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Abstract: Climate change and human activities have caused a range of impacts on the ecological
environment. The Loess Plateau (LP) is critical to the stability and health of ecosystems in central and
western China, but there is still a lack of research on spatial and temporal heterogeneity in the effects
of climate and human activities on the EEQ of the LP. We quantified the ecological environment
quality of the study area from 2001 to 2019 based on the improved remote sensing ecological index
(RSEI-2) and studied the spatial and temporal evolution of EEQ and its drivers during this period
by trend analysis and multiscale geographic weighted regression (MGWR) model. The EEQ of the
LP showed an increasingly slowing trend during 2001–2019, with apparent spatial heterogeneity,
the south-central part was the hot spot area of change, and the center of gravity of change shifted
124.56 km to the southwest. The driving effects and ranges of each factor changed over time during
the study period, and the positive effects of precipitation (PRE) and temperature (TEM) on the EEQ
of the southern LP became more apparent, but the negative effects of TEM on the northwestern
part have expanded. The negative effect of the intensity of land utilization (LUI) has increased from
north to south and has the most profound impact, while population growth has less impact on the
central region. The results of this research indicate that the execution of the Grain to Green Program
(GGP) in the LP over the last two decades has been effective, but more attention should be paid to
the maintenance of the restoration effect in the central region and the reasonable development of the
land in the southern area. This research can enhance the comprehension of alterations in ecological
factors that impact the environment of the LP. Additionally, it serves as a foundation for investigating
strategies for ecological preservation and sustainable land development.

Keywords: climate change; ecological environment quality; land use; Loess Plateau

1. Introduction

Over recent decades, the complex relationship between ecological environments,
climate, and human beings has been further complicated by the increasing intensity of
both climate change and human activities [1–3]. According to the report of IPCC [4], the
average global temperature has risen by 0.85 ◦C between 1880 and 2012, and the 20th
century may be the warmest in the last millennium. Since the last century, economic
development in Northwest China has caused a profound transformation of land use [5,6],
and ecological vulnerability and instability have been further aggravated by strong spatial
heterogeneity [7]. The research indicates that the gravity of ecological environment quality
(EEQ) change in China has been shifting to the west continuously over the past decades [8].
The Loess Plateau (LP), as a transition zone linking the northwest region and the North
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China Plain, has experienced a temperature increase of nearly 2 ◦C from 1961 to 2010 [9].
It is a change that exceeds the average warming in China, indicating that the region is
extremely sensitive to climate change. As an ecological functional area of soil and water
conservation [10], LP has experienced dramatic fluctuations in climate change over the last
decades and human activities have led to frequent changes in land use [11,12]. With the
implementation of a series of control measures and ecological construction projects such as
GGP, the vegetation coverage and value of primary ecosystem services in the LP have been
enhanced [13–15]. Nonetheless, the ecological environment in the LP is delicate and highly
responsive to external modifications [16,17]. Ecological transformations impact not only the
functions of terrestrial ecosystem services, but also human livelihoods and progress [18]. An
excellent ecological environment is a crucial prerequisite for sustainable development [19],
and a basic condition for promoting the construction of ecological civilization in China [20].
Therefore, it is urgent to solve the problem of monitoring the evolution of EEQ in the Loess
Plateau, by studying the response of ecological environment change to climate change and
human activities, and formulating corresponding countermeasures.

In order to evaluate EEQ quickly and easily, an accurate remote sensing ecological index is
necessary to evaluate EEQ and provide timely warnings. Numerous evaluation systems exist
for the assessment of EEQ, mostly based on mathematical models. For example, the ecological
index (EI) based on vegetation cover, biological abundance, land stress index, and other
indicators was promulgated by the Ministry of Ecology and Environment, China [21]. Xu [22]
proposed the remote sensing ecological index (RSEI) based on remote sensing technology,
coupled with the inversion of the vegetation cover index (NDVI), wetness (WET), surface heat
(LST), and dryness (NDBSI), thus realizing the spatial and temporal distribution and trends
of the regional ecological environment. Meanwhile, the problem of difficulty in large-scale
monitoring has been well solved. At present, scholars have conducted a series of studies
based on RSEI for different regions, such as Southeast [23–25], Northeast [26], Northwest [27],
and Southwest China [28]. With the wide application of RSEI, there are currently studies to
add new data to the original four components of RSEI to meet the needs of the research area,
such as net primary production (NPP) [29], aerosol optical depth (AOD) [30], and salinity
monitoring index (SMI) [31]. There are also studies on improving the principal component
analysis (PCA) process [21,32] to obtain more accurate data. Xu et al. [33] constructed the
RSEI-2 model by using the classification weight of land cover types of EI, making good use of
land use data to study large-scale ecological environment changes. It has been verified that
RSEI-2 has a higher degree of fitting with EI than RSEI [33,34].

As an important transition area from southeast to northwest of mainland China, the
ecological research of the Loess Plateau, including NDVI, has always been a hot topic [11,35]
and studies based on multi-source remote sensing data have been limited to qualitative
descriptions [36,37]. While some studies have attempted to identify drivers of EEQ, using
regression models or correlation analysis, these methods often introduce uncertainty due to
multicollinearity between independent variables [38,39]. To address this issue, Geodetector
has been increasingly used for attribution analysis [40]. However, in contrast to GWR, it is
still unable to explore the spatial evolution of the drivers. To overcome these limitations,
MGWR models are used to better understand the spatial and temporal heterogeneity of
the relationships between independent and dependent variables at different scales [41,42].
In contrast to previous approaches, MGWR models can capture both fixed and cyclical
variables, thus providing a more comprehensive understanding of the optimal scale and
driving mechanisms behind changes in the dependent variable. Although MGWR models
have been successfully applied to other fields, such as organic carbon distribution [43] and
atmospheric pollution [44], application to EEQ studies remains relatively limited, and the
spatial and temporal heterogeneity of the effects of climate and human activities on the
EEQ of the LP is currently unclear. The study aims to highlight the innovative potential of
MGWR models in exploring the complex relationships between environmental factors and
EEQ in LPs, providing a new methodological idea for research in this area.
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EEQ data based on RSEI-2 and a series of remote sensing data that can reflect climate
and human activities are analyzed by trend analysis, MK test, and MGWR model to
study the following problems from a spatial-temporal perspective: (1) The trend of EEQ
evolution in the LP from 2001 to 2019 and (2) how the impact of climate change and human
activities on EEQ has evolved. The purpose of this study is to provide a new idea for the
understanding of the spatial evolution process and various factors that affected EEQ over
the past decades and to support policy implementation to coordinate ecological protection
and land development.

2. Materials and Methods
2.1. Study Area

China’s LP has an area of 6.4 × 105 km2 [45], including all or part of Shanxi, Qinghai,
Shaanxi, Gansu, and other provinces or autonomous regions (Figure 1). It appears that
the land use types in the study area are primarily grassland and cropland. The region is
in the transition zone from coastal to inland and from plain to plateau, with an arid to
semi-humid climate [46]. The annual precipitation is in the range of 400–500 mm and is
concentrated in the summer, and the temperature fluctuates around 7.5 ◦C. Due to long-
term man-made deforestation, steep-slope cultivation, resource development, and climate
change, the Loess Plateau, especially in the central region, is filled with ravines, broken
landforms, and serious soil and water loss [10,11]. The local ecological environment is
facing serious challenges [47].
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2.2. Data Collection
2.2.1. The Data Needed to Build the EEQ

Landsat 5 TM (LANDSAT/LT05/C02/T1_L2) and Landsat 8 OLI (LANDSAT/LC08/C02/
T1_L2) image data composites were preprocessed by Google Earth Engine (https://earthengine.
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google.com/ (accessed on 15 March 2023)) to calculate greenness (NDVI), dryness (NDBSI),
heat (LST), and moisture (WET) indices. Cloudless or less clouded images from June 2001 to
October 2019 were selected for analysis, and the time phase data from June to October of each
year were obtained by means of average synthesis. The SR dataset provided by GEE is the
surface reflectance after geometric correction and atmospheric correction, without cloud mask
processing [4]. The high reflectivity of clouds will seriously affect the calculation of indicators;
therefore, we need to use the Simple Cloud Score algorithm in GEE for image cloud computing.
Considering the balance of computing resources and reflecting details, data were resampled
(1 km). The abundance index of land cover types (HQI) was calculated by CLCD data. Finally,
RSEI-2 was synthesized by the PCA tool in ENVI5.3.

2.2.2. Climate Dataset

Precipitation (PRE) and temperature (TEM) are monthly raster data, which are synthe-
sized on the annual scale by MATLAB 2021b, followed by clipping, resampling, reprojection,
and other operations.

2.2.3. Human Activity Dataset

Based on the analysis of the nighttime light dataset of China (NL), population density
(POP), and annual land cover data of China (CLCD), the study provides insights into human
activity in a particular area. To ensure accuracy, the data have been clipped, resampled,
and re-projected as necessary. These measures help to refine the data and provide a more
comprehensive understanding of the region under investigation.

2.2.4. Other Dataset

Other data used for mapping and analysis include digital elevation models, various
boundaries, river network vector data, etc.

The specific information is shown in Table 1 and the technology roadmap is shown in
Figure 2.

Table 1. Detailed description of data sources.

Data Name Spatial Resolution Time Resolution Time Range Source

LANDSAT/LT05/C02/T1_L2
LANDSAT/LC08/C02/T1_L2 30 m 16-day 2001–2019 USGS a

Annual land cover data of
China (CLCD) 30 m Year 2001, 2010, 2019

Paper [48]
(https://zenodo.org/record/5816591

(accessed on 25 May 2022))

Nighttime light Dataset of
China (NL) 1 km Year 2001, 2010, 2019

Paper [49]
(https://data.tpdc.ac.cn (accessed on 3

March 2023))
Population density dataset

(POP) 1 km Year 2001, 2010, 2019 LandScan b

Precipitation data
(PRE) 1 km Month 2001–2019 ESSDC c

Temperature data
(TEM) 1 km Month 2001–2019 ESSDC d

Digital elevation model
(DEM) 30 m N/A N/A RESDC d

China’s provincial
boundaries, river

networks
N/A N/A 2015 RESDC d

a: United States Geological Survey (www.earthexplorer.usgs.gov (accessed on 16 March 2023)). b: LandScan USA
(www.landscan.ornl.gov (accessed on 16 March 2023)). c: Earth System Science Data Center China (www.loess.
geodata.cn (accessed on 25 May 2022)). d: Recourses and Environment Science Data Center China (www.resdc.cn
(accessed on 25 May 2022)).

https://earthengine.google.com/
https://earthengine.google.com/
https://zenodo.org/record/5816591
https://data.tpdc.ac.cn
www.earthexplorer.usgs.gov
www.landscan.ornl.gov
www.loess.geodata.cn
www.loess.geodata.cn
www.resdc.cn
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2.3. Research Method
2.3.1. Construction of the RSEI-2 Model

The RSEI is a widely used model for evaluating ecological environments. Xu et al.
constructed the RSEI-2 model based on land use and it has good applicability to the Chinese
region [33]. We adopted the RSEI-2 model for the LP, and the specific construction is as
follows:

RSEI-2 =
PC1− PC1min

PC1max − PC1min
(1)

PC1 = PCA(NDVI, WET, NDBSI, LST, HQI) (2)

where RSEI-2 is the improved remote sensing ecological index, PC1 is the first principal
component (Table 2), PC1min is the minimum value of the first principal component, and
PC1max is the maximum value. The specific method of synthesis can be found in [23,28,33].
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Table 2. Ingredient calculation formula.

Indicators Calculation Formula

NDVI NDVI = ($NIR − $red)/($NIR + $red)

WET WETTM = 0.0315$blue + 0.2021$green + 0.3102$red + 0.1594$NIR − 0.6806$SWIR1 − 0.6109$SWIR2
WETOLI = 0.1511$blue + 0.1973$green + 0.3283$red + 0.3407$NIR − 0.7117$SWIR1 − 0.4559$SWIR2

NDBSI

NDBSI = (SI+IBI)/2
IBI = IBI1/IBI2

IBI1 = 2$SWIR2/($SWIR1 + $NIR) − [($NIR/($red + $NIR)+$green/($SWIR1 + $green)]
IBI2 = 2$SWIR2/($SWIR1 + $NIR) + [($NIR/($red + $NIR)+$green/($SWIR1 + $green)]

SI = [($SWIR1 + $red) − ($blue + $NIR)]/[($SWIR1 + $red)+($blue + $NIR)]
LST LST = T/[1 + (λT/$)lnε] − 273.15

HQI HQI = µ × (0.35 × Forest + 0.21 × Grassland + 0.28 ×Water + 0.11 × Cropland + 0.04 ×
Impervious + 0.01 × Barren)/Area

$blue, $green, $red, $NIR, $SWIR1, $SWIR2: represent the reflectance of Landsat 5 TM and Landsat 8 OLI in blue, green,
red, near-infrared, shortwave infrared 1, and shortwave infrared 2, respectively; T: heat value of the sensor; λ:
center wavelength of the thermal infrared band; $: constant; ε: specific surface emissivity.

2.3.2. Theil−Sen Median and Mann−Kendall Analysis

The Theil−Sen median analysis is a statistical technique that is both robust and non-
parametric. Its robustness makes it less sensitive to outliers and measurement errors,
while its non-parametric nature allows it to make fewer assumptions about the underlying
distribution of the data. Furthermore, its computational efficiency makes it well-suited for
analyzing trends in datasets over extended periods of time [50]. In this study, the Theil−Sen
median method was used to analyze the trend of EEQ. The formula is as follows:

β = median
( xj − xk

j− k

)
, j = 1, 2, . . . , 19; k = 1, 2, . . . , j− 1, (3)

where β is the slope of each pixel regression equation, and xj and xk are the average values
of EEQ in the j year and the k year. When β > 0, the EEQ tends to improve; when β = 0, the
EEQ is relatively stable; when β < 0, the EEQ tends to deteriorate. The greater the absolute
value, the faster the change, and vice versa.

The Mann−Kendall test is a statistical method that does not rely on any specific
distribution assumptions, and thus is considered non-parametric [51,52]. It can use the size
relationship between consecutive data to verify whether the trend of EEQ is significant,
and can handle extreme values and missing data in the series. The formula is as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(

xj − xk
)
, sgn

(
xj − xk

)
=


1 xj − xk > 0
0 xj − xk = 0
−1 xj − xk < 0

, (4)

where xj is the j data value in the time series, n is the length of the data sample, and sgn is a
symbol function.

When n ≥ 10, the Mann−Kendall test statistic S is approximately normally distributed
and the average value is 0. The coefficient of variation is as follows:

Var(S) =
n(n− 1)(2n + 5)

18
(5)

The Z value is used to determine whether the data have a significant trend. The
formula is as follows:

Z =


S−1√
Var(S)

, S > 0

0 , S = 0
S+1√
Var(S)

, S < 0
, (6)
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Given 95% and 99% confidence level α, when |Z| > Z (1−α/2), it can be considered
that there is a significant change trend at this level, whereas when |Z| < Z (1−α/2), it can
be considered that there is no significant change trend at this level.

2.3.3. Land Utilization Degree Index

Land use and land cover change (LUCC) is one of the most prominent indicators of
the surface system that reflect human activities [53] and is considered as the main cause
of global ecological environment change [54]. Land use is a type of data divided into
categories, and to facilitate better analysis in subsequent models, we need a method to
quantify it. The land utilization degree index reflects the degree of human development
and utilization of regional land and serves as a quantitative tool for assessing the spatial
extent and intensity of land utilization within a particular region [55]. The formula is as
follows:

L = 100×
i=n

∑
i=1

(Ai × Ci) (7)

where L is the land use index, Ai is the classification index of land use degree, Ci is the
percentage of area in the study area at level i of the land use hierarch, and n is the quantity
of land use hierarchies. According to the existing research [55], the barren is assigned to 1,
the forest, grassland, and water are assigned to 2, the cropland is assigned to 3, and the
construction land (impervious) is assigned to 4.

2.3.4. Standard Deviational Ellipse

The standard deviational ellipse is a spatial statistical method that can accurately reveal
the global characteristics of the distribution pattern of geographic features in physical space
from multiple perspectives [56]. Its basic elements, including the center of gravity, long
axis, and short axis, were used to reveal the spatial and temporal evolution trend of EEQ
growth rate in the LP. The formulas are as follows:

(
X, Y

)
=

 n
∑

i=1
uixi

n
∑

i=1
ui

,

n
∑

i=1
uiyi

n
∑

i=1
ui


σx =

√
n
∑

i=1

(
uixi cos θ − ui

∼
y isin θ

)
/

n
∑

i=1
u2

i

σy =

√
n
∑

i=1

(
ui
∼
xisin θ − ui

∼
y icos θ

)
/

n
∑

i=1
u2

i

, (8)

where xi and yi are the center coordinates of each spatial unit in the research region,
respectively, ui represents the EEQ growth rate of study unit i, (X, Y) are the coordinates of
the center of the ellipse and the center of gravity in space, θ denotes the angle of the ellipse
which is the angle formed by the clockwise rotation of the positive north direction to the
long axis of the ellipse,

∼
xi and

∼
yi denote the coordinate deviation from the coordinate of

the center of each spatial unit to that of the center of gravity, respectively, σx and σy are the
standard deviations along the x-axis and y-axis, respectively.

2.3.5. The OLS Model

The ordinary least square (OLS) model is a multivariate linear function used to explain
the relationship between the dependent variable (yi) and the independent variable (xi) [57].
This paper uses the OLS model to measure the collinearity and significance of the influence
of dependent variables on independent variables. The formula is as follows:

yi = β0 + ∑
i

βixi + εi , (9)

where β0 is the constant term, βi is the regression coefficient, and εi is the random error term.
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2.3.6. Multi-Scale Geographically Weighted Regression

The geographically weighted regression (GWR) model is a spatial analysis technique
that builds on the OLS model to estimate parameters and examine the spatial variations
and underlying driving factors of the research subject at a particular geographic scale [58].
The GWR model allows for the direct simulation of some unstable data during the research
process to achieve local parameter estimation instead of global parameter estimation. Based
on the GWR model, this study examines how different factors impact spatial variation in
EEQ. The formula is as follows:

yi = β0(ui, vi) + ∑
m

βm(ui, vi)xim + εi , (10)

where yi is the explanatory variable, the coordinate of the target region i is (ui, vi) and β0
(ui, vi) is the intercept term, xim is the value of the explanatory variable xim on the target
region i, the value of function βm (ui, vi) on geographical location i is βm (ui, vi), m is the
number of explanatory variables, and εi is a random perturbation term.

Since the GWR model uses a fixed bandwidth, all explanatory variables have the same
spatial scale characteristics and cannot reflect spatial differences. Fotheringham improved
the geographically weighted regression model and proposed a multi-scale geographically
weighted regression (MGWR) model [42]. The MGWR model considers different levels
of spatial heterogeneity [59], which means that each explanatory variable is based on its
specific bandwidth [60]. The formula is as follows:

yi =
k

∑
j=1

βbwj(ui, vi)xij + εi , (11)

where yi is the dependent variable of i factor, xij is the attribute value of the independent
variable j at i position, βbjw is the bandwidth used by the regression coefficient of the jth
variable, (ui, vi) is the spatial coordinate of the ith element, and εi is the residual.

2.3.7. Hot Spot Analysis

Hot spot analysis is a mapping technique that utilizes sample distances to identify
clusters of high or low values within a specific geographic area [61]. This method can
identify locations where statistically significant high or low values exist. In this analysis,
samples are grouped based on similar values of high or low within a cluster. To identify
regions with high and low EEQ in this study, the Getis-Ord Gi* statistic was employed [62].
The formula is as follows:

G∗i =

n
∑

j=1
wi,jxj − X

n
∑

j=1
wi,j

S

√√√√n
n
∑

j=1
w2

i,j−
(

n
∑

j=1
wi,j

)2


n−1

, (12)

where i is the center of the sampled neighborhood, xj is the value of the sample variable at
location j, wi,j is the spatial weight between features i and j, and n is the number of features
in total.

3. Results
3.1. Temporal and Spatial Variation Characteristics of EEQ

The change in annual average EEQ in the LP during the study period is shown in
Figure 3. In the time domain, the annual average EEQ of the LP showed a fluctuating
upward trend from 2001 to 2010 (0.0002 a−1). The fluctuation of average EEQ from 2010 to
2019 is smaller than that from 2001 to 2010 (0.00005 a−1). In terms of spatial distribution,
the EEQ of most LP is between 0.35 and 0.60 and relatively stable. It can be concluded from
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Figure 3 that the areas with low EEQ are mainly concentrated in Taiyuan and Linfen in
Shanxi, Xian in Shaanxi, Lanzhou in Gansu, Xining in Qinghai, Yinchuan in Ningxia, and
the Kubuqi Desert with its northwestern areas. The areas with EEQ above 0.50 were mainly
distributed in the middle and lower reaches of the Yellow River Basin and the south of the
LP. The areas with better ecological environments with an average EEQ higher than 0.6 are
mainly distributed in the forest area of Yan’an and the Qinling Mountains in the south of
Xi’an.
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features in total. 

3. Results 
3.1. Temporal and Spatial Variation Characteristics of EEQ 

The change in annual average EEQ in the LP during the study period is shown in 
Figure 3. In the time domain, the annual average EEQ of the LP showed a fluctuating 
upward trend from 2001 to 2010 (0.0002 a−1). The fluctuation of average EEQ from 2010 to 
2019 is smaller than that from 2001 to 2010 (0.00005 a−1). In terms of spatial distribution, 
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in Shanxi, Xian in Shaanxi, Lanzhou in Gansu, Xining in Qinghai, Yinchuan in Ningxia, 
and the Kubuqi Desert with its northwestern areas. The areas with EEQ above 0.50 were 
mainly distributed in the middle and lower reaches of the Yellow River Basin and the 
south of the LP. The areas with better ecological environments with an average EEQ 
higher than 0.6 are mainly distributed in the forest area of Yan’an and the Qinling Moun-
tains in the south of Xi’an. 

 Figure 3. Temporal and spatial distribution of EEQ in LP from 2001 to 2019.

3.2. Evolution Trend Characteristics of EEQ

In order to further study the specific change trend of EEQ in the LP, the changes in
EEQ during 2001–2010 and 2010–2019 were superimposed and analyzed (Figure 4). The
evolution types were classified into five categories as shown in Table 3.
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Table 3. Pixel statistics of ecological environment quality change trend.

Theil−Sen Slope Z Value Type of Change
2001–2010 2010–2019

Area/km2 Percentage Area/km2 Percentage

<−0.001 <−1.96 I 68,288 10.52% 61,754 9.52%
<−0.001 −1.96~1.96 II 148,338 22.86% 107,560 16.57%

−0.001~0.001 −1.96~1.96 III 256,921 39.59% 293,663 45.25%
>0.001 −1.96~1.96 IV 96,225 14.83% 120,196 18.52%
>0.001 >1.96 V 79,242 12.21% 65,841 10.14%



Land 2023, 12, 1792 11 of 23

From 2001 to 2010 (Figure 4a), the areas with significant changes were mainly dis-
tributed in the central and southeastern regions of the LP. In the middle of the Taihang
Mountain and the Lvliang Mountain, namely, the urban areas along the central and south-
ern Shanxi Plateau (Taiyuan, Linfen, Yuncheng) showed a downward trend, while the
EEQ around the urban area was significantly improved. At the same time, the EEQ in the
northern part of Yan‘an and the northwestern part of Xi’an was also significantly improved.
The EEQ in the south of Hohhot in the northwest of the LP, the northwest of the Shaanxi
Plateau, and the Liupan Mountain area showed a downward trend. Through the pixel
statistics of the change trend during this period (Table 3), it is known that significant degra-
dation and slight degradation account for 33.38% of the total area, and the proportion of
basically unchanged and above areas reaches 66.62%, of which the significantly improved
area is 12.21%. The findings indicate that the EEQ was relatively stable in most areas of the
LP during this period, while some areas showed a deteriorating trend.

From 2010 to 2019 (Figure 4b), the areas with significant changes shifted from the
southeast to the central and eastern regions. Among them, the northeastern part of Shanxi
(Taiyuan, Yuanping, Wutai Mountains) showed a significant downward trend as a whole.
The area of Houtao in Hetao Plain, Mu Us Sandy Land in southern Ordos Plateau and
Yan’an in Shaanxi Province also showed a downward trend. Gansu Longzhong Plateau
and the mid-eastern Ordos Plateau have improved significantly compared with the past. It
can be concluded that 26.09% of the area is degraded (Table 3), which is 21.84% lower than
the previous period. The basically unchanged and above areas accounted for 73.91% of
the total area, of which the basically unchanged area accounted for 45.25%, an increase of
14.30% compared with the past. The results show that the EEQ in this period has stabilized
compared with the past.

As shown in Figure 5, the standard deviation ellipse contained most of the counties
with high growth rates of EEQ. The long semi-axis of the standard deviation ellipse was
375.79 km during 2001–2010 and 459.64 km during 2010–2019, and the corresponding
short semi-axis were 252.55 km and 277.48 km, respectively. The perimeter of the standard
deviation ellipse increased from 1992.97 km in 2001–2010 to 2361.16 km in 2010–2019,
indicating the expansion of the EEQ variation range. The increase in the long semi-axis
and the decrease in the short semi-axis indicate that the growth rate of EEQ contracted
significantly in the northeast direction and diffused significantly in the southwest direction.
The center of gravity of the ellipse of the standard deviation of the growth rate of EEQ was
distributed in Ansai County, Shaanxi Province during 2001–2010 (Figure 5b) and Huachi
County, Gansu Province during 2010–2019 (Figure 5c), respectively, with a linear shift of
124.56 km to the southwest (Figure 5d).
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3.3. Attribution Analysis of EEQ Spatial and Temporal Distribution
3.3.1. Regression Model Fitting Results

OLS analysis was performed on each dominant factor: precipitation (PRE), temper-
ature (TEM), nighttime light (NL), land use index (LUI), and population (POP), and the
results are shown in Table 4. OLS fitting results show that, from the analysis of the sig-
nificance level of the overall parameters of each factor, the results are ideal. Each factor
shows statistical significance, indicating that all dependent variables have no effect on the
independent variable. The variance inflation factor test showed that the VIF values of each
influencing factor were less than 7.5, indicating that there was no variable redundancy in
the model, and there was no multiple linear relationship among the factors. In order to
improve the goodness of fit, the GWR model needs to be introduced.
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Table 4. OLS model estimation and diagnosis results.

Year Variable Robust P VIF Adjust R2

2001

Intercept 0.0000 *** --------

0.4630

PRE 0.0000 *** 1.3399
TEM 0.0514 * 1.7830
NL 0.0191 ** 6.6650
LUI 0.0001 *** 2.4521
POP 0.0122 ** 5.5689

2010

Intercept 0.0000 *** --------

0.5911

PRE 0.0021 *** 3.9585
TEM 0.0000 *** 1.5539
NL 0.0414 ** 1.9673
LUI 0.0000 *** 2.9405
POP 0.2018 2.8629

2019

Intercept 0.0000 *** --------

0.5815

PRE 0.0018 *** 3.1993
TEM 0.0000 *** 1.2082
NL 0.03950 ** 1.8455
LUI 0.0000 *** 3.0620
POP 0.0663 * 2.2359

*: significant at 0.1 level, **: significant at 0.05 level, ***: significant at 0.01 level.

As it is necessary to compare the fitting results of GWR and MGWR, the data of
independent variables (EEQ) and dependent variables (PRE, TEM, NL, LUI, POP) are
standardized and imported into MGWR2.2, as developed by Oshan [60]. The centroid
coordinates of each county after projection are inputted. The spatial kernel adopts the
adaptive model, the bandwidth search method is the golden section method, the MGWR
model type selects the Gaussian model, and the optimization criterion is AICc. From
Table 5, the following can be revealed: In all three periods, the fit of MGWR was greater
than that of the traditional GWR model, with MGWR’s AICc values in 2001, 2010, and 2019
being 21.1798, 9.5711, and 25.2128 lower than GWR, respectively, which is well above the
threshold of 3 [63]. The bandwidth for the GWR model was set to 30 in 2001 and 2010, and
then increased to 30 and 43 in 2019. However, the MGWR model revealed that different
factors showed significant spatial heterogeneity over time. For instance, the PRE factor
had a relatively large bandwidth of 103 in 2001, which accounted for 37.18% of the total
bandwidth. This indicated that its impact on EEQ was extensive and less spatially diverse
during that period. However, its bandwidth gradually decreased to 78 in 2010 and 47
in 2019, implying that its spatial heterogeneity became stronger, and EEQ became more
sensitive to it. Finally, the proportion of the local regression standardized residual (SD) of
the MGWR model in the range of [−2.5, 2.5] in all study years is more than 96% and shows
that the model can meet the basic analysis.
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Table 5. The results of GWR and MGWR.

Year Variable
GWR MGWR

Band AICc Adjust R2 Band AICc Adjust R2 SD ∈ |2.5|

2001

intercept 30

424.2669 0.8379

30

403.0871 0.8403 96.1876%

PRE 30 103
TEM 30 30
NL 30 43
LUI 30 30
POP 30 41

2010

intercept 30

372.0822 0.8750

30

362.5111 0.8920 97.9474%

PRE 30 78
TEM 30 30
NL 30 47
LUI 30 34
POP 30 30

2019

intercept 43

377.7387 0.8512

30

352.5259 0.8590 98.2405%

PRE 43 47
TEM 43 30
NL 43 30
LUI 43 32
POP 43 31

In summary, based on the above model parameter determination, the results of the
MGWR model in this study are better than the traditional model and with a certain
feasibility. At the same time, MGWR quantifies the different bandwidths of the factors to
characterize spatial heterogeneity and sensitivity. In ArcGIS 10.2, the regression coefficient
of the MGWR model is spatially visualized to characterize the effect of each variable on the
dependent variable in the local geographic space.

3.3.2. Results of MGWR-Based Regression Coefficients of Climate Factors

It can be seen from Figure 6a–c that PRE had a positive effect on the EEQ of the LP
in most areas from 2001 to 2019. From the perspective of spatial relations, the impact of
PRE gradually expanded from the mid-east towards the south and north. Regions with
higher regression coefficients were mainly distributed in the south and have significantly
expanded over time, indicating that the positive effect range of precipitation on EEQ in
this region is gradually increasing. The regions with regression coefficients less than 0 are
generally distributed in the mid-eastern regions of the LP (Yanan, Shaanxi Province and
Linfen, Shanxi Province) and gradually shrink to the east over time, indicating that the
negative effect range of precipitation in this region is gradually decreasing.

The variation of TEM and EEQ was illustrated in Figure 6d–f, showing a ‘two-way’
effect. From the perspective of spatial relationship, it mainly considers the strip area of the
central LP (central Shanxi Province, northern Shaanxi Province) as the dividing line, and
gradually changes to the north and south regions. The regions with a regression coefficient
less than 0 are mainly distributed in the central and northern regions, and the regions with
a regression coefficient less than 0.40 have expanded over time, extending to the eastern
Ningxia and southern Inner Mongolia. The area with a regression coefficient greater than
0 is mainly distributed in the southwestern part of the LP (Lanzhou, Gansu Province) in
2001. Over time, it gradually shifts to the southeastern LP (Guanzhong Plain, eastern
Henan Province).
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3.3.3. Results of MGWR-Based Regression Coefficients of Human Activities Factors

We used the regression spatial and temporal distribution of NL, LUI, and POP to
characterize the impact of human activities on EEQ. The results are shown in Figure 7. It
can be seen from Figure 7a–c that NL had a negative effect on EEQ mainly in 2001, especially
in the southwestern region of the LP dominated by the eastern part of Qinghai Province and
the northwestern desert region of the LP. Over time, the region with a regression coefficient
less than—0.3 migrates and expands along the northwest to the southeast. For this part
of the region, EEQ tends to decrease when NL is high, while the region with a regression
coefficient greater than −0.08 expands from the south to the northeast from 2001 to 2019,
and even some areas have positive values. It shows that the negative effects of NL in this
part of these regions are significantly weakened.

The spatial and temporal distribution of EEQ and LUI regression are shown in
Figure 7d–f. It is not difficult to see that except for the northwest of the LP (Erdos, In-
ner Mongolia), the regression coefficient is greater than 0, and most areas are less than
0, indicating that most areas have high land use intensity. The ecological environment is
often poor, and the regression coefficient of LUI gradually increases from north to south.
During the period from 2001 to 2019, the negative impact range of the southern region
is expanding year by year, while the regions with positive regression coefficients in the
northwest are decreasing year by year, indicating that the impact of land development on
EEQ is increasing.
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The spatial and temporal distribution of EEQ and POP regression are shown in
Figure 7g–i. This shows that EEQ and POP are positively related in most of the central
region. From 2001 to 2019, the regions with higher regression coefficients shifted and
expanded from the southwest to the central region, and the population in these regions
was often low when the EEQ value was low. At the same time, the regions with regression
coefficients less than 0 showed the following characteristics: POP on EEQ in the southern
(Luoyang-Sanmenxia, Henan Province) LP has been negative and almost constant in
extent, while the northeastern one (Hohhot, Inner Mongolia-Datong, Shanxi) shifted to the
southeast until the central of Shanxi Province. It is worth noting that there are also areas in
the southwestern region (Xining, Qinghai Province) where POP has a negative effect on
EEQ and cannot be underestimated.
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4. Discussion
4.1. Temporal and Spatial Evolution of EEQ in the LP

From the temporal and spatial distribution and change trend of EEQ, the average
ecological environment quality of the LP is between 0.48 and 0.50, and the overall average
is general. In terms of the time dimension, the average value and its change rate during
2010–2019 are lower than that of 2001–2010. This suggests a decline in ecological environ-
ment quality over time [64,65]. This trend, along with the EEQ, suggests that vegetation
coverage plays a significant role in the changes observed in EEQ. Regarding spatial distri-
bution, the central and southern regions of the LP, particularly in Shaanxi, have displayed
a notable improvement trend due to the implementation of several control measures and
ecological construction projects. These findings align with the results reported by Dai
et al. [66]. However, the northern and central parts of Shanxi have deteriorated. This is
due to the serious ecological damage caused by mining development in the region, as
mining activities will lead to a sinking of surface structures and geological calamity [67].
The results of the standard deviation ellipse show that although the growth rate of EEQ
is slowing down, the growth area is expanding and there is a trend of migration to the
southern region, indicating that the southern region is the focus of future changes in the
LP. Using hot spot analysis for further verification (Figure 8), the results show that the
high EEQ hot spot areas of LP are mainly distributed in the central regions of LP, and
the cold spot areas are in Yinchuan, Ningxia, Xi’an, Shaanxi, and Luoyang, Henan, and
other regions (Figure 8a). Over time, the hot spot area in the southeast (B1) has been
expanding, and the changing rate in the mid-west area has slowed down (B2). The cold
spot in the northwestern area (A1) has been reducing while the south area (A2) has been
expanding (Figure 8b), shifting the center of gravity of EEQ growth to the southwest. To
summarize, the analysis suggests a declining trend in ecological environment quality in
the LP over time, with vegetation coverage playing a significant role in these changes.
The implementation of control measures and ecological construction projects has led to
improvements in certain regions, while mining development has caused deterioration in
other areas. The southern region is projected to be the focus of future changes in EEQ.

4.2. Response of EEQ to Climate Change in the LP

LP is in a remote area of the continent with an arid climate. Scarce precipitation and
large evaporation had caused a shortage of water resources and increasing sensitivity to
climate change [68,69]. The results show the evolution process of the ecological environment
of the LP on the regression coefficients of precipitation and temperature. The results of
both analyses show that climatic factors play a positive role in the southern part of the LP
and have gradually expanded over the past two decades. Compared with temperature, the
positive effect of precipitation on the ecological environment is significantly greater, which
is consistent with some research [70]. With the advancement of the ‘green map’ of the LP
from north to south, sufficient precipitation becomes a necessary condition for vegetation
growth in this area [71]. It is worth noting that the results of 2001 show that the increase in
precipitation in the hilly and gully areas of the central LP will have a negative impact on
the ecological environment. Since this period is in the early stage of the implementation
of GGP, the regional vegetation restoration has not been effective. The region is one of
the most serious areas of soil and water erosion in China [72]. Excessive rainstorms can
cause soil erosion, which damages the ecological environment. Studies have shown that
the frequency of rainstorms has increased in recent years [73]. Current research suggests
that LST and NDBSI have a negative impact on the RSEI, while NDVI and WET have a
positive impact [23–28]. GGP has been found to significantly improve NDVI [11–35], and a
denser vegetation cover can help preserve soil and water, maintain a moist surface (WET),
reduce LST, and regulate NDBSI and HQI. Therefore, GGP has a positive impact on the
EEQ by changing LUCC.
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With global climate warming and urbanization intensification [1], the average temper-
ature of the Loess Plateau has also risen [74,75], and this climate change will have multiple
impacts on vegetation growth and the ecological environment. On the one hand, it is gener-
ally believed that the growth of vegetation in the Northern Hemisphere is mainly limited
by temperature [76], and climate warming is one of the main reasons for the improvement
of vegetation productivity in the Northern Hemisphere over recent decades [77]. Therefore,
an appropriate temperature increase in the southern regions with abundant rainfall is
conducive to the growth of vegetation, improves NDVI, and thus increases EEQ. On the
other hand, for northern regions, high temperatures and drought may lead to water loss,
withering, or death of plant leaves, thus reducing NDVI and NPP. Higher temperatures also
increase the rate at which water evaporates from the soil, preventing plants from making
full use of water resources and further limiting their growth. In addition, it is worth noting
that water resources are very important to the EEQ. With the rising temperature, the rainfall
pattern and frequency in northern China may also change, resulting in the contradiction
between the supply and demand of water resources [78]. High temperatures and drought
will lead to lower soil moisture, and water shortage will seriously threaten the survival
and growth of plants. In addition, insufficient water resources may lead to the degradation
of the water ecosystem, resulting in the decrease in surface WET, the increase in LST, and
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the decrease in EEQ. Overall, attention should be given to the potential adverse effects
of excessive precipitation in specific regions that are prone to soil and water erosion. The
implementation of GGP has proven effective in improving vegetation cover and positively
impacting EEQ through changes in NDVI, soil and water conservation, and regulation
of surface temperature and built-up areas. Therefore, for the ecological environment of
the northern region, the temperature change and the contradiction between the supply
and demand of water resources are both important issues that need to be further studied
and discussed.

4.3. Response of EEQ to Human Activities in the LP

The results show that among the three indexes of POP, NL, and LUI, the influence
of LUI is the most significant, followed by POP and NL. The influence of LUI on EEQ
decreased from south to north. This pattern could be attributed to the fact that the northern
region is dominated by grassland and desert [8], with sparse vegetation and population
density compared with the southeastern region [35]. Land development will destroy
vegetation, reduce NDVI, and improve surface LST, but the impact of land development on
EEQ will not be very significant under the harsh background environment. From 2001 to
2019, NL is mostly negative, which means that urbanization was less coupled with ecology
in most regions. Some researchers have pointed out that the average coupling degree of
new urbanization and ecological environment in the Yellow River Basin is in the range of
0.34–0.70 [79], and the coupling coordination degree shows a trend of increasing and then
decreasing at the stage of confrontation and friction, which is similar to the trend of EEQ.
The positive impact of POP in the LP center region has expanded significantly. POP and
EEQ have a significant positive correlation in the central part of the LP and are negatively
related in the surrounding and economically more-developed areas. On the one hand,
this part of the region is a priority area for GGP promotion [80], but is less urbanized and
economically developed than the southeastern region [81,82]. Even if the population grows
naturally, this part of the region will improve ecologically with the advance of GGP. On
the other hand, humans tend to build communities in places with better ecology, which
means that the worse the EEQ in this part of the area, the less population. Additionally, it
is worth noting that in some economically developed regions, the situation is the opposite
and the demand for land development due to population growth in these areas can cause
environmental degradation [83]. In terms of time scale, the urban areas of cities/counties
on the Loess Plateau have grown exponentially over time [84]. Therefore, the critical
issues lie in how to coordinate the development of urban areas around the LP with the
ecological environment.

5. Conclusions

The ecological environment quality (EEQ) of the Loess Plateau (LP) generally is in
the range of 0.48–0.50, with most regions falling within the general level. The south-
central part of the LP has emerged as a hot spot for change, with a higher growth rate and
average EEQ during 2001–2010 compared to 2010–2019. However, the proportion of regions
with noticeable changes has decreased in the latter period, and the focus of ecological
environment evolution has shifted towards the southern LP, with an expanded scope.

The MGWR model outperforms the GWR model in fitting EEQ with its driving factors.
In terms of climate, the positive effects of precipitation and temperature on the ecological
environment in the southern LP have become more prominent with the advancement
of the Grain for Green Project (GGP), while the negative impact of temperature on the
northwestern region is expanding. Human activities, such as land development intensity,
have the greatest negative effect, which worsens from north to south. On the other hand,
population growth in non-urban agglomeration areas, like the central LP, rarely has a
detrimental impact on the ecological environment. Additionally, nighttime light has a more
significant negative influence on the ecological environment in the western region than in
the eastern region.
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In conclusion, the implementation of the GGP over the past two decades has been effec-
tive in improving the EEQ of the LP. However, it is crucial to pay attention to maintaining
the restoration effect in the central region, while also ensuring the reasonable development
of land in the southern area. These findings highlight the need for ongoing efforts to
preserve and improve the ecological environment of the LP.
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