Assessing Soil Organic Carbon Pool for Potential Climate-Change Mitigation in Agricultural Soils—A Case Study Fayoum Depression, Egypt
Abstract
:1. Introduction
2. Methodology
2.1. Investigated Region
2.2. Soil Samples and Laboratory Analysis
2.3. Statistical Analysis
2.4. Geostatistical Analyses
2.5. Remote Sensing and Image Analysis
2.5.1. Supervised Classification
2.5.2. Image Analysis for Land Surface Temperature (LST)
2.5.3. The Conversion of Digital Numbers (DN) to the Top-of-Atmosphere Radiance (TOA)
2.5.4. Transforming TOA into At-Satellite Brightness Temperature
2.5.5. Normalized Difference Vegetation Index (NDVI) Calculation
2.5.6. Determining the Vegetation Proportion
2.5.7. Land Surface Emissivity (ε) Calculation
2.5.8. Calculating Land Surface Temperature (LST)
2.6. Calculation of the Soil Organic Carbon Pool (SOCP)
2.7. Mitigation of Carbon Dioxide (CO2)
3. Results and Discussion
3.1. Soil Characteristics within Research Area
3.2. Mapping Based on Geostatistical Analysis
3.3. Interaction between Different Studied Variables
3.4. Land-Use Change Detection
3.5. LST and NDVI of Study Area
3.6. Variation in SOCP and MEC of Study Area
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Manlay, R.J.; Feller, C.; Swift, M. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric. Ecosyst. Environ. 2007, 119, 217–233. [Google Scholar] [CrossRef]
- Ayoubi, S.; Karchegani, P.M.; Mosaddeghi, M.R.; Honarjoo, N. Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil Tillage Res. 2012, 121, 18–26. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M. Modelling Carbon Sequestration Capacity in Mediterranean Soils. Ph.D. Thesis, University of Seville, Seville, Spain, 2012; p. 169. [Google Scholar]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef]
- Tao, F.; Palosuo, T.; Lehtonen, A.; Heikkinen, J.; Mäkipää, R. Soil organic carbon sequestration potential for croplands in Finland over 2021–2040 under the interactive impacts of climate change and agricultural management. Agric. Syst. 2023, 209, 103671. [Google Scholar] [CrossRef]
- Bauer, A.; Black, A.L. Quantification of the Effect of Soil Organic Matter Content on Soil Productivity. Soil Sci. Soc. Am. J. 1994, 58, 185–193. [Google Scholar] [CrossRef]
- Loveland, P. Is There a Critical Level of Organic Matter in the Agricultural Soils of Temperate Regions: A Review? Soil Tillage Res. 2003, 70, 1–18. [Google Scholar] [CrossRef]
- Koiter, A.J.; Owens, P.N.; Petticrew, E.L.; Lobb, D.A. The Role of Soil Surface Properties on the Particle Size and Carbon Selectivity of Interrill Erosion in Agricultural Landscapes. Catena 2017, 153, 194–206. [Google Scholar] [CrossRef]
- Cheraghi, M.; Jomaa, S.; Sander, G.C.; Barry, D.A. Hysteretic Sediment Fluxes in Rainfall-Driven Soil Erosion: Particle Size Effects. Water Resour. Res. 2016, 52, 8613–8629. [Google Scholar] [CrossRef]
- Asadi, H.; Ghadiri, H.; Rose, C.W.; Rouhipour, H. Interrill Soil Erosion Processes and Their Interaction on Low Slopes. Earth Surf. Process. Landf. 2009, 32, 711–724. [Google Scholar] [CrossRef]
- Wang, X.; Cammeraat, E.L.H.; Romeijn, P.; Kalbitz, K. Soil Organic Carbon Redistribution by Water Erosion—The Role of CO2 Emissions for the Carbon Budget. PLoS ONE 2014, 9, e96299. [Google Scholar]
- Wiesmeier, M.; Hübner, R.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; von Lützow, M.; Kögel-Knabner, I. Carbon Sequestration Potential of Soils in Southeast Germany Derived from Stable Soil Organic Carbon Saturation. Glob. Chang. Biol. 2014, 20, 653–665. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Zhang, H.; Wang, S. Prediction of Soil Organic Carbon based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef]
- Rasmy, M.; Gad, A.; Abdelsalam, H.; Siwailam, M. A dynamic simulation model of desertification in Egypt. Egypt. J. Remote Sens. Space Sci. 2010, 13, 101–111. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [PubMed]
- Snyder, C.; Bruulsema, T.; Jensen, T.; Fixen, P. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- D’Hose, T.; Cougnon, M.; De Vliegher, A.; Vandecasteele, B.; Viaene, N.; Cornelis, W.; Van Bockstaele, E.; Reheul, D. The positive relationship between soil quality and crop production: A case study on the effect of farm compost application. Appl. Soil Ecol. 2014, 75, 189–198. [Google Scholar] [CrossRef]
- Kačergius, A.; Sivojienė, D.; Gudiukaitė, R.; Bakšienė, E.; Masevičienė, A.; Žičkienė, L. Comparison of the Structure of Soil Microbial Communities of Different Ecosystems Using the Microbiome Sequencing Approach. Soil Syst. 2023, 7, 70. [Google Scholar] [CrossRef]
- Chehab, H.; Tekaya, M.; Ouhibi, M.; Gouiaa, M.; Zakhama, H.; Mahjoub, Z.; Laamari, S.; Sfina, H.; Chihaoui, B.; Boujnah, D.; et al. Effects of compost, olive mill wastewater and legume cover cropson soil characteristics, tree performance and oil quality of olive trees cv. Chemlali grown under organic farming system. Sci. Hortic. 2019, 253, 163–171. [Google Scholar]
- Hobley, E.U.; Baldock, J.; Wilson, B. Environmental and human influences on organic carbon fractions down the soil profile. Agric. Ecosyst. Environ. 2016, 223, 152–166. [Google Scholar] [CrossRef]
- Assunçao, S.A.; Pereira, M.G.; Rosset, J.S.; Berbara, R.L.L.; García, A.C. Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Sci. Total Environ. 2019, 658, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Lal, R.; Negassa, W.; Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar]
- Luo, Z.; Feng, W.; Luo, Y.; Baldock, J.; Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Chang. Biol. 2017, 23, 4430–4439. [Google Scholar] [CrossRef]
- Mugwe, J.; Ngetich, F.; Otieno, E.O. Integrated Soil Fertility Management in sub-Saharan Africa Evolving Paradigms toward Integration. In Zero Hunger. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Hobley, E.; Wilson, B.; Wilkie, A.; Gray, J.; Koen, T. Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant Soil 2015, 390, 111–127. [Google Scholar]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. Climatic zonation of Egypt based on high-resolution dataset using image clustering technique. Prog. Earth Planet. Sci. 2022, 9, 35. [Google Scholar]
- Amantai, N.; Ding, J. Analysis on the Spatio-Temporal Changes of LST and Its Influencing Factors Based on VIC Model in the Arid Region from 1960 to 2017: An Example of the Ebinur Lake Watershed, Xinjiang, China. Remote Sens. 2021, 13, 4867. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar]
- Owen, T.W.; Carlson, T.N.; Gillies, R.R. Remotely sensed surface parameters governing urban climate change. Intern. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef]
- Li, R.; Wang, C.; Wu, D. Changes in precipitation recycling over arid regions in the Northern Hemisphere. Theor. Appl. Clim. 2018, 131, 489–502. [Google Scholar]
- Ali, M.G.; Ahmed, M.; Ibrahim, M.M.; El Baroudy, A.A.; Ali, E.F.; Shokr, M.S.; Aldosari, A.A.; Majrashi, A.; Kheir, A.M. Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8. 5 climate scenario of CMIP5. Int. J. Biometeorol. 2022, 66, 971–985. [Google Scholar]
- Yang, Y.-Y.; Goldsmith, A.; Herold, I.; Lecha, S.; Toor, G.S. Assessing Soil Organic Carbon in Soils to Enhance and Track Future Carbon Stocks. Agronomy 2020, 10, 1139. [Google Scholar] [CrossRef]
- Lu, F.; Zhao, Y.; Huang, B.; Wang, J. Comparison of predicting methods for mapping the spatial distribution of topsoil organic matter content in cropland of hailun. J. Soil Sci. 2012, 43, 662–667. [Google Scholar]
- Xu, E.; Zhang, H. Multi-scale analysis of kriging interpolation and conditional simulation for soil organic matters in newly reclaimed area in Yili. Soils 2013, 45, 91–98. [Google Scholar]
- Zhao, D.; Zhao, H.; Rao, J.; Gao, X. Analysis of the spatial distribution pattern of cultivated land quality and the influential factors based on trend-surface. Res. Soil Water Conserv. 2015, 22, 219–223. [Google Scholar]
- Zhen, J.; Pei, T.; Xie, S. Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil. Sci. Total Environ. 2019, 659, 363–371. [Google Scholar]
- Abuzaid, A.S.; Mazrou, Y.S.A.; El Baroudy, A.A.; Ding, Z.; Shokr, M.S. Multi-Indicator and Geospatial Based Approaches for Assessing Variation of Land Quality in Arid Agroecosystems. Sustainability 2022, 14, 5840. [Google Scholar] [CrossRef]
- Staff, S.S. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Abd-Elmabod, S.K.; Bakr, N.; Muñoz-Rojas, M.; Pereira, P.; Zhang, Z.; Cerdà, A.; Jordán, A.; Mansour, H.; De la Rosa, D.; Jones, L. Assessment of Soil Suitability for Improvement of Soil Factors and Agricultural Management. Sustainability 2019, 11, 1588. [Google Scholar] [CrossRef]
- Ali, R.; Kawy, W.A. Land degradation risk assessment of El Fayoum depression, Egypt. Arab. J. Geosci. 2013, 6, 2767–2776. [Google Scholar]
- Shokr, M.S.; Abdellatif, M.A.; El Baroudy, A.A.; Elnashar, A.; Ali, E.F.; Belal, A.A.; Attia, W.; Ahmed, M.; Aldosari, A.A.; Szantoi, Z.; et al. Development of A Spatial Model for Soil Quality Assessment under Arid and Semi-Arid Conditions. Sustainability 2021, 13, 2893. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Mohamed, E.S.; Wagdi, E.M.; Shahin, S.A.; Aldosari, A.A.; Lasaponara, R.; Alnaimy, M.A. Quantitative Evaluation of Soil Quality Using Principal Component Analysis: The Case Study of El-Fayoum Depression Egypt. Sustainability 2021, 13, 1824. [Google Scholar] [CrossRef]
- CAPMAS. Egypt Statistical Yearbook Population. 2015. Available online: http://www.capmas.gov.eg/Pages/Publications.aspx?page_id=5104&YearID=23011 (accessed on 12 July 2017).
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; U.S. Department of Agriculture: Washington, DC, USA, 1954; Volume 78, p. 154. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis. Tech. Pap.-Int. Soil Ref. Inf. Cent. 1986, 9, 106. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8009739 (accessed on 3 February 2021).
- USDA. Soil Survey Laboratory Methods Manual. Soil Surv. Investig. Rep. 2004, 42, 31–247. [Google Scholar]
- Baruah, T.; Barthakur, H. A Textbook of Soil Analysis; Vikas Publishing House PVT Ltd.: New Delhi, India, 1997. [Google Scholar]
- Kettler, T.A.; Doran, J.W.; Gilbert, T.L. Simplified method for soil particle-size determination to accompany soil-quality anal yses. Soil Sci. Soc. Am. J. 2001, 65, 849–852. [Google Scholar]
- Bogunovic, I.; Kljak, K.; Dugan, I.; Grbeša, D.; Telak, L.J.; Duvnjak, M.; Kisic, I.; Solomun, M.K.; Pereira, P. Grassland Management Impact on Soil Degradation and Herbage Nutritional Value in a Temperate Humid Environment. Agriculture 2022, 12, 921. [Google Scholar] [CrossRef]
- Ahogle, A.M.A.; Alladassi, F.K.; Akplo, T.M.; Azontonde, H.A.; Houngnandan, P. Assessing Soil Organic Carbon Stocks and Particle-Size Fractions across Cropping Systems in the Kiti Sub-Watershed in Central Benin. C 2022, 8, 67. [Google Scholar] [CrossRef]
- Abdelsamie, E.A.; Abdellatif, M.A.; Hassan, F.O.; El Baroudy, A.A.; Mohamed, E.S.; Kucher, D.E.; Shokr, M.S. Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones. Agriculture 2023, 13, 35. [Google Scholar] [CrossRef]
- Isaaks, E.H.; Srivastava, M.R. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS Geostatistical Analyst; ESRI: Redlands, CA, USA, 2001; Volume 380. [Google Scholar]
- Gundogdu, K.S.; Guney, I. Spatial analyses of groundwater levels using universal kriging. J. Earth Syst. Sci. 2007, 116, 49–55. [Google Scholar] [CrossRef]
- Abdellatif, M.A.; El Baroudy, A.A.; Arshad, M.; Mahmoud, E.K.; Saleh, A.M.; Moghanm, F.S.; Shaltout, K.H.; Eid, E.M.; Shokr, M.S. A GIS-Based Approach for the Quantitative Assessment of Soil Quality and Sustainable Agriculture. Sustainability 2021, 13, 13438. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Jalhoum, M.E.M.; Belal, A.A.; Hendawy, E.; Azab, Y.F.A.; Kucher, D.E.; Shokr, M.S.; El Behairy, R.A.; El Arwash, H.M. A Novel Approach for Predicting Heavy Metal Contamination Based on Adaptive Neuro-Fuzzy Inference System and GIS in an Arid Ecosystem. Agronomy 2023, 13, 1873. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Jahin, H.S.; Shokr, M.S.; El Baroudy, A.A.; Mohamed, E.S.; Rebouh, N.Y.; Bassouny, M.A. A Novel Regional-Scale Assessment of Soil Metal Pollution in Arid Agroecosystems. Agronomy 2023, 13, 161. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- U.S. Geological Survey. Landsat Missions: Using the USGS Landsat Level-1 Data Product. 2021. Available online: https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product (accessed on 1 October 2022).
- Avdan, U.; Jovanovska, J. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. J. Sens. 2016, 2016, 1480307. [Google Scholar] [CrossRef]
- Aman, A.; Randriamanantena, H.P.; Podaire, A.; Froutin, R. Upscale Integration of Normalized Difference Vegetation Index: The Problem of Spatial Heterogeneity. IEEE Trans. Geosci. Remote Sens. 1992, 30, 326–338. [Google Scholar] [CrossRef]
- Rouse Jr, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; No. E75-10354; NTRS: Washington, DC, USA, 1974. [Google Scholar]
- Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Ca libration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Tan, Z.X.; Lal, R. Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA. Agric. Ecosyst. Environ. 2005, 111, 140–152. [Google Scholar]
- Intergovernmental Panel on Climate Change—IPCC. Fourth Assessment Report; Climate Change Synthesis Report; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Curtin, D.; Campbell, C.; Jalil, A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 1998, 30, 57–64. [Google Scholar]
- FAO; United Nations Environment Programme; United Nations Educational, Scientific, and Cultural Organization. A Provisional Methodology for Soil Degradation Assessment; FAO: Rome, Italy, 1980. [Google Scholar]
- El Behairy, R.A.; El Baroudy, A.A.; Ibrahim, M.M.; Kheir, A.M.; Shokr, M.S. Modelling and assessment of irrigation water quality index using GIS in semi-arid region for sustainable agriculture. Water Air Soil Pollut. 2021, 232, 352. [Google Scholar]
- Zhenghu, D.; Honglang, X. Effects of soil properties on ammonia volatilization. Soil Sci. Plant Nutr. 2000, 46, 845–852. [Google Scholar]
- Wandruszka, R.V. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem. Trans. 2006, 7, 6. [Google Scholar]
- Obalum, S.E.; Chibuike, G.U.; Peth, S.; Ouyang, Y. Soil organic matter as sole indicator of soil degradation. Environ. Monit. Assess. 2017, 189, 176. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-C.; Zhang, G.-L.; Zhao, M.-S.; Pan, X.-Z.; Zhao, Y.-G.; Li, D.-C.; Macmillan, B. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS. PLoS ONE 2015, 10, e0129977. [Google Scholar] [CrossRef]
- Leifeld, J.; Bassin, S.; Fuhrer, J. Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agric. Ecosyst. Environ. 2005, 105, 255–266. [Google Scholar]
- Tanveera, A.; Kanth, T.A.; Tali, P.A.; Naikoo, M. Relation of Soil Bulk Density with Texture, Total Organic Matter Content and Porosity in the Soils of Kandi Area of Kashmir Valley, India. Int. Res. J. Earth Sci. 2016, 4, 1–6. [Google Scholar]
- Miles, N.; Meyer, J.H.; Van Antwerpen, R. Soil organic matter data: What do they mean. Proc. S. Afr. Sugar Technol. Assoc. 2008, 81, 324–332. [Google Scholar]
- Russel, E.J. Soil Conditions and Plant Growth, 10th ed.; Longman: London, UK, 1973. [Google Scholar]
- Bresler, E.; Dagan, G.; Wagenet, R.J.; Laufer, A. Statistical analysis of salinity and texture effects on spatial variability of soil hydraulic conductivity. Soil Sci. Soc. Am. J. 1984, 48, 16–25. [Google Scholar]
- Frenkel, H.; Goertzen, J.O.; Rhoades, J.D. Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Sci. Soc. Am. J. 1978, 42, 32–39. [Google Scholar]
- Wang, S.; Zhuang, Q.L.; Wang, Q.B.; Jin, X.X.; Han, C.L. Mapping stocks of soil organic carbon and soil total nitrogen in liaoning province of china. Geoderma 2017, 305, 250–263. [Google Scholar]
- Kumar, K.S.; Bhaskar, P.U.; Padmakumari, K. Estimation of land surface temperature to study urban heat island effect using Landsat ETM+ image. Int. J. Eng. Sci. Technol. 2012, 4, 771–778. [Google Scholar]
- Ullah, S.; Tahir, A.A.; Akbar, T.A.; Hassan, Q.K.; Dewan, A.; Khan, A.J.; Khan, M. Remote Sensing-Based Quantification of the Relationships between Land Use Land Cover Changes and Surface Temperature over the Lower Himalayan Region. Sustainability 2019, 11, 5492. [Google Scholar] [CrossRef]
- Hassan, F.O. Assessment of Soil and Water Quality and Their Effect on Agriculture Productivity in El-Fayoum Governorate, Egypt Using Remote Sensing and GIS Techniques. Ph.D. Thesis, Soil and Water Department, Faculty of Agriculture, Benha University, Banha, Egypt, 2022. [Google Scholar]
- El-Nady, M.F.; El-Hady, O.A.; El-Sebaie, O.A. Land evaluation for planting some fruit trees in Fayoum Governorate, Egypt. Land Degrad. Dev. 2015, 26, 431–441. [Google Scholar] [CrossRef]
- Abou-Seeda, M.A.; Khalafallah, M.G.; Bayoumi, A.T. A combined approach for evaluating land suitability for wheat in the Fayoum Oasis, Egypt. J. Soil Sci. Agric. Eng. 2013, 4, 527–541. [Google Scholar]
- Abu-hashim, M.; Elsayed, M.; Belal, A.E. Effect of land-use changes and site variables on surface soil organicn carbon pool at Mediterranean Region. J. Afr. Earth Sci. 2016, 114, 78–84. [Google Scholar]
- Muster, S.; Langer, M.; Abnizova, A.; Young, K.L.; Boike, J. Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote Sens. Environ. 2015, 168, 1–12. [Google Scholar]
- Onwuka, B.; Mang, B. Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric Res. 2018, 8, 34–37. [Google Scholar]
- Hillel, D. Introduction to Environmental Soil Physics; Elsevier Academic 637 Press: Amsterdam, The Netherlands, 2004; p. 494. [Google Scholar]
- Yuan, X.L.; Wang, W.; Cui, J.; Meng, F.; Kurban, A.; Maeyer, P. Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Sci. Rep. 2017, 7, 3287. [Google Scholar]
- Xin, Z.; Qin, Y.; Yu, X. Spatial Variability in Soil Organic Carbon and Its Influencing Factors in a Hilly Watershed of the Loess Plateau, China. Catena 2016, 137, 660–669. [Google Scholar]
- Chiriluș, G.V.; Lakatos, E.S.; Bălc, R.; Bădărău, A.S.; Cioca, L.I.; David, G.M.; Roşian, G. Assessment of Organic Carbon Sequestration from Romanian Degraded Soils: Livada Forest Plantation Case Study. Atmosphere 2022, 13, 1452. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of Soil Organic Carbon on Soil Water Retention. Geoderma 2003, 116, 61–76. [Google Scholar]
- Korkanç, S.Y. Effects of Afforestation on Soil Organic Carbon and Other Soil Properties. Catena 2014, 123, 62–69. [Google Scholar]
- Lantz, A.M.; Lal, R.; Kimble, J.M. Land-use effects on soil carbon pools in three major land resource areas of Ohio. In Agricultural Practices and Policies for Carbon Sequestration in Soil; Kimble, J.M., Lal, R., Follett, R., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2002; pp. 165–175. [Google Scholar]
- Sharma, S.; Rana, V.S.; Prasad, H.; Lakra, J.; Sharma, U. Appraisal of carbon capture, storage, and utilization through fruit crops. Front. Environ. Sci. 2021, 9, 700768. [Google Scholar]
- Xie, X.; Weng, Y.; Cai, W. Co-Benefits of CO2 Mitigation for NOX Emission Reduction: A Research Based on the DICE Model. Sustainability 2018, 10, 1109. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar]
- Chen, G.; Tian, H. Land Use/Cover Change Effects on Carbon Cycling in Terrestrial Ecosystems. Chin. J. Plant Ecol. 2007, 31, 189–204. (In Chinese) [Google Scholar] [CrossRef]
Characteristics | Statistical | |||||
---|---|---|---|---|---|---|
Min. | Max. | Mean | Std. | Skewness | Kurtosis | |
pH | 7.21 | 8.37 | 7.84 | 0.22 | 0.42 | 1.49 |
EC (dS m−1) | 1.20 | 17.40 | 4.99 | 3.96 | 1.77 | 2.38 |
ESP | 6.28 | 36.83 | 15.48 | 7.10 | 1.35 | 1.54 |
CEC (cmolc Kg−1) | 6.35 | 41.70 | 22.27 | 9.44 | −0.03 | −0.75 |
CaCO3 (g kg−1) | 35 | 230.9 | 99.9 | 55.93 | 1.01 | −0.08 |
Gypsum % | 0.11 | 0.45 | 0.19 | 0.08 | 1.13 | 1.07 |
SOM (g kg−1) | 0.7 | 19.5 | 11.11 | 5.7 | −0.54 | −1.03 |
B.D. (Mg m−3) | 1.24 | 1.57 | 1.45 | 0.09 | −0.92 | 0.41 |
Soil Parameters | Model Type | Mean | RMSE | MSE | RMSSE |
---|---|---|---|---|---|
pH | Spherical | −0.001 | 0.167 | −0.01 | 0.982 |
EC | Gaussian | −0.35 | 3.80 | −0.08 | 1.07 |
ESP | Gaussian | 0.59 | 8.29 | 0.08 | 1.10 |
CEC | Circular | −0.2738 | 10.87 | −0.02 | 0.99 |
CaCO3 | Gaussian | −0.14 | 5.47 | −0.02 | 1.00 |
Gypsum | Gaussian | −0.00 | 0.07 | −0.004 | 1.03 |
SOM | Spherical | −0.010 | 0.651 | −0.02 | 0.99 |
SOC | Spherical | 0.447 | 12.27 | 0.030 | 0.98 |
BD | Spherical | −0.00 | 0.082 | −0.05 | 1.02 |
Clay | CaCO3 | Gypsum | OM | B.D. | SOCP | CEC | ESP | pH | EC | LST | NDVI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay | 1 | −0.131 | −0.124 | 0.857 ** | −0.744 ** | 0.817 ** | 0.869 ** | −0.522 ** | 0.268 | −0.418 ** | −0.713 ** | 0.606 ** |
CaCO3 | −0.131 | 1 | 0.205 | 0.099 | 0.333 * | 0.145 | 0.181 | 0.332 * | 0.192 | 0.194 | −0.117 | 0.255 |
Gypsum | −0.124 | 0.205 | 1 | −0.057 | 0.096 | −0.061 | −0.052 | −0.051 | 0.046 | 0.146 | 0.070 | −0.082 |
OM | 0.857 ** | 0.099 | −0.057 | 1 | −0.549 ** | 0.991 ** | 0.937 ** | −0.274 | 0.510 ** | −0.229 | −0.806 ** | 0.689 ** |
B.D. | −0.744 ** | 0.333 * | 0.096 | −0.549 ** | 1 | −0.435 ** | −0.586 ** | 0.408 ** | −0.272 | −0.009 | 0.448 ** | −0.450 ** |
SOCP | 0.817 ** | 0.145 | −0.061 | 0.991 ** | −0.435 ** | 1 | 0.911 ** | −0.245 | 0.493 ** | −0.267 | −0.803 ** | 0.676 ** |
CEC | 0.869 ** | 0.181 | −0.052 | 0.937 ** | −0.586 ** | 0.911 ** | 1 | −0.297 * | 0.494 ** | −0.221 | −0.723 ** | 0.641 ** |
ESP | −0.522 ** | 0.332 * | −0.051 | −0.274 | 0.408 ** | −0.245 | −0.297 * | 1 | 0.130 | 0.538 ** | 0.161 | −0.165 |
pH | 0.268 | 0.192 | 0.046 | 0.510 ** | −0.272 | 0.493 ** | 0.494 ** | 0.130 | 1 | 0.169 | −0.0420 ** | 0.517 ** |
EC | −0.418 ** | 0.194 | 0.146 | −0.229 | −0.009 | −0.267 | −0.221 | 0.538 ** | 0.169 | 1 | 0.078 | 0.036 |
LST | −0.713 ** | −0.117 | 0.070 | −0.806 ** | 0.448 ** | −0.803 ** | −0.723 ** | 0.161 | −0.420 ** | 0.078 | 1 | −0.793 ** |
NDVI | 0.606** | 0.255 | −0.082 | 0.689 ** | −0.450 ** | 0.676 ** | 0.641 ** | −0.165 | 0.517 ** | 0.036 | −0.793 ** | 1 |
Area (ha) | ||||
---|---|---|---|---|
2000 | 2013 | 2022 | Change (2000–2022) | |
Cultivated areas | 153,599 | 156,133.56 | 157,112.94 | 3513.93 |
Urban area | 12,772.7 | 20,333.75 | 22,534.79 | 9762.09 |
Bare soils | 29,580.4 | 17,907.69 | 16,073.27 | −13,507.13 |
Water bodies | 34,315 | 35,892 | 34,546 | −231 |
Cultivated Areas | Bare Soils | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Property | N | Mini | Max | Mean | Std. | N | Mini | Max | Mean | Std. |
LST °C | 37 | 31.87 | 41.65 | 36.06 | 2.57 | 8 | 41.24 | 44.67 | 43.11 | 1.40 |
NDVI | −0.11 | 0.62 | 0.30 | 0.12 | −0.13 | −0.003 | −0.09 | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdellatif, M.A.; Hassan, F.O.; Rashed, H.S.A.; El Baroudy, A.A.; Mohamed, E.S.; Kucher, D.E.; Abd-Elmabod, S.K.; Shokr, M.S.; Abuzaid, A.S. Assessing Soil Organic Carbon Pool for Potential Climate-Change Mitigation in Agricultural Soils—A Case Study Fayoum Depression, Egypt. Land 2023, 12, 1755. https://doi.org/10.3390/land12091755
Abdellatif MA, Hassan FO, Rashed HSA, El Baroudy AA, Mohamed ES, Kucher DE, Abd-Elmabod SK, Shokr MS, Abuzaid AS. Assessing Soil Organic Carbon Pool for Potential Climate-Change Mitigation in Agricultural Soils—A Case Study Fayoum Depression, Egypt. Land. 2023; 12(9):1755. https://doi.org/10.3390/land12091755
Chicago/Turabian StyleAbdellatif, Mostafa A., Farag O. Hassan, Heba S. A. Rashed, Ahmed A. El Baroudy, Elsayed Said Mohamed, Dmitry E. Kucher, Sameh Kotb Abd-Elmabod, Mohamed S. Shokr, and Ahmed S. Abuzaid. 2023. "Assessing Soil Organic Carbon Pool for Potential Climate-Change Mitigation in Agricultural Soils—A Case Study Fayoum Depression, Egypt" Land 12, no. 9: 1755. https://doi.org/10.3390/land12091755
APA StyleAbdellatif, M. A., Hassan, F. O., Rashed, H. S. A., El Baroudy, A. A., Mohamed, E. S., Kucher, D. E., Abd-Elmabod, S. K., Shokr, M. S., & Abuzaid, A. S. (2023). Assessing Soil Organic Carbon Pool for Potential Climate-Change Mitigation in Agricultural Soils—A Case Study Fayoum Depression, Egypt. Land, 12(9), 1755. https://doi.org/10.3390/land12091755