a, the final UBUA extraction results
were basically consistent with the continuous construction land; however, a portion of the
continuous construction land was overlooked. In addition, several UBUAs with relatively
small areas appeared in the final UBUA extraction results. Three areas marked as area I,
II, and III were selected for local verification. According to Figure 5b,c, the final UBUA
extraction results provided more detailed boundary representations than the initial results.
According to Figure 5d,e, the area II represents an industrial zone located on the edge of
the UBUA. Compared with the urban central area, the POI distribution in this area was
sparse, which resulted in a relatively low KDE value. According to Figure 5f,g, area III was
close to the main UBUA, which may be the result of the outward UBUA expansion. Area
III mainly consists of residential areas with a dense distribution of POIs and a relatively
high KDE value. From the perspective of the UBUA definition, the results for areas II and
III were correct. Overall, the quality of the UBUA extraction results is high and sufficient to
support subsequent research endeavors.

Based on the UBUA extraction results for 2022, the blocks segmented by road network
data in 2018 and 2022, as well as 1 km × 1 km regular geographic grids, were used for the
SAU construction. As a result, the number of UBUA SAUs in 2018 was 10,156, and that in
2022 was 10,341. For NUBUA SAUs, the number was 31,324 both in 2018 and 2022.

3.1.2. Results of PLES Identification

In order to evaluate the quality of identification results, a verification SAU set was
constructed based on the SAUs selected by regular grid points and random points. Firstly,
the regular grid points were constructed at 10 km intervals, and the SAUs intersecting with
the regular grid points were selected to join the verification SAU set. Since most of the
regular grid points were located in the NUBUA, 100 random points within the UBUA were
constructed, and the SAUs intersecting with the random points were selected to join the
verification SAU set. The verification result showed that the accuracy was 87.90% (356/405).
It should be noted that the PLES identification results for verification were selected from
the PLES identification results in 2022. The identification results of PLES and the spatial
distribution of the verification SAUs are shown in Figure 6.
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Figure 5. Extraction results of UBUA and zoomed-in views of verification areas. (a) The final UBUA
extraction results, where the black box refers to the location of the verification area I, the green
box refers to the location of the verification area II, and the red box refers to the location of the
verification area III; (b) The initial UBUA extraction results in the verification area I; (c) The final
UBUA extraction results in the verification area I; (d) Remote sensing images of the verification area
II; (e) POI distribution of the verification area II; (f) Remote sensing images of the verification area III;
(g) POI distribution of the verification area III.
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Figure 6. Identification results of PLES and spatial distribution of verification SAUs. (a) Identification
results of PLES in 2018; (b) Identification results of PLES in 2022; (c) Illustrative diagram of the spatial
distribution of the verification SAUs.

3.2. Spatial Pattern Characteristics of PLES in Jiaodong Peninsula

The KDE results of the different types of PLES identification results are shown in
Figure 7. In terms of spatial distribution, APS and ES were the main PLES types in the
Jiaodong Peninsula. The high-density areas of APS were distributed in eastern and western
Jiaodong Peninsula, with a more extensive distribution observed in the western part. While
the high-density areas of ES were distributed in the center of the Jiaodong Peninsula. The
spatial distribution of LS and NAPS was more concentrated, mainly in the coastal areas.
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For LS, the high-density areas were distributed in the southern coastal area of Qingdao City,
northeastern coastal area of Yantai City, and the northern coastal area of Weihai City. For
NAPS, the high-density areas were distributed in the southern coastal area of Qingdao City
and the northeastern coastal area of Yantai City. In addition, a significant differentiation
between UBUA and NUBUA was shown in the spatial distribution of PLES on the Jiaodong
Peninsula. The high-density areas of LS were mainly distributed within the UBUA, and
the high-density areas of NAPS were mainly distributed nearby the UBUA boundaries,
while several high-density distributions of NAPS within the UBUA were observed. On the
contrary, the high-density areas of APS and ES were mainly distributed within NUBUA.
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results of NAPS in 2022; (g) KDE results of LS in 2022; (h) KDE results of ES in 2022.

The queen adjacency method based on the spatial adjacent relation was selected
to construct the spatial weight matrices for spatial autocorrelation analysis. The SAUs
adjacent to the independent variable were treated as dependent variables. In addition
to the computation of all SAUs within the Jiaodong Peninsula, SAUs within the UBUA
and the NUBUA were computed separately. The calculation results are shown in Table 5.
The results on the diagonal line in the table refer to the results of Moran’s I, and the other
elements refer to the results of bivariate Moran’s I, which are the same below.

From the calculation results, it can be seen that all the types of PLES within the
Jiaodong Peninsula showed significantly positive spatial autocorrelation. Among them, the
spatial autocorrelation of APS was the most significant, while the spatial autocorrelation
of NAPS was weaker than that of the other three types. Regarding the spatial correlation
of different types of PLES, APS showed a negative spatial correlation with the other three
types of PLES. NAPS showed a positive spatial correlation with ES and a negative spatial
correlation with ES. LS showed a negative spatial correlation with ES.

Within the UBUA, significantly positive spatial autocorrelation was observed in NAPS,
LS, and ES, among which the spatial autocorrelation of LS and NAPS was more significant
and the calculation results were closer. In contrast, the spatial autocorrelation of ES was
weaker, and the calculation result decreased in 2022 compared to 2018, while there was
no significant change in the other three types of PLES. In addition, NAPS showed a
significantly negative spatial correlation with LS.
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Table 5. Spatial autocorrelation results for the PLES.

Calculation Range Calculation Results for 2018 Calculation Results for 2022

APS NAPS LS ES APS NAPS LS ES

Jiaodong
Peninsula 1

APS 0.692 −0.210 −0.323 −0.303 0.684 −0.220 −0.300 −0.306
NAPS 0.363 0.122 −0.142 0.396 0.115 −0.155

LS 0.518 −0.213 0.500 −0.201
ES 0.629 0.619

UBUA 2

APS 0.031 −0.011 −0.096 0.018 0.032 0.020 −0.051 0.025
NAPS 0.455 −0.410 −0.035 0.433 −0.421 −0.020

LS 0.457 −0.086 0.436 −0.042
ES 0.253 0.158

NUBUA 3

APS 0.603 −0.096 −0.056 −0.559 0.597 −0.117 −0.068 −0.530
NAPS 0.355 0.107 −0.087 0.361 0.101 −0.094

LS 0.190 −0.073 0.195 −0.070
ES 0.646 0.624

1 The Jiaodong Peninsula refers to the results calculated using all SAUs on the Jiaodong Peninsula. 2 The UBUA
refers to the results calculated using the specific SAUs located within the UBUA in the Jiaodong Peninsula.
3 The NUBUA refer to the results calculated using the specific SAUs located within the NUBUA on the
Jiaodong Peninsula.

The spatial relationships of the PLES showed different patterns within the NUBUA.
APS, NAPS, and ES within the NUBUA showed significantly positive spatial autocorrela-
tion, among which the spatial autocorrelation of APS and ES was the most significant. LS,
on the other hand, showed weak spatial autocorrelation, which was significantly weaker
than that within the UBUA. LS and NAPS showed a positive spatial correlation within the
NUBUA, whereas within the UBUA, the spatial correlation was significantly negative. The
calculation result of ES within the NUBUA also decreased in 2022; however, the decrease
was weaker than that in the UBUA.

3.3. Spatio-Temporal Changes in PLES in Jiaodong Peninsula during 2018–2022

Based on the spatial overlay analysis, the change areas of PLES in the Jiaodong
Peninsula during 2018–2022 were obtained from the PLES identification results for 2018
and 2022. Based on the change areas of PLES, PLESTM was calculated. The calculation
results are shown in Table 6. For the convenience of description, A-B is used in the following
text to represent the conversion from PLES type A to PLES type B.

In terms of change area, the interconversion of APS and ES was relatively drastic in
the Jiaodong Peninsula. In addition to the two PLES change types, the PLES change in
Jiaodong Peninsula mainly manifested the increase of NAPS and LS, including APS-NAPS,
APS-LS, NAPS-LS, ES-NAPS, and ES-LS. The mentioned seven types of PLES change
were considered to be the main PLES change types and were further analyzed. In terms
of dynamic degree, the most drastic change occurred in LS, with an increasing trend. It
was followed by NAPS, which also showed an increasing trend. The changes in APS and
ES were relatively more moderate, with APS showing a slight decreasing trend and ES
showing a slight increasing trend.

Table 6. Calculation results of the PLESTM.

APS (km2) NAPS (km2) LS (km2) ES (km2) SLUDD (%/Year)

APS 15,462.29 76.31 58.51 1048.36 −0.45
NAPS 9.41 1681.46 30.21 8.81 1.64

LS 3.03 12.23 2677.98 18.38 2.41
ES 853.96 73.70 111.60 9410.54 0.09

The spatial distribution of PLES change in the Jiaodong Peninsula and the KDE results
of the seven main types of PLES change are shown in Figure 8. In an overall view, the spatial
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distribution of the PLES change was mainly distributed in the NUBUA. In terms of the
interconversion of ES and APS, ES-APS was concentrated in the central Jiaodong Peninsula,
while APS-ES was mainly distributed in the eastern and northeastern Jiaodong Peninsulas.
The increase in LS, including APS-LS, NAPS-LS, and ES-LS, was mainly distributed in the
southwestern coastal area of the Jiaodong Peninsula, specifically in the southern coastal
area of Qingdao City. In addition, ES-LS also occurred in the southern coastal area of Weihai
City. Among them, APS-LS and ES-LS are mainly distributed around the UBUA, while
NAPS-LS is mainly distributed inside the UBUA. The distribution in the increase of NAPS
was more scattered, with ES-NAPS mainly distributed in the northern Jiaodong Peninsula,
specifically in the northern Yantai City, while APS-NAPS was mainly distributed in the
eastern Qingdao City.
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Considering that the changing SAUs were not necessarily adjacent, the distance-based
method was selected to construct the spatial weight matrixes. The SAUs within 5 km
of the independent variable SAUs were treated as the dependent variable SAUs. The
calculation results are shown in Table 7. According to the results, APS-ES and ES-APS
showed significantly positive spatial autocorrelation, while some degree of positive spatial
autocorrelation was shown in ES-LS and ES-APS. Additionally, APS-ES demonstrated a
relatively strong negative spatial correlation with ES-APS and ES-LS.

Table 7. Spatial autocorrelation results for the PLES change.

APS-LS APS-NAPS APS-ES NAPS-LS ES-LS ES-APS ES-NAPS

APS-LS −0.003 0.031 −0.019 0.052 −0.007 0.019 −0.007
APS-NAPS 0.084 −0.036 0.043 0.018 0.013 0.003

APS-ES 0.619 −0.014 −0.049 −0.280 −0.059
NAPS-LS 0.052 0.037 −0.026 −0.010

ES-LS 0.132 −0.003 −0.001
ES-APS 0.509 −0.405

ES-NAPS 0.168
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4. Discussion
4.1. Visual Comparison forPLES Change

In order to further evaluate the LPES identification results and explore the real-world
situation and the driving mechanism of the PLES change in Jiaodong Peninsula, eight
typical areas were selected as verification areas based on the seven main types of PLES
change for visual comparison. Among them, two areas were selected for the verification
of APS-ES, respectively marked as verification area A and verification area B. The spatial
distribution of the verification areas is shown in Figure 9.
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The dramatic interconversion of ES and APS first caught our attention. Among them,
the ES-APS was mainly distributed in southern Yantai City, which was planned as a grain-
producing area in the “Territorial spatial planning of Yantai City (2021–2035)”. Driven by
economic interests, many farmers use arable land originally intended for grain cultivation
to grow fruit trees or other cash crops, known as non-grain production in agricultural land
(NGPAL) [57]. The Chinese government discourages such practices due to the enormous
demand for food and the limited availability of arable land resources. In 2020, the State
Council issued the “Opinions on preventing non-grain production of cultivated land
and stabilizing food production”, which required the governments at all levels in China
to strengthen incentives and constraints as well as enhance supervision of NGPAL. In
this context, the Yantai municipal government implemented a series of incentives and
penalties, increased the subsidies for grain cultivation, and strengthened the supervision
of NGPAL. Cultivated land that had been used to grow other cash crops was replanted
with grain (Figure 10(a1–a4)). Furthermore, the re-cultivation of abandoned cultivated
land may also be a potential reason for the ES-APS. Factors such as climate variations,
declining cultivation conditions, and rural labor migration can lead to the emergence of
abandoned cultivated land [58]. Prolonged abandonment of cultivated land may result
in the overgrowth of weeds and a decline in soil fertility. With increasing attention to
food security, the government has paid more attention to addressing this issue in recent
years [59]. Subsidy policies, active construction of agricultural facilities, and the recovery
and re-allocation of abandoned cultivated land were among the measures employed by



Land 2023, 12, 1748 18 of 26

government authorities to avoid the waste of cultivated land resources, leading to the
restoration of many previously abandoned cultivated lands. However, it should be noted
that due to the lack of field surveys, this study cannot draw detailed conclusions in
this regard.
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Figure 10. Visual comparisons for ES-APS and APS-ES, where the red boxes represent the area within
which corresponding changes occur. The legend for land cover data is the same as in Figure 4, where
red represents construction land, yellow represents crops, blue represents water, and green represents
vegetation. (a1) RSI of the ES-APS verification area in 2018; (a2) RSI of the ES-APS verification area in
2022; (a3) LC of the ES-APS verification area in 2018; (a4) LC of the ES-APS verification area in 2022;
(b1) RSI of the verification area A of APS-ES in 2014; (b2) RSI of the verification area A of APS-ES
in 2018; (b3) RSI of the verification area A of APS-ES in 2022; (b4) LC of the verification area A of
APS-ES in 2018; (b5) LC of the verification area A of APS-ES in 2022; (c1) RSI of the verification area B
of APS-ES in 2014; (c2) RSI of the verification area B of APS-ES in 2018; (c3) RSI of the verification area B
of APS-ES in 2022; (c4) LC of the verification area B of APS-ES in 2018; (c5) LC of the verification area B
of APS-ES in 2022.

The changes in the water had a significant effect on APS-ES, and the effect could be
divided into two scenarios. As shown in Figure 10(b1–b5), the first scenario was the effect
of the storage of reservoirs, reflected in validation area A, which is located at the Douyazi
Reservoir in Qingdao City. According to the “Qingdao water resources statistical bulletin”
published by the Qingdao Municipal Water Administration Bureau, rainfall in Qingdao
City was continuously low from 2013 to 2017 with no effective runoff formation. The
surface water and the groundwater were not effectively replenished, resulting in a serious
shortage of the water storage in the reservoirs in 2018. Due to the prolonged lack of water,
the villagers around the reservoirs reclaimed the farmland for cultivation on the sides of the
reservoirs. The rainfall in Qingdao City from 2020 to 2021 significantly increased, and the
water storage in the reservoirs consequently increased. The total amount of reservoir water
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storage in Qingdao was 430.1 million cubic meters in 2021, which represents an increase of
110.94% compared to 203.9 million cubic meters in 2017.

As shown in Figure 10(c1–c5), the different scenario was the occupation of cultivated
land by the new reservoir construction, reflected at the validation area B, which is located
the Poyu Reservoir in Weihai City. The economic and social development of the Jiaodong
Peninsula constrained by the scarcity of freshwater resources for a long time. The water
resources needed for industrial production and residential life on the Jiaodong Peninsula
had long relied on the Jiaodong Water Diversion Project. The transferred water temporarily
solved the shortage of water in the Jiaodong Peninsula; however, in the face of increasing
demand for freshwater resources, it is impractical to rely solely on expensive and restrictive
transferred water. Faced with the dilemma of a freshwater shortage, the cities located on
the Jiaodong all introduced corresponding modern water network construction plans. To
reduce the excessive reliance on transferred water and enhance urban emergency water
supply capabilities, key water storage construction, including the construction of new
reservoirs, expansion of existing reservoirs, and strengthening regional water system
connections, was mentioned in the plans.

The increase in LS, including APS-LS, NAPS-LS, and ES-LS, was mainly distributed
within the UBUA or around the UBUA boundary. Due to the rapid socio-economic devel-
opment and urbanization of the Jiaodong Peninsula, many populations have flocked to
the UBUA. With the increase in population, more residential land and infrastructure are
needed to meet people’s living needs, which inevitably leads to the expansion of LS. Due
to the well-developed infrastructure within the existing UBUA, expanding at the existing
UBUA boundary allows for better utilization of the already established facilities and public
services, such as transportation, water supply, and drainage systems, thereby reducing the
cost of constructing new infrastructure. However, the expansion pattern may also result in
the occupation of cultivated land in the surrounding areas of the UBUA. The APS-LS was
mainly concentrated around the boundaries of the UBUA (Figure 11(a1,a2)).

Urban development with unlimited outward expansion may lead to a series of urban
problems, such as the heat island effect, traffic congestion, and environmental pollution [60].
Satellite city development patterns are an important approach to alleviating population
pressure in urban centers and preventing further deterioration of urban issues [61]. The
increase in LS away from the existing UBUA was observed in the Nanhai New District,
located in the southern coastal area of Weihai City (Figure 11(b1,b2)). As a key development
area of the Shandong Blue Economic Zone, the Nanhai New District has developed rapidly
and serves as a crucial strategic node for the southward development of Weihai City. A
newly planned university town was located in the verification area. The construction of
the university town can deliver talents for the development of the port industry in Nanhai
New District. While the spillover effects will stimulate economic growth and infrastructure
improvement in the surrounding areas, promoting the urbanization process and further
alleviating the population pressure in the urban center [62–64].

NAPS-LS was mainly the conversion of industrial land to residential land, concen-
trated within the UBUA (Figure 11(c1,c2)). This phenomenon reveals another pattern of
UBUA development, namely urban renewal. As the inefficiency of land use in the process
of urbanization has become apparent, “increment expansion”, which is mainly based on
increasing the built-up area, has gradually changed to “inventory optimization”, namely,
optimizing the functional layout of the city and tapping into the inventory of land without
increasing the built-up area, in order to ease the contradiction between people and land
and to achieve economic growth [65]. NAPS-LS within the UBUA could alleviate urban
population pressure on the one hand and reduce the impact of industry on the human
settlement environment inside the UBUA on the other. In addition, the relocation and
reorganization of industrial parks can have positive impacts on enterprises to eliminate
backward equipment and promote industrial upgrading. It should be noted that, due to the
untimely update of POI data, some of the dismantled industrial parks were still identified
as NAPS in the identification results for 2022.
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The main sources of NAPS increases were APS and ES. The spatial distribution of
ES-NAPS was mainly located in the coastal area (Figure 11(d1,d2)). The Jiaodong Peninsula
is surrounded by the sea on three sides, offering abundant marine resources and favorable
port conditions. The validation area is located in the west port area of Yantai Port, which
was the core planned and developed port area of Yantai Port. Unlike the existing core port
area of Yantai Port, which is adjacent to the main urban area, the west port area lacked large
and mature urban residential areas, making it suitable for the development of heavy in-
dustries. Additionally, the transportation conditions in the west port area were convenient,
facilitating the construction of a logistics park in the vicinity. Promoting the construction of
the blue economy industrial zone based on port industrial parks and logistics parks can
lead to the layout optimization, transformation, and upgrading of regional heavy industry.
The construction and development of the west port area are of great significance to the
transformation and upgrading of Yantai Port and the implementation of the strategy of
consolidating to the east and developing to the west in Yantai City.

The APS-NAPS was mainly distributed in western Qingdao City at the border with
Yantai City (Figure 11(e1,e2)). The validation area is located in the new energy automobile
industry agglomeration area of Jiangshan Town, which is located in the geometric center
of Qingdao City, Yantai City, Weihai City, and Weifang City and offers obvious location
advantages. As the core area of the national urban-rural integration development pilot
zone and one of the four functional strategic node towns of Qingdao City, Jiangshan Town
actively attracts investment and promotes industrial agglomeration. In July 2020, the
manufacturing plant headquarter of Beijing Automotive Industry Holding Co., Ltd. (BAIC)
relocated to Jiangshan Town, attracting upstream and downstream supporting industries
to aggregate in Jiangshan Town, forming a relatively complete new energy vehicle industry
chain including new energy vehicle components, electric motors, electric batteries, vehicle
production, and automotive aftermarket.

4.2. Discussion and Policy Implications Based on the Results and the Real-World Situation

The continuous change of the urban underlying surface towards impermeable sur-
faces is a distinctive feature of the urbanization process, which may lead to several urban
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issues [66]. On the one hand, during heavy rainfall, the impermeable surfaces prevent rain-
water from effectively infiltrating the ground, causing urban areas to be unable to discharge
excess water in a short period, of time leading to urban floods or waterlogging. On the
other hand, impermeable surfaces have a higher heat absorption rate and a lower specific
heat capacity compared to other underlying surfaces. They continuously absorb radiation
and release heat into their surroundings, contributing to the urban heat island effect. The
Jiaodong Peninsula is currently facing the issue of the urban heat island effect [67]. Flood
disasters and the urban heat island effect are issues that urban policymakers must consider,
which could potentially pose threats to urban economic development and residents’ health.
To enhance urban resilience and improve the city’s ability to withstand flood disasters, the
Chinese government has proposed the concept of constructing sponge cities. The vision
of the sponge city is to make cities act like sponges, absorbing, storing, infiltrating, and
purifying rainwater, and then releasing and utilizing the stored water when needed. The
construction of sponge cities not only effectively enhances the city’s ability to resist flood-
ing but also provides a solution to the water scarcity problem on the Jiaodong Peninsula
through positive stormwater management [68]. Furthermore, the construction of sponge
cities and the alleviation of the urban heat island effect are compatible in various aspects,
including technology, finance, institutional, and social aspects, and have co-benefits [69].
The compatibility of water scarcity and urban heat island mitigation measures could be
considered when planning for sponge city construction.

At present, ensuring food security and realizing self-sufficiency in food are important
issues facing China. Ensuring food security is a complex, systematic project involving
multiple aspects of population, land, technology, and management [70]. Cultivated land
protection is the primary issue facing the realization of this goal. Urban expansion inevitably
leads to the occupation of cultivated land, which is the primary problem facing cultivated
land protection. Urban renewal undoubtedly provides a new idea to solve this problem
by renovating old facilities within the city and optimizing the functional layout to meet
the future development needs of the city [65]. For example, some old factories within
UBUA can be demolished and rebuilt into residential buildings, shopping malls, or leisure
service complexes to alleviate the population pressure as well as meet the growing needs
of residents for a better life. The authorities in Jiaodong Peninsula had begun to try to
renew the UBUA internally rather than expanding outward to meet the future development
needs of the city, and this renewal is mainly reflected in the transformation of industrial
land into residential land. However, no increase in ES within the UBUA was observed
in our results. As mentioned before, the construction of the sponge city can provide an
outstanding opportunity for Jiaodong Peninsula to solve the water shortage problem and
alleviate the heat island effect. Existing studies confirmed the excellent performance of
blue and green spaces (included within ES in this study) in sponge city construction [71],
replenishing freshwater resource supply [72], and mitigating the heat island effect [73]. In
the subsequent urban renewal process, the authorities can strengthen their consideration of
the development and layout of blue and green spaces within UBUA.

In addition to the loss of cultivated land, the issue of NGP and the loss of the rural
labor force can also have a strong impact on food security. Driven by economic interests,
many farmers use arable land originally intended for grain cultivation to grow fruit trees
or even open fishponds and plant nurseries, which seriously destroy the cultivated layer of
the land [57]. In addition, policymakers have long been more concerned with planning and
development within urban areas and less concerned with rural areas, which has resulted
in huge gaps between urban areas and rural areas in various aspects, including residents’
income and quality of life. These gaps have led to a significant influx of rural labor into
urban areas, resulting in the emergence of problems such as the decline in the utilization
and even abandonment of cultivated land [74]. Fortunately, these issues have received
the attention of policymakers. In terms of curbing the NGPAL phenomenon, the issuance
of “Opinions on preventing non-grain production of cultivated land and stabilizing food
production” has given impetus to the governments at all levels in China to take action in
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formulating preferential policies for grain cultivation and in the supervision of the NGPAL
phenomenon in cultivated land. Regarding rural planning and construction, China has put
forward the “Rural revitalization strategy”, outlining a vision of a beautiful countryside
with strong agriculture, picturesque rural areas, and prosperous farmers.

Improving the incomes and well-being of farmers is key to avoiding the abandonment
of cultivated land and the loss of rural labor. Agricultural modernization and industri-
alization are helpful to increase agricultural productivity and improve the incomes and
living standards of farmers [75]. However, fragmentation of cultivated land is a common
phenomenon in rural China, which hinders agricultural industrialization and modern-
ization [76]. The relatively dispersed distribution of rural settlements is a driving factor
in cultivated land fragmentation and a reflection of the lack of attention paid to rural
areas in land planning. Similar issues were observed in the Jiaodong Peninsula through
spatial autocorrelation analysis, where the spatial autocorrelation of LS in NUBUA was
significantly weaker than that in UBUA. Rural homestead is the manifestation of living
space in rural China. In recent years, based on the theory of “smart shrinkage”, China
has implemented extensive practices in the spatial reorganization of rural homesteads,
primarily through merging villages [77]. A rural homestead agglomeration through consol-
idation can promote the intensive use of rural land, reduce the degree of fragmentation
of arable land, and contribute to the industrialization and modernization of agriculture.
In addition, the aggregation of rural homesteads is helpful to the government in unifying
management and reducing the cost of rural living service facilities. It should be considered
by policymakers to construct appropriate living service facilities around the aggregation
areas of rural homesteads. This can enhance the well-being of farmers and alleviate the
pressure in urban centers.

4.3. Advantages, Limitations and Prospects

Compared to the existing methods for spatially identifying PLES, the proposed method
shows a higher level of generalizability. Specifically, in contrast to the existing methods
that solely rely on RSI and LC data [13,22], the proposed method offers a finer-grained
identification of PS and LS, making it effectively applicable to cities or regions with primary
industries in agriculture, industry, or commercial and service sectors. Furthermore, in
contrast to the existing methods that solely utilize social sensing data or combine multi-
source data [5,29,34,35], the proposed method effectively addressed the issues that limit
the application of POI data in NUBUA, making it not only suit UBUA with pronounced
human socioeconomic activities but also demonstrate robust applicability within NUBUA.

However, several limitations still exist in this study. On the one hand, the regular
geographic grids with a size of 1 km × 1 km used in NUBUA may result in some errors
in detail, such as the potential difficulty in identifying smaller rural settlements. On the
other hand, the proposed method only considers two scenarios when further subdividing
ASAUs that do not contain any POI. However, this phenomenon might vary in other study
areas. Therefore, when applying this method to other study areas, conducting the necessary
investigations is essential.

Future research could focus on harnessing RSI to extract a broader range of terres-
trial features beyond mere land cover. Additionally, if finer-grained results are required
and conditions permit, the SAU division method mentioned in the reference [30] could
be considered.

5. Conclusions

Exploring the regional changes in the Production-Living-Ecological Space (PLES) is
important for regional sustainable development. Rapid and accurate identification of PLES
is the basis for exploring regional changes. Based on easily accessible point-of-interest (POI)
and land cover (LC) data, a PLES identification method was proposed in this study. The
effectiveness of the method was verified by accuracy evaluation and visual comparison.
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Based on the proposed method, the PLES in Jiaodong Peninsula for 2018 and 2022
was identified, and the changes were further analyzed. According to the results, it can be
observed that the spatial distribution characteristics of PLES in the Jiaodong Peninsula were
obvious and showed significant differentiation between UBUA and NUBUA. Similarly, the
PLES changes also showed significant differentiation between UBUA and NUBUA.

Climatic and natural resource conditions, geographic location, macro policies, and
governmental behaviors drove the spatial changes of PLES in the Jiaodong Peninsula during
2018–2022. More attention to the spatial distribution planning of rural homesteads and
cultivated land, as well as the co-benefits of sponge city construction and the development
and layout of blue and green spaces in the process of urban renewal, could be taken into
account in the future regional development and planning of the Jiaodong Peninsula.

This study proves the feasibility and potential of combining POI data and LC data
in PLES spatial identification, and the results can provide a scientific reference for the
optimization of regional spatial resource allocation in the Jiaodong Peninsula.
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Acronym Definition
API Application Program Interface
APS Agricultural Production Space
AS Ambiguous Space
ASAU Ambiguous Spatial Analysis Unit
BAIC Beijing Automotive Industry Holding Co., Ltd.
CNY Chinese Yuan
EIS Evaluation Index System
ES Ecological Space
GDP Gross Domestic Product
KDE Kernel Density Estimation
LC Land Cover
LS Living Space
LU Land Use
LUCC Land Use/Cover Change
MHCS Medical and Healthy Care Service
NAPS Non-Agricultural Production Space
NGPAL Non-Grain Production in Agricultural Land
NUBUA Non-Urban Built-Up Area
OSM Open Street Map
PLEF Production-Living-Ecological Function
PLES Production-Living-Ecological Space
PLESTM Production-Living-Ecological Space Transfer Matrix
POI Point Of Interest
PS Production Space
RSI Remote Sensing Image
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RSS Rating and Scoring System
SAU Spatial Analysis Unit
SCES Science, Culture, and Education Service
SPLESDD Single Production-Living-Ecological Space Dynamic Degree
SS Shopping Service
UBUA Urban Built-Up Area
VBRG Voxel-Based Region Growing
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