Evolution Model, Mechanism, and Performance of Urban Park Green Areas in the Grand Canal of China
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Urban Green Areas and Parkland
1.2.2. Basin Planning and the Grand Canal
1.2.3. Research Gaps and Questions
2. Materials and Methods
2.1. Study Area
2.2. Research Steps and Technical Route
2.3. Research Methods and Indicator Selection
2.3.1. Boston Consulting Group (BCG) Matrix
2.3.2. Exploratory Spatial Data Analysis (ESDA)
2.3.3. Machine Learning Regression (MLR)
2.3.4. Geographically Weighted Regression (GWR)
2.3.5. GeoDetector
2.3.6. Ratio of Land Consumption Rate to Population Growth Rate (LCRPGR)
3. Results
3.1. Spatiotemporal Evolution Model
3.1.1. Supply Scale
3.1.2. Per-Capita Area
3.2. Driving Mechanism
3.2.1. Importance and Nature of Factors
3.2.2. Spatial Effect of Factors
3.2.3. Interactive Effect of Factors
3.3. Performance Evaluation
4. Discussion
4.1. Differentiated Zoning Planning
4.2. Integrated Symbiotic Planning
4.3. Multi-Policies Mix Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mwanzu, A.; Nguyu, W.; Nato, J.; Mwangi, J. Promoting Sustainable Environments through Urban Green Spaces: Insights from Kenya. Sustainability 2023, 15, 11873. [Google Scholar] [CrossRef]
- Ji, S.W.; Ma, R.F.; Ren, L.Y.; Wang, C.J. How to Find Vacant Green Space in the Process of Urban Park Planning: Case Study in Ningbo (China). Int. J. Environ. Res. Public Health 2020, 17, 8282. [Google Scholar] [CrossRef] [PubMed]
- Evers, M. Integrative River Basin Management: Challenges and Methodologies Within the German Planning System. Environ. Earth Sci. 2016, 75, 1085. [Google Scholar] [CrossRef]
- Eshetu, S.B.; Yeshitela, K.; Sieber, S. Urban Green Space Planning, Policy Implementation, and Challenges: The Case of Addis Ababa. Sustainability 2021, 13, 11344. [Google Scholar] [CrossRef]
- Feltynowski, M. Urban Green Spaces in Land-Use Policy—Types of Data, Sources of Data and Staff—The Case of Poland. Land Use Policy 2023, 127, 106570. [Google Scholar] [CrossRef]
- Buckland, M.; Pojani, D. Green Space Accessibility in Europe: A Comparative Study of Five Major Cities. Eur. Plan. Stud. 2022, 31, 146–167. [Google Scholar] [CrossRef]
- Cernicova-Buca, M.; Gherhes, V.; Obrad, C. Residents’ Satisfaction with Green Spaces and Daily Life in Small Urban Settings: Romanian Perspectives. Land 2023, 12, 689. [Google Scholar] [CrossRef]
- Sathyakumar, V.; Raaj, R.; Bardhan, R. Geospatial Approach for Assessing Spatiotemporal Dynamics of Urban Green Space Distribution Among Neighbourhoods: A Demonstration in Mumbai. Urban For. Urban Green. 2020, 48, 126585. [Google Scholar] [CrossRef]
- Chen, C.Y.; Bi, L.L.; Zhu, K.F. Study on Spatial-Temporal Change of Urban Green Space in Yangtze River Economic Belt and Its Driving Mechanism. Int. J. Environ. Res. Public Health 2021, 18, 12498. [Google Scholar] [CrossRef]
- Pinto, L.V.; Inacio, M.; Ferreira, C.S.S.; Ferreira, A.D.; Pereira, P. Ecosystem Services and Well-Being Dimensions Related to Urban Green Spaces-A Systematic Review. Sustain. Cities Soc. 2022, 85, 104072. [Google Scholar] [CrossRef]
- Lee, A.C.K.; Maheswaran, R. The Health Benefits of Urban Green Spaces: A Review of the Evidence. J. Public Health 2011, 33, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Farkas, J.Z.; Hoyk, E.; de Morais, M.B.; Csomos, G. A Systematic Review of Urban Green Space Research over the Last 30 Years: A Bibliometric Analysis. Heliyon 2023, 9, e13406. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Zhang, T.T.; Wang, X.; Lian, Z.F. Site Selection of Urban Parks Based on Fuzzy-Analytic Hierarchy Process (F-AHP): A Case Study of Nanjing, China. Int. J. Environ. Res. Public Health 2022, 19, 13159. [Google Scholar] [CrossRef] [PubMed]
- Fasihi, H.; Parizadi, T. Analysis of Spatial Equity and Access to Urban Parks in Ilam, Iran. J. Environ. Manag. 2020, 260, 110122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.G.; Cheng, Y.Y.; Zhao, B. How To Accurately Identify the Underserved Areas of Peri-Urban Parks? An Integrated Accessibility Indicator. Ecol. Indic. 2021, 122, 107263. [Google Scholar] [CrossRef]
- Senik, B.; Uzun, O. A Process Approach to the Open Green Space System Planning. Landsc. Ecol. Eng. 2022, 18, 203–219. [Google Scholar] [CrossRef]
- Gelo, D.; Turpie, J. Bayesian Analysis of Demand for Urban Green Space: A Contingent Valuation of Developing a New Urban Park. Land Use Policy 2021, 109, 105623. [Google Scholar] [CrossRef]
- Halecki, W.; Stachura, T.; Fudala, W.; Stec, A.; Kubon, S. Assessment and Planning of Green Spaces in Urban Parks: A Review. Sustain. Cities Soc. 2023, 88, 104280. [Google Scholar] [CrossRef]
- Li, Z.; Bai, X.; Xu, Z.J.; Ma, H.Q.; Xu, Y.A.; Wang, N.; Yue, X. The Optimal Spatial Delineation Method for the Service Level of Urban Park Green Space from the Perspective of Opportunity Equity. Environ. Sci. Pollut. Res. 2023, 30, 85520–85533. [Google Scholar] [CrossRef]
- Xu, S.A.; Wang, Y.Z. Influence of Spatial Scale on the Study of Access Fairness of Urban Park Green Space. Front. Environ. Sci. 2023, 10, 1030796. [Google Scholar] [CrossRef]
- Doll, C.A.; Burton, M.P.; Pannell, D.J.; Rollins, C.L. Are Greenspaces Too Green? Landscape Preferences and Water Use in Urban Parks. Ecol. Econ. 2023, 211, 107896. [Google Scholar] [CrossRef]
- Wang, X.K.; Meng, Q.Y.; Liu, X.Z.; Allam, M.; Zhang, L.L.; Hu, X.L.; Bi, Y.X.; Jancso, T. Evaluation of Fairness of Urban Park Green Space Based on an Improved Supply Model of Green Space: A Case Study of Beijing Central City. Remote Sens. 2023, 15, 244. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, Y.X.; Ma, K.M. Evaluation of PM2.5 Retention Capacity and Structural Optimization of Urban Park Green Spaces in Beijing. Forests 2022, 13, 415. [Google Scholar] [CrossRef]
- Biernacka, M.; Kronenberg, J.; Laszkiewicz, E.; Czembrowski, P.; Parsa, V.A.; Sikorska, D. Beyond Urban Parks: Mapping Informal Green Spaces in an Urban-Peri-Urban Gradient. Land Use Policy 2023, 131, 106746. [Google Scholar] [CrossRef]
- Engstrom, G.; Gren, A. Capturing the Value of Green Space in Urban Parks in A Sustainable Urban Planning and Design Context: Pros and Cons of Hedonic Pricing. Ecol. Soc. 2017, 22, 21. [Google Scholar] [CrossRef]
- Ayele, B.Y.; Megento, T.L.; Habetemariam, K.Y. The Governance and Management of Green Spaces in Addis Ababa, Ethiopia. Heliyon 2022, 8, e09413. [Google Scholar] [CrossRef] [PubMed]
- Molle, F. River-Basin Planning and Management: The Social Life of a Concept. Geoforum 2009, 40, 484–494. [Google Scholar] [CrossRef]
- Antwi, S.H.; Linnane, S.; Getty, D.; Rolston, A. River Basin Management Planning in the Republic of Ireland: Past, Present and the Future. Water 2021, 13, 2074. [Google Scholar] [CrossRef]
- Suhardiman, D.; Bastakoti, R.C.; Karki, E.; Bharati, L. The Politics of River Basin Planning and State Transformation Processes in Nepal. Geoforum 2018, 96, 70–76. [Google Scholar] [CrossRef]
- Safiolea, E.; Baki, S.; Makropoulos, C.; Deliège, J.F.; Magermans, P.; Everbecq, E.; Gkesouli, A.; Stamou, A.; Mimikou, M. Integrated Modelling for River Basin Management Planning. Proc. Inst. Civ. Eng.-Water Manag. 2011, 164, 405–419. [Google Scholar] [CrossRef]
- Merriam, E.R.; Petty, J.T.; Strager, M.P. Watershed Planning within a Quantitative Scenario Analysis Framework. JOVE-J. Vis. Exp. 2016, 113, e54095. [Google Scholar] [CrossRef]
- Matt, J.E.; Underwood, K.L.; Diehl, R.M.; Lawson, K.S.; Worley, L.C.; Rizzo, D.M. Terrain-Derived Measures for Basin Conservation and Restoration Planning. River Res. Appl. 2023, 39, 1795–1811. [Google Scholar] [CrossRef]
- Dutta, S.; Sarkar, S. Canal-Oriented Development: Integrating an Urban Canal Front with the City. Territ. Ric. Insediamenti Ambiente 2020, 13, 47–65. [Google Scholar] [CrossRef]
- Chen, Y. The Hot Spots and Frontiers of Research on the Grand Canal Culture Belt in China: Literature and Academic Trends. Humanit. Soc. Sci. Commun. 2022, 9, 453. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Wei, S. Spatial Variation and Its Local Influencing Factors of Intangible Cultural Heritage Development along the Grand Canal in China. Int. J. Environ. Res. Public Health 2023, 20, 662. [Google Scholar] [CrossRef]
- Li, L. Cultural Communication and Diversity along the Grand Canal of China: A Case Study of Folk Songs in Intangible Cultural Heritage. Herit. Sci. 2023, 11, 66. [Google Scholar] [CrossRef]
- Liu, J.G.; Tan, X.M.; Deng, J.; Zhu, Y.F. Protection and Utilization Strategies for Grand Canal Heritage. In Proceedings of the 35th IAHR World Congress, Chengdu, China, 8–13 September 2013; Volume I–II, pp. 771–779. [Google Scholar]
- Cai, J.D.; Peng, J. Introduction of Beijing-Hangzhou Grand Canal and Analysis of Its Heritage Values. In Water Projects and Technologies in Asia; CRC Press: Boca Raton, FL, USA, 2019; Volume 26, pp. 2–7. [Google Scholar] [CrossRef]
- Li, S.H.; Wang, C.S.; Fu, X.X. Exploring the Cultural Heritage Space Adaptability of the Beijing-Hangzhou Grand Canal Based on Point of Interest Data. Landsc. Res. 2023, 48, 33–44. [Google Scholar] [CrossRef]
- Xu, H. Heritage Landscape Structure Analysis in Surrounding Environment of The Grand Canal Yangzhou Section. In Proceedings of the 3rd International Conference on Energy Equipment Science and Engineering, Beijing, China, 28–31 December 2017; Volume 128, p. 012042. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zhang, C.Y.; Zhang, X.D.; Wang, X.G.; Liu, T.; Li, Z.; Lin, Q.Y.; Jing, Z.H.; Wang, X.Y.; Huang, Q.Y.; et al. Habitat Quality Assessment and Ecological Risks Prediction: An Analysis in the Beijing-Hangzhou Grand Canal (Suzhou Section). Water 2022, 14, 2602. [Google Scholar] [CrossRef]
- Yang, D.Z.; Song, W. Ecological Function Regionalization of the Core Area of the Beijing-Hangzhou Grand Canal Based on the Leading Ecological Function Perspective. Ecol. Indic. 2022, 142, 109247. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.M.; Zhu, J.Q.; Li, Z.; Wang, Y. Occurrence and Risk Assessment of Persistent Organic Pollutants in A Branch of the Grand Canal in Hangzhou, China. Environ. Monit. Assess. 2018, 190, 211. [Google Scholar] [CrossRef]
- Zhou, S.B.; Ye, J.Y.; Li, J.X.; Zhang, G.Q.; Duan, Y.Q. Identifying Intrinsic Drivers to Changes in Riparian Ecosystem Services By Using Psr Framework: A Case Study of the Grand Canal in Jiangsu, China. Environ. Dev. 2022, 43, 100728. [Google Scholar] [CrossRef]
- Lu, L.; Jiao, M.; Weng, L.S. Influence of First-Time Visitors’ Perceptions of Destination Image on Perceived Value and Destination Loyalty: A Case Study of Grand Canal Forest Park, Beijing. Forests 2023, 14, 504. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Liu, J.M.; Pei, T.; Chan, C.S.; Gao, C.X.; Meng, B. Perception in Cultural Heritage Tourism: An Analysis of Tourists to the Beijing-Hangzhou Grand Canal, China. J. Tour. Cult. Chang. 2023, 21, 569–591. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Liu, J.M.; Pei, T.; Chan, C.S.; Wang, M.D.; Meng, B. Tourism Value Assessment of Linear Cultural Heritage: The Case of the Beijing-Hangzhou Grand Canal in China. Curr. Issues Tour. 2023, 26, 47–69. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, L.S.; Leo, X. A Study on the Distribution and Utilization of Recreational Resources along the Grand Canal Culture Belt. Chin. J. Urban Environ. Stud. 2019, 7, 1950015. [Google Scholar] [CrossRef]
- He, Y.H.; Wu, L. Analysis on Spatial Development Mode of Eco-Sports Tourism in Grand Canal Landscape Environment Culture Belt. Environ. Monit. Assess. 2022, 194, 925. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.P. The Construction of Public Leisure Space of Beijing-Hangzhou Grand Canal Hangzhou Section. Adv. Build. Mater. Sustain. Archit. 2012, 174–177, 2289–2292. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, M.H.; Dou, H.H.; Su, M.M.; Dong, H.Y.; Liu, Z.H. Research on Climate Change and Water Heritage Tourism Based on the Adaptation Theory-A Case Study of the Grand Canal (Beijing Section). Sustainability 2023, 15, 7630. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Q.; Wu, J. Coupling Coordination Degree and Obstacle Factors Between the Tourism Industry and Ecological Environment in the Beijing-Hangzhou Grand Canal Basin, China. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J.C.; Sun, J.; Ye, F.; Zhang, H.Y. Spatio-Temporal Distribution Characteristics of Intangible Cultural Heritage and Tourism Response in the Beijing-Hangzhou Grand Canal Basin in China. Sustainability 2023, 15, 10348. [Google Scholar] [CrossRef]
- Shi, F.; Lu, Y.Y.; Chen, L.G.; Hsu, W.L. Evaluation of the Sustainable Use of Land Resources in the Cities along the Jiangsu Section of the Beijing-Hangzhou Grand Canal. Land 2023, 12, 1173. [Google Scholar] [CrossRef]
- Mukherjee, S.; Shashtri, S.; Singh, C.K.; Srivastava, P.K.; Gupta, M. Effect of Canal on Land Use/Land Cover Using Remote Sensing and GIS. J. Indian Soc. Remote Sens. 2009, 37, 527–537. [Google Scholar] [CrossRef]
- Dale, V.H.; Brown, S.; Calderon, M.O.; Montoya, A.S.; Martinez, R.E. Projected Land-Use Change for the Eastern Panama Canal Watershed and Its Potential Impact. In The Río Chagres, Panama. A Multidisciplinary Profile of a Tropical Watershed; Springer: Dordrecht, The Netherlands, 2005; Volume 52, pp. 337–345. [Google Scholar]
- Huang, W.J.; Xi, M.W.; Lu, S.B.; Taghizadeh-Hesary, F. Rise and Fall of the Grand Canal in the Ancient Kaifeng City of China: Role of the Grand Canal and Water Supply in Urban and Regional Development. Water 2021, 13, 1932. [Google Scholar] [CrossRef]
- Zhu, C.H.; Nie, Y.P. Study on the Effects of Grand Canal on City Pattern Change of Hangzhou Based on Remote Sensing. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; Volume 1–3, pp. 1229–1234. [Google Scholar]
- Zhao, Y.; Yan, J.W.; Li, Y.; Bian, G.M.; Du, Y.Z. In-Site Phenotype of the Settlement Space along China’s Grand Canal Tianjin Section: GIS-sDNA-Based Model Analysis. Buildings 2022, 12, 394. [Google Scholar] [CrossRef]
- Huo, X.L.; Xu, X.W.; Tang, Y.; Zhang, Z. An Analysis of the Spatial Evolution and Influencing Factors of Rural Settlements along the Shandong Section of the Grand Canal of China. River Res. Appl. 2021, 39, 1283–1299. [Google Scholar] [CrossRef]
- Portela, J.F.; Roda, E.M.M. Rural Development Programs in the Riverside Municipalities of the Canal De Castilla: Their Impact on the Evolution of the Population (2000–2020). Bol. Asoc. Geogr. Esp. 2022, 93. [Google Scholar] [CrossRef]
- Tsung, N.; Corotis, R.; Chinowsky, P.; Amadei, B. A Retrospective Approach to Assessing the Sustainability of the Grand Canal of China. Struct. Infrastruct. Eng. 2013, 9, 297–316. [Google Scholar] [CrossRef]
- Gangopadhyay, A.; Patra, P. The Historical Background of the Canal System in Calcutta, India, and Its Contribution to Development. Proc. Inst. Civ. Eng.-Eng. Hist. Herit. 2020, 173, 80–91. [Google Scholar] [CrossRef]
- Cheng, Z.; He, J.L.; Li, Y.; Zhu, Y.X.; Dai, J.C. Coupling-Coordinated Development of the Water-Economy-Innovation Nexus: A Case Study of the Grand Canal Area in China. J. Water Resour. Plan. Manag. 2023, 149, 05023016. [Google Scholar] [CrossRef]
- Xia, Y.K. Impact of Green Space on Residents’ Wellbeing: A Case Study of the Grand Canal (Hangzhou Section). Front. Public Health 2023, 11, 1146892. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, S.; Zhang, P.; Zhou, Y.; Li, K. Dynamics and Driving Mechanism of Real Estate in China’s Small Cities: A Case Study of Gansu Province. Buildings 2022, 12, 1512. [Google Scholar] [CrossRef]
- Watson, S.I. Efficient design of geographically-defined clusters with spatial autocorrelation. J. Appl. Stat. 2021, 49, 3300–3318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, W.; Zhao, K.; Zhao, S. Spatial Pattern and Driving Mechanism of Urban–Rural Income Gap in Gansu Province of China. Land 2021, 10, 1002. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, H.; Zhao, K.; Zhao, S.; Li, W. Dynamics, Risk and Management Performance of Urban Real Estate Inventory in Yangtze River Delta. Buildings 2022, 12, 2140. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, K.; Yan, Y.; Zhu, K.; Guan, C. Spatio-Temporal Evolution Characteristics and Influencing Factors of Urban Service-Industry Land in China. Land 2022, 11, 13. [Google Scholar] [CrossRef]
- Rustamov, J.; Rustamov, Z.; Zaki, N. Green Space Quality Analysis Using Machine Learning Approaches. Sustainability 2023, 15, 7782. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Fang, C.L.; Li, G.D.; Mu, X.F. Integrating Multiple Semantics Data to Assess the Dynamic Change of Urban Green Space in Beijing, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102479. [Google Scholar] [CrossRef]
- Wu, C.; Du, Y.H.; Li, S.; Liu, P.Y.; Ye, X.Y. Does Visual Contact with Green Space Impact Housing Prices? An Integrated Approach of Machine Learning and Hedonic Modeling Based on the Perception of Green Space. Land Use Policy 2022, 115, 106048. [Google Scholar] [CrossRef]
- Walker, K.W.; Jiang, Z.H. Application of adaptive boosting (AdaBoost) in demand-driven acquisition (DDA) prediction: A machine-learning approach. J. Acad. Libr. 2019, 45, 203–212. [Google Scholar] [CrossRef]
- Benocci, R.; Afify, A.; Potenza, A.; Roman, H.E.; Zambon, G. Toward the Definition of a Soundscape Ranking Index (Sri) in an Urban Park Using Machine Learning Techniques. Sensors 2023, 23, 4797. [Google Scholar] [CrossRef]
- Kim, D.; Jin, J. Does Happiness Data Say Urban Parks Are Worth It? Landsc. Urban Plan. 2018, 178, 1–11. [Google Scholar] [CrossRef]
- Zhang, W.J.; Li, J.K. A Quasi-Experimental Analysis on the Causal Effects of Covid-19 on Urban Park Visits: The Role of Park Features and the Surrounding Built Environment. Urban For. Urban Green. 2023, 82, 127898. [Google Scholar] [CrossRef] [PubMed]
- Perez-Martinez, J.; Hernandez-Gil, F.; San Miguel, G.; Ruiz, D.; Arredondo, M.T. Analysing Associations Between Digitalization and the Accomplishment of the Sustainable Development Goals. Sci. Total Environ. 2023, 857, 159700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, W.; Zhao, K.; Zhao, Y.; Chen, H.; Zhao, S. The Impact Factors and Management Policy of Digital Village Development: A Case Study of Gansu Province, China. Land 2023, 12, 616. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.T. Analysis on the Spatial Differentiation of National Wetland Park and Influencing Factors in Hunan Province. J. Cent. South Univ. For. Technol. 2019, 13, 99–106. [Google Scholar] [CrossRef]
- Li, L.; Zhao, K.; Wang, X.; Zhao, S.; Liu, X.; Li, W. Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi. Land 2022, 11, 415. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, Y.; Han, J. Industrial Land Change in Chinese Silk Road Cities and Its Influence on Environments. Land 2021, 10, 806. [Google Scholar] [CrossRef]
- Dang, Y.; Wang, C.J.; Chen, P.R. Identification and Optimization Strategy of Urban Park Service Areas Based on Accessibility by Public Transport: Beijing as a Case Study. Sustainability 2022, 14, 7112. [Google Scholar] [CrossRef]
- Hasan, M.; Hassan, L.; Al Mamun, A.; Abualreesh, M.H.; Idris, M.H.; Kamal, A.M. Urban Green Space Mediates Spatiotemporal Variation in Land Surface Temperature: A Case Study of an Urbanized City, Bangladesh. Environ. Sci. Pollut. Res. 2022, 29, 36376–36391. [Google Scholar] [CrossRef]
- Mu, B.; Liu, C.; Tian, G.H.; Xu, Y.Q.; Zhang, Y.L.; Mayer, A.L.; Lv, R.; He, R.Z.; Kim, G. Conceptual Planning of Urban-Rural Green Space from a Multidimensional Perspective: A Case Study of Zhengzhou, China. Sustainability 2020, 12, 2863. [Google Scholar] [CrossRef]
- Heshani, A.L.S.; Winijkul, E. Numerical Simulations of the Effects of Green Infrastructure on PM2.5 Dispersion in an Urban Park in Bangkok, Thailand. Heliyon 2022, 8, e10475. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Zhao, S.; Li, K. Evolution Pattern and Spatial Mismatch of Urban Greenspace and Its Impact Mechanism: Evidence from Parkland of Hunan Province. Land 2023, 12, 2071. [Google Scholar] [CrossRef]
- You, Z.; Feng, Z.; Yang, Y. Relief Degree of Land Surface Dataset of China (1km). Digital Journal of Global Change Data Repository. J. Glob. Chang. Data Discov. 2018, 2, 151–155. [Google Scholar] [CrossRef]
- Broner, F.; Bustos, P.; Carvalho, V.M. Sources of Comparative Advantage in Polluting Industries; NBER Working Paper; National Bureau of Economic Research: Cambridge, MA, USA, 2012; p. 8337. [Google Scholar] [CrossRef]
- Hering, L.; Poncet, S. Environmental policy and exports: Evidence from Chinese cities. J. Environ. Econ. Manag. 2014, 68, 296–318. [Google Scholar] [CrossRef]
- Chen, H.; Guo, W.; Feng, X.; Wei, W.; Liu, H.; Feng, Y.; Gong, W. The impact of low-carbon city pilot policy on the total factor productivity of listed enterprises in China. Resour. Conserv. Recycl. 2021, 169, 105457. [Google Scholar] [CrossRef]
- Fortheringham, S.; Brunsdon, C.H.; Charlton, M. Quantitative Geography; SAGE Publications: London, UK, 2000. [Google Scholar]
- Shrestha, A.; Luo, W. Analysis of Groundwater Nitrate Contamination in the Central Valley: Comparison of the Geodetector Method, Principal Component Analysis and Geographically Weighted Regression. ISPRS Int. J. Geo-Inf. 2017, 6, 297. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Zhao, S.; Li, W.; Zhao, K.; Zhang, P. Change Characteristics and Multilevel Influencing Factors of Real Estate Inventory—Case Studies from 35 Key Cities in China. Land 2021, 10, 928. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Melchiorri, M.; Pesaresi, M.; Florczyk, A.J.; Corbane, C.; Kemper, T. Principles and Applications of the Global Human Settlement Layer as Baseline for the Land Use Efficiency Indicator-SDG 11.3.1. ISPRS Int. J. Geo-Inf. 2019, 8, 96. [Google Scholar] [CrossRef]
- Laituri, M.; Davis, D.; Sternlieb, F.; Galvin, K. SDG Indicator 11.3.1 and Secondary Cities: An Analysis and Assessment. ISPRS Int. J. Geo-Inf. 2021, 10, 713. [Google Scholar] [CrossRef]
- Rigolon, A. A Complex Landscape of Inequity in Access to Urban Parks: A Literature Review. Landsc. Urban Plan. 2016, 153, 160–169. [Google Scholar] [CrossRef]
- Ren, X.Y.; Guan, C.H. Evaluating Geographic and Social Inequity of Urban Parks in Shanghai Through Mobile Phone-Derived Human Activities. Urban For. Urban Green. 2022, 76, 127709. [Google Scholar] [CrossRef]
- Tan, C.D.; Tang, Y.H.; Wu, X.F. Evaluation of the Equity of Urban Park Green Space Based on Population Data Spatialization: A Case Study of a Central Area of Wuhan, China. Sensors 2019, 19, 2929. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.X.; Lyu, Q.; Fan, X.; Yang, X.C.; Liu, J.T.; Zhang, X.R. Building-Based Analysis of the Spatial Provision of Urban Parks in Shenzhen, China. Int. J. Environ. Res. Public Health 2017, 14, 1521. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Lu, H.T.; Zheng, T.C.; Rong, Y.J.; Wang, C.X.; Zhang, W.; Yan, Y.; Tang, L. Vitality of Urban Parks and Its Influencing Factors from the Perspective of Recreational Service Supply, Demand, and Spatial Links. Int. J. Environ. Res. Public Health 2020, 17, 1615. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.F.; Kim, S.K. Exploring the Equality of Accessing Urban Green Spaces: A Comparative Study of 341 Chinese Cities. Ecol. Indic. 2021, 121, 107080. [Google Scholar] [CrossRef]
- Choumert, J.; Cormier, L. The Provision of Urban Parks: An Empirical Test of Spatial Spillovers in an Urban Area Using Geographic Information Systems. Ann. Reg. Sci. 2011, 47, 437–450. [Google Scholar] [CrossRef]
- Kim, J.; Choi, N.; Lee, D.K. Spatial Preference Heterogeneity in Policies for Improving Urban Green Spaces. Urban For. Urban Green. 2022, 78, 127781. [Google Scholar] [CrossRef]
- Cruickshank, J. Local Hegemonies Resisting a Green Shift and What to Do About It: The Introduction of a Regional Park in Southern Norway. J. Environ. Policy Plan. 2018, 20, 313–327. [Google Scholar] [CrossRef]
- Branca, D.; Haller, A.; Mossa, M. From the mountains to the sea: The Tepilora Natural Regional Park, Sardinia. eco.mont-J. Prot. Mt. Areas Res. Manag. 2023, 15, 28–34. [Google Scholar] [CrossRef]
- Chen, J.X.; Han, S.S.; Chen, S.Q. Understanding the Structure and Complexity of Regional Greenway Governance in China. Int. Dev. Plan. Rev. 2022, 44, 241–264. [Google Scholar] [CrossRef]
- Cheng, Y.; Shi, Y.; Andrew, S. Exploring the Link Between Fiscal Arrangements and the Quality of Public Services: Evidence from Major Us Urban Park Systems. Public Perform. Manag. Rev. 2020, 43, 1445–1470. [Google Scholar] [CrossRef]
- Nam, J.; Dempsey, N. Place-Keeping for Health? Charting the Challenges for Urban Park Management in Practice. Sustainability 2019, 11, 4383. [Google Scholar] [CrossRef]
- Smith, A.; Whitten, M.; Ernwein, M. De-municipalisation? Legacies of Austerity for England’s Urban Parks. Geogr. J. 2023. [Google Scholar] [CrossRef]
- Luo, T.; Yang, F.M.; Wu, L.L.; Gao, X.H. Equity Evaluation of Urban Park System: A Case Study of Xiamen, China. J. Environ. Eng. Landsc. Manag. 2020, 28, 125–136. [Google Scholar] [CrossRef]
- Feng, S.; Chen, L.D.; Sun, R.H.; Feng, Z.Q.; Li, J.R.; Khan, M.S.; Jing, Y.C. The Distribution and Accessibility of Urban Parks in Beijing, China: Implications of Social Equity. Int. J. Environ. Res. Public Health 2019, 16, 4894. [Google Scholar] [CrossRef]
- Kim, K.; Lee, C.K.; Kim, H.W. Understanding the Accessibility of Urban Parks and Connectivity of Green Spaces in Single-Person Household Distribution: Case Study of Incheon, South Korea. Land 2022, 11, 1441. [Google Scholar] [CrossRef]
- Guo, S.H.; Song, C.; Pei, T.; Liu, Y.X.; Ma, T.; Du, Y.Y.; Chen, J.; Fan, Z.D.; Tang, X.L.; Peng, Y.; et al. Accessibility to Urban Parks for Elderly Residents: Perspectives from Mobile Phone Data. Landsc. Urban Plan. 2019, 191, 103642. [Google Scholar] [CrossRef]
- Guo, S.H.; Yang, G.G.; Pei, T.; Ma, T.; Song, C.; Shu, H.; Du, Y.Y.; Zhou, C.H. Analysis of Factors Affecting Urban Park Service Area in Beijing: Perspectives from Multi-Source Geographic Data. Landsc. Urban Plan. 2019, 181, 103–117. [Google Scholar] [CrossRef]
Areas | Viewpoints |
---|---|
Cultural Heritage and Ecological Protection | I. Study the distribution, characteristics, and influencing factors of historical relics and intangible cultural heritage along the canal [35,36] and further propose strategies for protection and utilization [37]. II. Assess the value of cultural heritage and relics along the canal and determine the adaptive landscape development methods [38,39,40]. III. Emphasize the evaluation of canal habitat quality [41], ecological functions [42], and pollution risks [43] and analyze their impact on ecosystem services [44]. |
Tourism development | I. Value the construction of tourism destinations and the construction of the tourism industry system, including the image perception of tourism destinations and its impact on tourism loyalty [45,46], tourism value assessment and resource utilization [47,48], tourism spatial development models [49], and regional tourism openness and cooperation [50]. II. Analyze the coupling relationship between tourism and ecology, heritage, and climate, including the impact of climate change on the development of canal tourism [51], the collaboration between tourism and ecosystems and their development obstacles [52], and the correlation between the spatio–temporal distribution of cultural heritage and tourism response [53]. |
Land use and Urban-rural changes | I. Analyze the level of sustainable and healthy land use along the canal [54] and land use/cover changes [55] and their impact on regional development [56]. II. Analyze the rise and fall of cities along the canal and spatial pattern and structural changes and their influencing factors, especially the role of canal logistics and flooding [57,58]. III. Analyze the geographical evolution of rural spatial settlements along the canal and its influencing factors, especially traditional villages and historical and cultural ancient villages [59,60,61]. |
Sustainable Development | I. Assess the spatial sustainable development of the canal basin [62] and its contribution to regional development [63]. II. Analyze the spatio–temporal characteristics of urbanization and the socio–economic benefits of canal land using the coupled coordination degree model to identify the synergistic development model of water–economy–innovation [64]. |
Indicator | Code | VIF | |
---|---|---|---|
Supply scale of UPGAs | -- | ||
Per-capita area of UPGAs | -- | ||
Society | Population density | 1.14 | |
Proportion of population aged 60 and above | 1.93 | ||
Outflow population | 3.49 | ||
Economic | GDP | 2.84 | |
Per-capita GDP | 8.25 | ||
Fiscal self-sufficiency rate | 5.41 | ||
Natural | Topography | 1.27 | |
Average temperature | 1.58 | ||
Ventilation coefficient | 1.63 |
Type | LCR | PGR | LCRPGR |
---|---|---|---|
Super oversupply | >0 | <0 | <0 |
Super undersupply | <0 | >0 | <0 |
Negative oversupply | <0 | <0 | >0 and <0.75 |
Negative undersupply | <0 | <0 | ≥1.25 |
Negative equilibrium | <0 | <0 | >0.75 and <1.25 |
Positive oversupply | >0 | >0 | ≥1.25 |
Positive undersupply | >0 | >0 | >0.75 and <1.25 |
Positive equilibrium | >0 | >0 | >0 and <0.75 |
Factors | Supply Scale of UPGAs | Per-Capita Area of UPGAs | ||||||
---|---|---|---|---|---|---|---|---|
Decision Tree | Random Forest | Adaboost | Extra Trees | Decision Tree | Random Forest | Adaboost | Extra Trees | |
13.00% | 5.90% | 6.70% | 7.60% | 24.70% | 13.50% | 12.00% | 12.80% | |
4.80% | 7.30% | 8.80% | 5.80% | 7.10% | 6.70% | 7.90% | 10.10% | |
3.30% | 7.40% | 11.40% | 8.70% | 19.50% | 18.00% | 16.90% | 13.50% | |
3.10% | 5.50% | 6.70% | 6.00% | 3.00% | 7.70% | 10.20% | 8.40% | |
57.40% | 47.50% | 29.60% | 28.10% | 4.60% | 4.90% | 8.20% | 10.10% | |
0.00% | 5.00% | 6.80% | 10.50% | 0.90% | 6.30% | 7.70% | 10.80% | |
7.40% | 10.50% | 13.70% | 15.00% | 33.00% | 22.00% | 18.60% | 13.10% | |
0.00% | 3.60% | 6.80% | 7.60% | 4.20% | 6.00% | 5.50% | 6.70% | |
10.80% | 7.20% | 9.50% | 10.70% | 3.00% | 14.80% | 13.00% | 14.60% | |
R2 | 1 * | 0.89 | 1 * | 0.90 | 1 * | 0.87 | 0.99 | 0.86 |
Factors | Min | 25% Quantile | Median | 75% Quantile | Max | |
---|---|---|---|---|---|---|
Population density | −0.0048 | 0.0043 | 0.0105 | 0.0241 | 0.0394 | |
Proportion of population aged 60 and above | 0.0193 | 0.0453 | 0.0541 | 0.0599 | 0.0801 | |
Outflow population | −0.0272 | −0.0220 | −0.0049 | 0.0265 | 0.0320 | |
GDP | 0.0853 | 0.1141 | 0.1914 | 0.2162 | 0.2379 | |
Per-capita GDP | −0.1189 | −0.0948 | −0.0622 | −0.0253 | 0.0030 | |
Fiscal self-sufficiency rate | 0.0267 | 0.0534 | 0.0642 | 0.1181 | 0.1432 | |
Topography | −0.1802 | −0.1270 | −0.0838 | −0.0478 | −0.0358 | |
Average temperature | −0.1571 | −0.1136 | −0.1051 | −0.0777 | −0.0576 | |
Ventilation coefficient | −0.1224 | −0.0918 | −0.0458 | −0.0093 | −0.0043 |
Factors | Min | 25% Quantile | Median | 75% Quantile | Max | |
---|---|---|---|---|---|---|
Population density | 0.4871 | 0.5163 | 0.5195 | 0.5213 | 0.5392 | |
Proportion of population aged 60 and above | −0.0669 | −0.0463 | −0.0303 | −0.0164 | 0.0017 | |
Outflow population | −0.0188 | 0.0008 | 0.0335 | 0.0671 | 0.0815 | |
GDP | −0.1529 | −0.1385 | −0.1140 | −0.0711 | −0.0506 | |
Per-capita GDP | −0.0924 | −0.0607 | −0.0462 | −0.0397 | −0.0226 | |
Fiscal self-sufficiency rate | 0.0667 | 0.0951 | 0.1320 | 0.1579 | 0.1921 | |
Topography | −0.0645 | −0.0369 | 0.0147 | 0.0683 | 0.0847 | |
Average temperature | −0.0728 | −0.0352 | −0.0251 | −0.0099 | 0.0374 | |
Ventilation coefficient | −0.1124 | −0.1106 | −0.0939 | −0.0724 | −0.0481 |
Code | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supply scale of UPGAs | 0.08 | |||||||||
0.54 | 0.12 | |||||||||
0.63 | 0.63 | 0.28 | ||||||||
0.84 | 0.80 | 0.84 | 0.45 | |||||||
0.61 | 0.67 | 0.56 | 0.87 | 0.26 | ||||||
0.62 | 0.63 | 0.65 | 0.78 | 0.57 | 0.25 | |||||
0.15 | 0.19 | 0.43 | 0.52 | 0.34 | 0.33 | 0.00 | ||||
0.27 | 0.35 | 0.42 | 0.69 | 0.38 | 0.41 | 0.08 | 0.05 | |||
0.53 | 0.56 | 0.69 | 0.82 | 0.64 | 0.76 | 0.16 | 0.31 | 0.12 | ||
Per-capita area of UPGAs | 0.03 | |||||||||
0.09 | 0.05 | |||||||||
0.49 | 0.36 | 0.19 | ||||||||
0.06 | 0.07 | 0.25 | 0.01 | |||||||
0.52 | 0.34 | 0.69 | 0.33 | 0.20 | ||||||
0.28 | 0.14 | 0.38 | 0.12 | 0.33 | 0.06 | |||||
0.11 | 0.11 | 0.47 | 0.07 | 0.38 | 0.14 | 0.02 | ||||
0.30 | 0.24 | 0.56 | 0.25 | 0.62 | 0.38 | 0.30 | 0.18 | |||
0.21 | 0.21 | 0.55 | 0.11 | 0.52 | 0.17 | 0.08 | 0.35 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Zhao, S.; Huang, M.; Zhang, C. Evolution Model, Mechanism, and Performance of Urban Park Green Areas in the Grand Canal of China. Land 2024, 13, 42. https://doi.org/10.3390/land13010042
Cai Z, Zhao S, Huang M, Zhang C. Evolution Model, Mechanism, and Performance of Urban Park Green Areas in the Grand Canal of China. Land. 2024; 13(1):42. https://doi.org/10.3390/land13010042
Chicago/Turabian StyleCai, Zihan, Sidong Zhao, Mengshi Huang, and Congguo Zhang. 2024. "Evolution Model, Mechanism, and Performance of Urban Park Green Areas in the Grand Canal of China" Land 13, no. 1: 42. https://doi.org/10.3390/land13010042
APA StyleCai, Z., Zhao, S., Huang, M., & Zhang, C. (2024). Evolution Model, Mechanism, and Performance of Urban Park Green Areas in the Grand Canal of China. Land, 13(1), 42. https://doi.org/10.3390/land13010042