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Abstract: Urban park green areas are part of territorial space planning, shouldering the mission of
providing residents with high-quality ecological products and public space. Using a combination of
several measurement models such as the BCG (Boston Consulting Group) matrix, ESDA (Exploratory
Spatial Data Analysis), MLR (Machine Learning Regression), GWR (Geographically Weighted Re-
gression), and GeoDetector, this paper presents an empirical study on the changes in Urban Park
Green Areas (UPGAs) in the Grand Canal of China. By quantitatively measuring the spatio–temporal
evolution patterns of UPGAs, this study reveals the driving mechanisms behind them and proposes
policy recommendations for planning and management based on performance evaluation. The spatio–
temporal evolution of UPGAs and their performance in China’s Grand Canal are characterized by
significant spatial heterogeneity and correlation, with diversified development patterns such as HH
(High-scale–High-growth), HL (High-scale–Low-growth), LH (Low-scale–High-growth), and LL
(Low-scale–Low-growth) emerging. The evolution performance is dominated by positive oversup-
ply and positive equilibrium, where undersupply coexists with oversupply. Therefore, this paper
recommends the implementation of a zoning strategy in the future spatial planning of ecological
green areas, urban parks, and green infrastructure. It is also recommended to design differentiated
construction strategies and management policies for each zoning area, while promoting inter-city
mutual cooperation in the joint preparation and implementation of integrated symbiosis planning.
Furthermore, the spatio–temporal evolution of the UPGAs in the Grand Canal of China is influenced
by many factors with very complex dynamic mechanisms, and there are significant differences in the
nature, intensity, spatial effects, and interaction effects between different factors. Therefore, in the
future management of ecological green areas, urban parks, and green infrastructure, it is necessary
to interconnect policies to enhance their synergies in population, aging, industry and economy, and
ecological civilization to maximize the policy performance.

Keywords: urban park; evolution mode; driving mechanism; spatial planning; grand canal; China

1. Introduction
1.1. Background

In the national spatial planning system, the planning for urban green areas is one
of the most important projects, aimed at providing high-quality ecosystem services and
public spaces for residents in China. Scientific planning of the quantity, quality, and spatial
structure of the supply of urban green areas, especially Urban Park Green Areas (UPGAs),
will significantly foster a more sustainable and livable urban environment [1,2]. In addition,
as the construction of the Yangtze River Economic Belt, the protection and utilization of
the Grand Canal and the construction of its cultural belt, and the ecological protection
and high-quality development of the Yellow River Basin have been successively upgraded
to national strategies, watershed spatial governance has become a key task of territorial
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spatial planning and a hotspot in academic research [3]. Therefore, quantitatively analyzing
the spatio–temporal evolution patterns and driving mechanisms of UPGAs from a regional
holistic perspective and evaluating the performance of land supply and demand will
provide a basis for green infrastructure planning practice in watersheds and will help
establish a technological system adapted to territorial spatial planning in these areas.

1.2. Literature Review
1.2.1. Urban Green Areas and Parkland

Current research on urban green areas mainly deals with planning methods and
management policies [4,5], accessibility and satisfaction assessment [6,7], spatio–temporal
dynamics and their influencing factors [8,9], value for ecosystem services and health [10,11],
and other areas [12], while research on urban parkland focuses on areas such as spatial siting
and configuration [13,14], needs assessment [15], planning methods [16], and willingness
to pay [17]. Overall, there has been a large body of research on urban green areas and
parkland, but still less attention has been paid to UPGAs [18]. For example, given that the
unbalanced distribution of UPGAs has a significant impact on the well-being of residents,
Li [19] and Xu [20] proposed an optimal spatial division plan for the service levels of UPGAs
from the perspective of opportunity equity and spatial scale, based on the case studies
of Taiyuan and Xuchang. Doll [21] assessed the greenness of UPGAs in Australia from
the perspective of landscape preference and water consumption. Wang [22] quantitatively
measured the equity of UPGAs in the central city of Beijing, analyzing the space to reveal a
serious mismatch between the supply and demand of green areas. Yin [23] quantitatively
examined the retention capacity of 176 urban park green areas within the Fifth Ring Road
of Beijing for PM2.5 and endeavored to provide a basis for the design and construction
of UPGAs to improve air quality. Biernacka [24] mapped and analyzed the dynamics
of UPGAs in Poland, and they suggested the inclusion of informal green areas in urban
planning. Engstrom [25] analyzed the advantages and disadvantages of using a hedonic
price approach to capture the values of UPGAs in urban planning, and Ayele [26] studied
the management model of UPGAs in Addis Ababa during rapid urbanization in Ethiopia.

1.2.2. Basin Planning and the Grand Canal

As Molle [27] and Antwi [28] put it, watershed planning has its origins in regional
water resource management, but the embeddedness of other natural and ecological resource
management systems has contributed to its gradual transformation into a new concept of
socio–political life and spatial governance systems. Suhardiman [29] argued that watershed
planning has evolved in Nepal as an arena for power operations and struggles, with its cross
administrative boundaries jointly created by different government agencies. Essentially,
watershed planning is a debate between multiple interests on development opportunities
around the two perspectives of conservation and utilization, during which a large number
of integrated modeling methods [30,31] and planning tools are created [32]. At present,
the study of artificially excavated canals plays an important role in watershed planning,
especially in China, the United States, Egypt, and India [33]. For the Grand Canal of
China, the current research mainly focuses on the fields of cultural heritage, heritage and
ecological protection, tourism development, land use, urban and rural spatial changes, and
human habitat analysis. It has moved beyond the construction of water facilities and the
development of cultural belts to green belts and economic belts [34] (Table 1).
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Table 1. Literature review of the Grand Canal of China.

Areas Viewpoints

Cultural Heritage
and Ecological

Protection

I. Study the distribution, characteristics, and influencing factors of historical relics and intangible cultural
heritage along the canal [35,36] and further propose strategies for protection and utilization [37]. II. Assess the
value of cultural heritage and relics along the canal and determine the adaptive landscape development
methods [38–40]. III. Emphasize the evaluation of canal habitat quality [41], ecological functions [42], and
pollution risks [43] and analyze their impact on ecosystem services [44].

Tourism
development

I. Value the construction of tourism destinations and the construction of the tourism industry system,
including the image perception of tourism destinations and its impact on tourism loyalty [45,46], tourism
value assessment and resource utilization [47,48], tourism spatial development models [49], and regional
tourism openness and cooperation [50]. II. Analyze the coupling relationship between tourism and ecology,
heritage, and climate, including the impact of climate change on the development of canal tourism [51], the
collaboration between tourism and ecosystems and their development obstacles [52], and the correlation
between the spatio–temporal distribution of cultural heritage and tourism response [53].

Land use and
Urban-rural

changes

I. Analyze the level of sustainable and healthy land use along the canal [54] and land use/cover changes [55]
and their impact on regional development [56]. II. Analyze the rise and fall of cities along the canal and spatial
pattern and structural changes and their influencing factors, especially the role of canal logistics and
flooding [57,58]. III. Analyze the geographical evolution of rural spatial settlements along the canal and its
influencing factors, especially traditional villages and historical and cultural ancient villages [59–61].

Sustainable
Development

I. Assess the spatial sustainable development of the canal basin [62] and its contribution to regional
development [63]. II. Analyze the spatio–temporal characteristics of urbanization and the socio–economic
benefits of canal land using the coupled coordination degree model to identify the synergistic development
model of water–economy–innovation [64].

1.2.3. Research Gaps and Questions

There are three shortcomings in the current research. First, there is a wealth of research
on urban green areas separated from parkland, but fewer studies combining the two, and
such studies mainly focus on single-city case studies, lacking an analysis of the whole
area and not matching the needs of watershed planning. Second, studies on the Grand
Canal are mainly concerned with culture, ecological protection, and tourism development.
Few scholars have focused on land use and change, except for Xia [65], who analyzed
the impact of green areas on the well-being of residents in the Hangzhou section of the
Grand Canal. Third, the Grand Canal is essentially a regional cultural, economic, and green
belt, but current research lacks spatial correlation analysis from a regional perspective, and
discussion of the driving mechanism ignores the influence of spatial and interactive effects.

To address the aforementioned shortcomings, this paper introduces a combination of
spatial measurement models to study the whole area of the Grand Canal and analyze the
spatio–temporal evolution patterns of UPGAs to reveal the driving mechanisms behind
them, and it proposes suggestions and strategies for green areas or green infrastructure
planning based on the change performance evaluation. This study aims to (1) quantitatively
measure the evolutionary patterns of the UPGAs in the Grand Canal and reveal their
spatial effects through the BCG (Boston Consulting Group) matrix and ESDA (Exploratory
Spatial Data Analysis) in both temporal and spatial dimensions; (2) quantitatively measure
the direct influence of different influencing factors on their spatio–temporal evolution
patterns, as well as the spatial and interactive effects of the influencing factors using
the MLR (Machine Learning Regression) method, the GWR (Geographically Weighted
Regression) method, and GeoDetector; (3) evaluate the performance of their changes
according to the indicators defined in the United Nations Sustainable Development Agenda,
which dynamically analyzed the match between land supply and population demand; and
(4) provide suggestions for their management policy and planning design based on the
analysis results.
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2. Materials and Methods
2.1. Study Area

The Grand Canal of China, with a history of more than 1000 years and spanning
thousands of kilometers from north to south, crosses a number of water systems from north
to south, such as the Haihe River, the Yellow River, the Huaihe River, the Yangtze River,
Taihu Lake, and the Qiantang River, and has served as an important water transportation
channel as well as an artery for the economic and cultural exchanges between the north
and south of China since ancient times. The Grand Canal of China, consisting of the
Beijing–Hangzhou Grand Canal, the Sui–Tangshan Grand Canal, and the Zhedong Canal,
was officially approved by UNESCO on 22 June 2014 for inclusion in the World Heritage
List. The State Council issued the Outline of the Plan for the Protection, Inheritance,
and Utilization of the Grand Canal Culture in February 2019, which defines the spatial
scope of the Grand Canal basin as the two municipalities of Beijing and Tianjin and the
six provinces of Hebei, Shandong, Jiangsu, Zhejiang, Henan, and Anhui, comprising a total
of 86 cities. The study area in this paper is the same as the planned scope, covering all
86 cities (Figure 1).
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2.2. Research Steps and Technical Route

This study is based on a variety of measurement models, and it is performed in four
steps (Figure 2):
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The first step is to analyze the spatio–temporal evolution patterns of the supply scale
and per-capita area of UPGAs in the Grand Canal using the BCG (Boston Consulting
Group) matrix, and to analyze their spatial heterogeneity and autocorrelation through
ESDA (Exploratory Spatial Data Analysis).

The second step is to quantitatively analyze the driving mechanisms of changes in the
scale of their supply and per-capita area, including the importance of factors, spatial effects,
and interaction effects, based on a combination of MLR (Machine Learning Regression),
GWR (Geographically Weighted Regression), and GeoDetector.

The third step is to analyze the match between their supply and demand from the
perspective of sustainable development based on the LCRPGR (Ratio of Land Consumption
Rate to Population Growth Rate).

The fourth step is to propose planning and management suggestions as guidance and
a basis for green area planning and green infrastructure policy design based on the analysis
results of the first three steps.

2.3. Research Methods and Indicator Selection
2.3.1. Boston Consulting Group (BCG) Matrix

The BCG matrix is often used in enterprise strategy management to classify the
development status of businesses or products into four types, Star, Question, Cow, and Dog,
and propose differentiated development strategies based on the combined analysis of the
relative market share and growth rate of business departments or products. A development
strategy is needed for Star products, and further investment is required to support their
rapid expansion in the market and to make them the leading products of the enterprise.
Cow products require a profit strategy, but the core of future development strategies is not
to increase business investment, enterprise output, or market supply, but rsther to quickly
recover funds through high product profits to support the development of Star products.
For Question products, more research is needed and flexible strategies should be developed
according to the actuality. Specifically, it is necessary to, based on the survey and research
results, select some potential subcategories for key investments, while abandoning others.
Dog products should be stopped, either by abandonment or recycling, in order to decisively
stop loss, as they are the products that have been in a period of decline, unable to create
more earnings for the enterprise.

In this paper, a concept is introduced to analyze the spatio–temporal evolutionary
patterns of UPGAs in the Grand Canal of China, where Relative Share (RS) and Growth Rate
(GR) represent the regional status in the spatial dimension and the growth capacity in the
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temporal dimension, respectively. With their median as the threshold, the spatio–temporal
evolutionary patterns of UPGAs of the 86 cities in the study area can be categorized into four
quadrants—HH (High-scale–High-growth), HL (High-scale–Low-growth), LH (Low-scale–
High-growth), LL (Low-scale–Low-growth)—by the Cartesian coordinate system. With
UPGi and UPG′

i as the indicators for UPGAs in the i-th city in 2020 and 2010, respectively,
and UPGmax as the maximum value for 86 cities in the study area, RS and GR are calculated
as follows [66]:

RS =
UPGi

UPGmax
× 100% (1)

GR =

(
UPGi − UPG′

i
UPG′

i
− 1

)
× 100% (2)

2.3.2. Exploratory Spatial Data Analysis (ESDA)

This paper employs ESDA to quantitatively judge and visualize the spatial features
of UPGAs, including spatial autocorrelation and spatial heterogeneity. Moran’s I index
is used to measure the overall strength of spatial autocorrelation, and a value greater or
less than zero represents the positive or negative spatial autocorrelation in the spatial
distribution of UPGAs, respectively, otherwise it represents a random distribution [67,68].
To further measure the localized characteristics of spatial associations, the Getis–Ord G*

i
index is introduced to classify the cities in the study area into four types: hot, sub-hot,
sub-cold, and cold. To measure regional differences in UPGAs, coefficient of variation and
spatial clustering methods are introduced to represent and visually demonstrate spatial
heterogeneity. A larger coefficient of variation indicates a greater regional difference in
UPGAs, with 0.36 and 0.16 being the thresholds to determine high and low levels of spatial
heterogeneity [69]. With UPG being the mean of UPGA metrics, S being their standard
deviation, and Wij being the spatial weight, Moran’s I, Getis–Ord G*

i , and CV are calculated
as follows [70]:

I =
n∑n

i=1 ∑n
j=1 Wij

(
UPGi − UPG

)(
UPGj − UPG

)(
∑n

i=1 ∑n
j=1 Wij

)
∑n

i=1
(
UPGi − UPG

)2 (3)

G∗
i =

∑n
j=1 WijUPGi − UPG∑n

j=1 Wij

S

√ [
n∑n

j=1 W2
ij−
(

∑n
j=1 Wij

)2
]

n−1

(4)

CV = S/UPG, S =

√√√√∑n
i=1

(
UPGi − ∑n

i=1 UPGi
n

)2

n
, UPG ∑n

i=1 UPGi

n
(5)

2.3.3. Machine Learning Regression (MLR)

Given the nonlinear characteristics of distribution planning for UPGAs and machine
learning regression methods that do not rely on a priori subjective human experience, a non-
linear econometric model is adopted to analyze the importance of influencing factors [71].
In this paper, the decision tree, random forest, adaboost, and ExtraTrees algorithms in ma-
chine learning regression models are used to analyze the influence of different factors on the
spatio–temporal evolution patterns of UPGAs. Decision tree, a tree-like structure, tests the
data sample from the root node, divides the data sample into different data sample subsets
according to different results, and calculates the data through a series of rules [72]. Random
forest is a supervised machine learning algorithm constructed by integrating decision tree-
based learners, which introduces randomness into the training process of decision tree to
make it excellent in overfitting and noise resistance [73]. The AdaBoost model is an iterative
algorithm that adds a new weak classifier in each round until a predetermined sufficiently
small error rate is reached [74]. Extra-trees are derived from the traditional decision tree
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algorithm, characterized by the direct use of random features and thresholds in the node
division of the decision tree, resulting in a larger and more random shape and difference
in each decision tree [75]. The purpose of introducing machine learning regression in this
paper is to measure the importance of factors, not to make predictions. Therefore, all data
are included in the calculation, and the final result is determined according to goodness of
fit and the comparative analysis of different algorithms.

Dependent variables include the supply scale of UPGAs and per-capita area of UPGAs,
labeled with Y1 and Y2, respectively. For independent variables, the combined influence
of social, economic, and natural factors should be considered (Table 2). For social fac-
tors, population density represents the overall impact of a population aged 60 and above,
and the proportion of population aged 60 and above represents the impact of special ag-
ing groups [76]. Outflow population indicates the impact of a semi-urbanized, transient
population [77]. Of the economic factors, GDP represents the impact of the size of the
economy [78]. Per-capita GDP represents the impact of the stage and quality of economic
development [79,80] and fiscal self-sufficiency rate represents the government’s ability to
intervene in the economy [81,82]. In terms of natural factors, topography represents the im-
pact of topographic complexity [83], average temperature represents the impact of climate
change, especially the urban heat island effect [84], and ventilation coefficient represents
the impact of regional wind environment and urban air quality [85,86]. According to the
measurement of covariance between factors using the least squares linear regression model,
the maximum value of VIF for per-capita GDP among the nine independent variables
reaches 8.25, but is still less than 10, indicating that the covariance of the independent vari-
ables is weak and can be almost ignored. The dependent variable data came from the China
Urban Construction Statistical Yearbook; the population data came from the population
census; the economic data came from the China City Statistical Yearbook and the statistical
yearbooks of eight provinces/municipalities directly under the central government; the
topographic relief data come from the Relief Degree of Land Surface Dataset of China
(1 km) [87,88]; the average temperature data came from data.cma.cn; and ventilation coeffi-
cients were calculated from ECMWF re-analysis-interim data by the methods of Broner [89],
Hering [90], and Chen [91]. Equations (6) and (7) are used for the positive and negative
indicators in the standardization of dependent and independent variables, where D+/−

i is
a standardized value, Di is the original value, and DMax and DMin are the maximum and
minimum values of the original data, respectively.

D+
i =

Di − DMin
DMax − DMin

+ 0.001 (6)

D−
i =

DMax − Di
DMax − DMin

+ 0.001 (7)

Table 2. Indicator selection of independent variables.

Indicator Code VIF

Supply scale of UPGAs Y1 --
Per-capita area of UPGAs Y2 --

Society
Population density X1 1.14
Proportion of population aged 60 and above X2 1.93
Outflow population X3 3.49

Economic
GDP X4 2.84
Per-capita GDP X5 8.25
Fiscal self-sufficiency rate X6 5.41

Natural
Topography X7 1.27
Average temperature X8 1.58
Ventilation coefficient X9 1.63
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2.3.4. Geographically Weighted Regression (GWR)

In this study, GWR is used to analyze the impact of each factor on the spatio–temporal
evolution patterns of UPGAs. GWR improves the computational accuracy of the regression
model by creating localized regression equations for each city and incorporating the spatial
autocorrelation and heterogeneity of UPGA changes into the regression process [92]. With
Yi representing the spatio–temporal evolution pattern of UPGAs of the i-th city (HH, HL,
LH, LL are assigned values of 4, 3, 2, and 1, respectively, in the calculation), Xik being the
k-th independent variable (influencing factor), β0 being a constant term, (µi, vi) being the
spatial location of the i-th city (geographic center of gravity coordinate), βk(µi ,vi)

being the
correlation between the variables of the i-th city, and ϵi being the error of the regression
equation, GWR is calculated as follows [93]:

Yi = β0(µi , vi)
+ ∑

k
βk(µi , vi)

Xik + ϵi (8)

2.3.5. GeoDetector

In this study, GeoDetector is used to measure the interaction between different fac-
tors. Different factors interact with each other when they act together in the UPGA plan-
ning, and GeoDetector measures the interaction effect of factor pairs using the q-index.
It calculates the spatial pattern of the dependent variable Yi and the similarity of in-
dependent variables Xik and Xil to obtain the single-factor and dual-factor influences
q (Xi), q (Xj), and q (Xi∩Xj); furthermore, it compares q (Xi∩Xj) and other parameters to
select and identify the final result—nonlinear weaken (q (Xi∩Xj) < Min q (Xi), q (Xj)),
single weaken (Min (q (Xi), q (Xj) < q (Xi∩Xj) < Max q (Xi), q (Xj)), double enhance
(q (Xi∩Xj) > Max q (Xi), q (Xj)), independent (q (Xi∩Xj) = q (Xi) + q (Xj)), and nonlinear
enhance (q (Xi∩Xj) > q (Xi) + q (Xj)) [94,95]. With h = 1, 2, 3, . . . l, where l is the number
of partitions of spatial clustering, σ2 is the total variance of dependent variables, σ2

h is the
variance of dependent variables of the h-th partition, and SSW and SST are the sums of
variances within the partition and the study area, the index q is calculated as follows [96]:

q = 1 − ∑l
h=1 nhσ2

h
nσ2 = 1 − SSW

SST
, SSW = ∑l

h=1 nhσ2
h , SST = nσ2 (9)

2.3.6. Ratio of Land Consumption Rate to Population Growth Rate (LCRPGR)

The Transforming Our World—the 2030 Agenda for Sustainable Development proposes
17 SDGs (sustainable development goals). Indicator SDG 11.3.1 is defined as the ratio of
the Land Consumption Rate (LCR) to the Population Growth Rate (PGR) and is used to
represent the relationship between urban expansion and population change [97]. This
study chooses to use this method to evaluate the performance of UPGAs from a sustainable
development perspective. LCR is a reflection of the growth rate of land used for urban
park purposes and represents the efficiency of changes in the supply of urban green areas.
PGR reflects the change rate of urban population and is used to measure the change rate
of the green area demand of the population in an area over a period of time. LCRPGR
measures the relationship between the change rates of two variables, LCR and PGR, and
is used to represent the match between supply and demand in UPGAs. Theoretically, an
LCRPGR equal to 1 is the most desirable result, and in view of the elasticity in practice
development, 0.75 and 1.25 are set as thresholds to classify the analysis results into eight
categories (Table 3). LCRPGR is calculated as follows [98]:

LCRPGR =
LCR
PGR

=

ln
(

UPGi/UPG′
i

)
n

ln
(

PDi/PD′
i

)
n

(10)
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Table 3. Matching relationship between urban park green space supply and population demand
based on LCRPGR measurements.

Type LCR PGR LCRPGR

Super oversupply >0 <0 <0
Super undersupply <0 >0 <0
Negative oversupply <0 <0 >0 and <0.75
Negative undersupply <0 <0 ≥1.25
Negative equilibrium <0 <0 >0.75 and <1.25
Positive oversupply >0 >0 ≥1.25
Positive undersupply >0 >0 >0.75 and <1.25
Positive equilibrium >0 >0 >0 and <0.75

3. Results
3.1. Spatiotemporal Evolution Model
3.1.1. Supply Scale

According to the relative share of supply scale of UPGAs, the coefficient of variation
and Moran’s I are 1.47 and 0.05, respectively (Z = 1.90, p < 0.05), indicating huge inter-city
differences and significant positive spatial autocorrelation. Most of the high-value cities are
concentrated in Shandong, Beijing, Tianjin, and provincial capital metropolitan areas such
as Zhengzhou, Hefei, Hangzhou, Shijiazhuang, and Nanjing. The Nanjing metropolitan
area extends to cover the region of Southern Jiangsu (Suzhou, Wuxi, Changzhou, etc.). In
addition, Ningbo, Linyi, Yantai, Wuxi, Nantong, Luoyang, and Zibo also have a leading
edge, with a relative share of over 10%. Most of the low-value cities are concentrated in the
north and south of Hebei and Henan and in the west of Anhui and Zhejiang, especially
Zhoushan, Jinhua, Hengshui, Tongling, Lu’an, Xuchang, Xinxiang, Anyang, Xinyang,
Puyang, Suzhou, Zhumadian, Hebi, Cangzhou, Sanmenxia, Zhoukou, Bozhou, Quzhou,
Xuancheng, Huangshan, Chizhou, and Lishui, and have a large disadvantage, with a
relative share of not more than 3%. The hotspots are concentrated in Beijing, Tianjin, and
the north of Hebei Province; the sub-hotspots are in the Shandong Peninsula and the
densely populated urban areas of Southern Jiangsu; and most of the coldspots are located
in the border areas of Henan, Anhui, Shandong, and Jiangsu Provinces (Figure 3).

According to the growth of UPGA supply scale, the CV and Moran’s I are 0.70 and
0.01 (Z = 0.61, p > 0.05), respectively, indicating that neither the inter-urban differences
nor the spatial correlations are significant. High-value cities are not spatially clustered
geographically, and include Nantong, Fuyang, Zhengzhou, Wenzhou, Jining, Kaifeng,
Ningbo, Chuzhou, Shangqiu, Yancheng, Taizhou, Qingdao, Suqian, and Liaocheng. Most
of the low-value areas are clustered in northern Hebei and southeastern Shandong, with
Pingdingshan, Luohe, Xinxiang, Qinhuangdao, Rizhao, Huaibei, Wuxi, Handan, Chizhou,
Zhenjiang, Zhangjiakou, and Tangshan lagging behind in development, and Chengde in
particular showing negative growth. The hotspot cities are mainly in the border areas of
Henan, Anhui, and Shandong Provinces and extend to central Jiangsu. The sub-hotspot
cities are distributed in the periphery of the hotspot cities in a “center-edge” structure. In
southeastern Zhejiang, a small “center-edge” structure is developing. The coldspots are
concentrated in Beijing, Tianjin, northern Hebei Province, central Shandong Province, and
the border areas of Anhui and Zhejiang Provinces.

According to the spatiotemporal evolution model of the scale of UPGA supply, the
median relative share and growth rates are 4.66% and 68.92%, respectively. A high propor-
tion is found in HH and LL cities, both at approximately 30%. HH cities are scattered in
distribution and are only in western Shandong; coastal Jiangsu; and the provincial capital
metropolitan areas of Henan, Anhui, and Zhejiang, including Beijing, Tianjin, Xingtai,
Changzhou, and others. LL cities are relatively clustered in the north of Hebei, the south
of Anhui, the west of Zhejiang, and the northeast corner of Henan, including Zhangji-
akou, Chengde, Cangzhou, Langfang, Zhenjiang, Jiaxing, Jinhua, Quzhou, Zhoushan,
Lishui, Ma’anshan, Huaibei, Huangshan, Lu’an, Chizhou, Xuancheng, Zaozhuang, Rizhao,
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Binzhou, Pingdingshan, Anyang, Hebi, Xinxiang, Puyang, Luohe, and Xinyang. Most of
the HL cities are concentrated in Shandong, Hebei, and Jiangsu, including Shijiazhuang,
Tangshan, Qinhuangdao, Handan, Baoding, Nanjing, Wuxi, Xuzhou, Suzhou, Yangzhou,
Huzhou, Taizhou, Huainan, Zibo, Yantai, Weifang, and Linyi. Most LH cities are concen-
trated in Henan and Anhui, especially in the border areas of the two provinces, including
Hengshui, Taizhou, Suqian, Bengbu, Tongling, Anqing, Chuzhou, Suzhou, Bozhou, Heze,
Kaifeng, Jiaozuo, Xuchang, Sanmenxia, Shangqiu, Zhoukou, and Zhumadian. Overall,
most of the hotspot cities are clustered in the west of Shandong and extend to Jiangsu and
Hebei, while most of the coldspot cities are in the central part of Henan and the border area
of Anhui and Zhejiang, both geographically distributed in a band (Figure 4).
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3.1.2. Per-Capita Area

According to the relative share of the per-capita area of UPGAs, the CV and Moran’s I
are 0.19 and 0.17, respectively (Z = 3.93, p < 0.01), indicating moderate inter-city differ-
ences but significant positive spatial autocorrelation. Most of the high-value cities are
concentrated in Shandong, with a few in the northern end of Hebei and southern Anhui. In
addition, Chuzhou, Bozhou, Fuyang, Nantong, Yangzhou, and other cities also have a lead-
ing edge, with a relative share close to 70%. Most of the low-value cities are concentrated
in Zhejiang, the western part of Hebei, the border area of Henan and Shandong, and the
central part of Anhui, especially Taizhou, Wuhu, Pingdingshan, Hefei, Anyang, Suzhou,
Jinhua, Hangzhou, Xinxiang, Jinan, Lishui, Cangzhou, Zhangjiakou, and Tianjin, and they
have a significant disadvantage, with a relative share of less than 50%. The hotspot cities
are all clustered in Shandong and the sub-hotspot cities are in its periphery and extend to
Hebei and Jiangsu, forming a “center-edge” structure. There are three clusters of coldspot
cities in Zhejiang (except Hangzhou), Beijing–Tianjin, and the east of Henan, while all other
cities are sub-hotspots (Figure 5).

According to the growth rate of the per-capita area of UPGAs, the CV and Moran’s I
are 1.17 and 0.20 (Z = 4.53, p < 0.01), respectively, indicating significant spatial heterogeneity
and spatial autocorrelation. Most of the high-value cities are concentrated in Henan
and extend in a continuous belt towards Anhui and a necklace (stepping stone) towards
Shandong. Low-value cities are clustered in northern Hebei, central Zhejiang, Shandong,
and southern Jiangsu, with Zhangjiakou, Shaoxing, Hefei, Qinhuangdao, Yantai, Handan,
Rizhao, Hangzhou, Chengde, and Suzhou in particular showing negative growth. The
hotspot cities are mainly concentrated in the border area of Henan and Anhui Provinces,
while the sub-hotspot cities are in its periphery, forming a “center-edge” structure. There are
three coldspot urban clusters in northern Zhejiang, the peninsula and south of Shandong,
and the eastern part of the Beijing–Tianjin–Hebei metropolitan area (Beijing–Tangshan–
Qinhuangdao region).
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According to the spatiotemporal evolution model of per-capita area of UPGAs, the
median relative share and growth rate are 59.33% and 22.86%, respectively. A high pro-
portion is found in HL and LH cities, both at approximately 25%. HH cities are dispersed
in a geographical distribution, including Xingtai, Langfang, Nantong, Taizhou, Suqian,
Quzhou, Huaibei, Tongling, Chuzhou, Fuyang, Lu’an, Bozhou, Qingdao, Beijing, Zibo,
Dongying, Jining, Binzhou, Luoyang, and Xuchang. Most of the LL cities are concentrated
in Hebei and Zhejiang, a small number are located in the densely populated urban areas
of southern Jiangsu, and very few are randomly distributed. LL cities include Tianjin,
Shijiazhuang, Baoding, Zhangjiakou, Cangzhou, Wuxi, Changzhou, Suzhou, Hangzhou,
Jiaxing, Shaoxing, Jinhua, Taizhou, Lishui, Hefei, Huainan, Zaozhuang, Liaocheng, Puyang,
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and Xinyang. Most of the HL cities are concentrated in Shandong, and there are two small
clusters in the southern end of Anhui and the northeast corner of Hebei. These include Tang-
shan, Qinhuangdao, Handan, Chengde, Nanjing, Xuzhou, Yangzhou, Zhenjiang, Huzhou,
Zhoushan, Huangshan, Chizhou, Xuancheng, Yantai, Weifang, Tai’an, Weihai, Rizhao,
Linyi, Dezhou, Hebi, Luohe, and Sanmenxia. Most of the LH cities are concentrated in
Henan and extend to northern Anhui and northern Jiangsu, including Hengshui, Lianyun-
gang, Huai’an, Yancheng, Ningbo, Wenzhou, Wuhu, Bengbu, Ma’anshan, Anqing, Suzhou,
Jinan, Heze, Zhengzhou, Kaifeng, Pingdingshan, Anyang, Xinxiang, Jiaozuo, Nanyang,
Shangqiu, Zhoukou, and Zhumadian. Overall, most of the hotspot cities are clustered in
Shandong; sub-hotspot cities are mostly found in Henan, Anhui, Jiangsu, Hebei, Beijing,
and Tianjin; most of the coldspot cities are in Zhejiang; and most of the sub-coldspot cities
are in the border areas of Hebei, Henan, and Shandong, showing significant clustering
characteristics (Figure 6).
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The comparative analysis in the above two dimensions shows that Anyang, Pingding-
shan, Puyang, Shangqiu, Xinyang, and Zhengzhou are always at a low level in the supply
and per-capita area of urban green areas, with the construction of urban green infrastructure
far behind that of other cities along the Grand Canal. Therefore, more investment and
support are needed in future planning, construction, and management. On the contrary,
Qingdao, Linyi, Nantong, Zibo, Weifang, Jining, Weihai, and Dongying are consistently at
a high level, with the urban green infrastructure development ahead of the other cities in
the Grand Canal, making them of exemplary value in the region. It should be noted that
historical and cultural cities and livable cities such as Hangzhou, Beijing, Nanjing, Tianjin,
and Suzhou are regional leaders in the scale of urban green areas supply, but they have no
competitive advantage per capita. They should attach special attention and focus to green
infrastructure planning, construction, and management in the future.
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3.2. Driving Mechanism
3.2.1. Importance and Nature of Factors

The analysis results from the machine learning regression algorithms show a high
goodness, generally greater than 0.85, with decision tree being optimal in both schemes. The
results of the four algorithms are in general similar. Although there are differences in the
coefficients of factors with higher and lower importance, their ranking remains relatively
stable (Table 4). To provide full play to the advantages of all algorithms and eliminate
the defects of a single algorithm, this paper uses the average values of four algorithms to
determine the importance of factors. For the supply scale of UPGAs, topography, outflow
population, and population density have much higher importance than other factors, and
they are defined as key factors; fiscal self-sufficiency rate and average temperature have
much lower importance than other factors, and they are defined as auxiliary factors with
direct influences that can be ignored; and ventilation coefficient, proportion of population
aged 60 and above, GDP, and per-capita GDP are not more or less important and are
defined as important factors. For per-capita area of UPGAs, per-capita GDP is a key
factor; fiscal self-sufficiency rate, GDP, and average temperature are auxiliary factors; while
topography, ventilation coefficient, population density, outflow population, and proportion
of population aged 60 and above are important factors (Figure 7).

Table 4. Machine learning regression results based on different algorithm analysis of urban park
green areas on the Grand Canal of China. The asterisk represents the result after rounding.

Factors

Supply Scale of UPGAs Per-Capita Area of UPGAs

Decision
Tree

Random
Forest Adaboost Extra Trees Decision

Tree
Random

Forest Adaboost Extra Trees

X1 13.00% 5.90% 6.70% 7.60% 24.70% 13.50% 12.00% 12.80%
X2 4.80% 7.30% 8.80% 5.80% 7.10% 6.70% 7.90% 10.10%
X3 3.30% 7.40% 11.40% 8.70% 19.50% 18.00% 16.90% 13.50%
X4 3.10% 5.50% 6.70% 6.00% 3.00% 7.70% 10.20% 8.40%
X5 57.40% 47.50% 29.60% 28.10% 4.60% 4.90% 8.20% 10.10%
X6 0.00% 5.00% 6.80% 10.50% 0.90% 6.30% 7.70% 10.80%
X7 7.40% 10.50% 13.70% 15.00% 33.00% 22.00% 18.60% 13.10%
X8 0.00% 3.60% 6.80% 7.60% 4.20% 6.00% 5.50% 6.70%
X9 10.80% 7.20% 9.50% 10.70% 3.00% 14.80% 13.00% 14.60%
R2 1 * 0.89 1 * 0.90 1 * 0.87 0.99 0.86
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3.2.2. Spatial Effect of Factors

From the supply scale of UPGAs, the minimum values of proportion of population
aged 60 and above (X2), GDP (X4), and fiscal self-sufficiency rate (X6) are all greater than
zero, suggesting that they all play a positive role as a whole. The maximum values of
topography (X7), average temperature (X8), and ventilation coefficient (X9) are all less than
zero, suggesting that they all act as negative obstacles overall. The maximum values of
population density (X1), output population (X3), and per-capita GDP (X5) are greater than
zero, while the minimum values are less than zero, indicating that they both have positive
driving and negative blocking effects with a complex impact mechanism (Table 5). The
influence of population density shows a “dumbbell” pattern geographically, decreasing
from the north and south to the middle. Beijing, Tianjin, and Hebei in the north are
highlands of positive effects, while Henan is a depression of negative effects and Zhejiang
is a new highland of positive effects. The proportion of population aged 60 and above is
characterized by coastal highs and inland lows, with Bohai Bay (Beijing, Tianjin, Hebei,
Shandong) as the high ground, the Yangtze River Delta as the second high ground, and
Henan and Anhui as the depressions, with the weakest in Henan. The influence of the
outflow population also presents a “dumbbell” pattern geographically, with the Yangtze
River Delta, especially Zhejiang and southern Anhui Provinces, being the highlands of
positive effects and Beijing–Tianjin–Hebei being the highlands of negative effects. The
depressions are distributed in the border areas of Henan, Shandong, Anhui, and Jiangsu
Provinces. The highland of GDP influence is in the west of Anhui and the south of Henan,
and it is the origin of the gradient to the north and the coast, reaching the lowest in the
Beijing–Tianjin–Hebei region. Per-capita GDP is characterized by a decreasing gradient
from south to north, with highlands in Zhejiang and southern Anhui and depressions in
Bohai Bay and the Shandong Peninsula. The fiscal self-sufficiency rate has a high impact on
the northern region, with Beijing and Hebei as the highlands, and low for the center, with
Anhui and the northern border region of Jiangsu as the depressions. The influence increases
in a gradient from the depression to the south and reaches the highest in Zhejiang. The
influence of topography, average temperature, and ventilation coefficient is characterized
by clustering, and the depressions are all located in the Yangtze River Delta, especially
in the southern part of Zhejiang and Anhui Provinces. Their highlands are all clustered
in bands, but with differences in geographic location, where topography is located in the
Shandong Peninsula, the average temperature is located in the junction area of Shandong,
Henan, Anhui, and Jiangsu Provinces, and the ventilation coefficient is in the north of
Henan and the west of Hebei (Figure 8).

From the per-capita area of UPGAs, only the minimum value of per-capita GDP (X5)
is greater than zero, indicating that it plays a positive driving role. The maximum values of
outflow population (X3), GDP (X4), topography (X7), average temperature (X8), and venti-
lation coefficient (X9) are all less than zero, suggesting that they all act as negative obstacles
overall. The maximum values of population density (X1), proportion of population aged
60 and above (X2), and fiscal self-sufficiency rate (X6) are greater than zero, while the mini-
mum values are less than zero, indicating that they both have positive driving and negative
blocking effects with a complex impact mechanism (Table 6). The influence of population
density is characterized by a geographic gradient of “high in the coastal area and low in
the inland area”, with the two clusters in the Shandong Peninsula and the northern end
of Hebei being the highlands, and the contiguous band-like areas in Henan, Anhui, and
western Zhejiang being the depressions. The influence of the proportion of population aged
60 and above presents a “dumbbell” pattern geographically, with the Yangtze River Delta
as the highland of positive influence and Beijing–Tianjin–Hebei as the highland of negative
influence, divided by the border area of Henan, Shandong, and Hebei. The influence of
the outflow population is geographically characterized by “high in the north and low in
the south”, with Beijing–Tianjin–Hebei being the highland and the Yangtze River Delta
being the depression. The influence of GDP is characterized by a geographic gradient of
“high in the inland area and low in the coastal area”, with the highlands located in the
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border area between Anhui and Henan and the depressions in the Shandong Peninsula
and the east coast of Zhejiang. Per-capita GDP and outflow population are highly similar
in their geographic patterns of influence, except that the nature of the influence shifts
from negative to positive. The influence of the fiscal self-sufficiency rate, the proportion
of population aged 60 and above, and topography is geographically characterized by a
“low in the center and high at the edge”, with depressions located in the border areas of
Anhui, Henan, Shandong, and Jiangsu and highlands in the Shandong Peninsula, both
with a small spatial scale. The average temperature influence highland is located in the
border areas of Zhejiang, Anhui, and Jiangsu Provinces, and the depression is in Henan.
The geographic pattern of influence of ventilation coefficient and outflow population is
similar; however, the coverage of the latter uplands and depressions is larger than that
of the latter, with highlands extending to the north and west of Henan and depressions
expanding to the south of Jiangsu and the south of Anhui (Figure 9).
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Table 5. Descriptive statistical analysis of GWR parameters for the supply scale of urban park green
areas on the Grand Canal of China.

Factors Min 25% Quantile Median 75% Quantile Max

Population density X1 −0.0048 0.0043 0.0105 0.0241 0.0394
Proportion of population aged 60 and above X2 0.0193 0.0453 0.0541 0.0599 0.0801
Outflow population X3 −0.0272 −0.0220 −0.0049 0.0265 0.0320
GDP X4 0.0853 0.1141 0.1914 0.2162 0.2379
Per-capita GDP X5 −0.1189 −0.0948 −0.0622 −0.0253 0.0030
Fiscal self-sufficiency rate X6 0.0267 0.0534 0.0642 0.1181 0.1432
Topography X7 −0.1802 −0.1270 −0.0838 −0.0478 −0.0358
Average temperature X8 −0.1571 −0.1136 −0.1051 −0.0777 −0.0576
Ventilation coefficient X9 −0.1224 −0.0918 −0.0458 −0.0093 −0.0043
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Table 6. Descriptive statistical analysis of GWR parameters for the per-capita area of urban park
green areas on the Grand Canal of China.

Factors Min 25% Quantile Median 75% Quantile Max

Population density X1 0.4871 0.5163 0.5195 0.5213 0.5392
Proportion of population aged 60 and above X2 −0.0669 −0.0463 −0.0303 −0.0164 0.0017
Outflow population X3 −0.0188 0.0008 0.0335 0.0671 0.0815
GDP X4 −0.1529 −0.1385 −0.1140 −0.0711 −0.0506
Per-capita GDP X5 −0.0924 −0.0607 −0.0462 −0.0397 −0.0226
Fiscal self-sufficiency rate X6 0.0667 0.0951 0.1320 0.1579 0.1921
Topography X7 −0.0645 −0.0369 0.0147 0.0683 0.0847
Average temperature X8 −0.0728 −0.0352 −0.0251 −0.0099 0.0374
Ventilation coefficient X9 −0.1124 −0.1106 −0.0939 −0.0724 −0.0481

3.2.3. Interactive Effect of Factors

Different factors show a significant synergistic enhancement effect, mainly in the form
of nonlinear enhancement, with only a few factor pairs in double enhancement. For the
supply scale of UPGAs, the factor pair of topography ∩ average temperature (X7∩X8) is in
double enhancement. For the per-capita area of UPGAs, population density ∩ proportion
of population aged 60 and above ∩ proportion of population aged 60 and above (X1∩X2),
population density ∩ GDP (X1∩X4), proportion of population aged 60 and above ∩ GDP
(X2∩X4), and proportion of population aged 60 and above ∩ average temperature (X2∩X8)
are in double enhancement. It is worth noting that a large number of super-factor pairs
arise from factor interaction, and their interaction forces are much higher than those of
other factor pairs and single factors. Population density ∩ GDP (X1∩X4), proportion of
population aged 60 and above ∩ GDP (X2∩X4), outflow population ∩ GDP (X3∩X4), per-
capita GDP ∩ GDP (X5∩X4), and ventilation coefficient ∩ GDP (X9∩X4) are super factor
pairs of the supply scale of UPGAs, with an interaction force of more than 0.80. Popula-
tion density ∩ per-capita GDP (X1∩X5), outflow population ∩ Per-capita GDP (X3∩X5),
outflow population ∩ average temperature (X3∩X8), outflow population ∩ ventilation
coefficient (X3∩X9), per-capita GDP ∩ average temperature (X5∩X8), and per-capita GDP
∩ ventilation coefficient (X5∩X9) are super factor pairs of the per-capita area of UPGAs,
with an interaction force of more than 0.5 (Table 7).

Table 7. Factor interactive effect analysis of urban park green areas on the Grand Canal of China.

Code X1 X2 X3 X4 X5 X6 X7 X8 X9

Supply scale
of UPGAs

X1 0.08
X2 0.54 0.12
X3 0.63 0.63 0.28
X4 0.84 0.80 0.84 0.45
X5 0.61 0.67 0.56 0.87 0.26
X6 0.62 0.63 0.65 0.78 0.57 0.25
X7 0.15 0.19 0.43 0.52 0.34 0.33 0.00
X8 0.27 0.35 0.42 0.69 0.38 0.41 0.08 0.05
X9 0.53 0.56 0.69 0.82 0.64 0.76 0.16 0.31 0.12

Per-capita
area of
UPGAs

X1 0.03
X2 0.09 0.05
X3 0.49 0.36 0.19
X4 0.06 0.07 0.25 0.01
X5 0.52 0.34 0.69 0.33 0.20
X6 0.28 0.14 0.38 0.12 0.33 0.06
X7 0.11 0.11 0.47 0.07 0.38 0.14 0.02
X8 0.30 0.24 0.56 0.25 0.62 0.38 0.30 0.18
X9 0.21 0.21 0.55 0.11 0.52 0.17 0.08 0.35 0.03
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3.3. Performance Evaluation

No cities in the Grand Canal region fall into the categories of negative oversupply,
negative undersupply, or negative equilibrium. Positive oversupply has the highest propor-
tion, more than 50%, followed by positive equilibrium at approximately 30%. Ma’anshan,
Huaibei, Binzhou, Luoyang, Pingdingshan, and Shangqiu are super oversupply members.
The only member of the super undersupply group is Chengde, while the only member of
the positive undersupply group is Handan. The positive oversupply members include Bei-
jing, Tangshan, Xingtai, Cangzhou, Langfang, Hengshui, Nanjing, Nantong, Lianyungang,
Huai’an, and others. Most of these are clustered in Henan and Anhui and extend in a band
towards Jiangsu, Zhejiang, and Hebei. The positive equilibrium members include Tianjin,
Shijiazhuang, Qinhuangdao, Baoding, Zhangjiakou, Wuxi, Xuzhou, and others. These
are distributed in bands in Shandong and Hebei and in clusters in Jiangsu and Zhejiang.
Overall, there are three clusters of hotspot cities in Shandong, Jiangsu, and Zhejiang and
three clusters of coldspot cities in Henan, the northern end of Hebei, and the border area
between Henan and Anhui, with sub-hotspots and sub-coldspots distributed on their
periphery, forming a “center-edge” spatial structure (Figure 10).
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4. Discussion
4.1. Differentiated Zoning Planning

The study shows significant spatial inequalities and differences in the geographic
distribution of UPGAs in the Grand Canal, with huge disparities in the supply scale
and per-capita area across cities, including relative shares, growth rates, and spatial and
temporal evolution patterns. In addition, most of the UPGA supply is in a mismatch
with the population demand, with co-existence of both oversupply and undersupply. The
high similarity of these analytical results to the findings of other scholars suggests that
spatial imbalances and inequalities, supply–demand imbalances, and mismatches are
regular features. For the former, Rigolon [99] concluded that there are significant spatial
inequalities in urban parkland and quality and Ren [100] found geographic and social
inequalities in the distribution of urban parks in Shanghai based on Gini coefficient analysis.
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For the latter, Tan [101], Gao [102], and Zhu [103] in their case studies of Wuhan, Shenzhen,
and Beijing found that there is a serious mismatch between UPGA supply and resident
demand, which is a great challenge for future planning and management. Unfortunately,
current green areas planning, park planning, and green infrastructure planning focuses
more on the design of spatial layout schemes for intra-city parks and green area systems,
with less attention and planning response to inter-city imbalances and inequalities in
general [104].

In summary, we recommend the adoption of differentiated zoning planning strategies
in green areas and park planning for the Grand Canal. This takes the evaluation of the
performance of matching supply and demand as the core basis to adjust the direction of
the control of the supply scale and per-capita area in cities according to the classification
results of the spatio–temporal evolution mode of urban parkland. For cities such as Tianjin,
Shijiazhuang, Qinhuangdao, Baoding, Zhangjiakou, and Wuxi, as their supply and demand
are in positive balance, the focus of their future planning will be to keep their management
policies stable and to maintain and contribute to the city’s long-term balance of supply and
demand. Handan and Chengde face a serious supply shortage, with UPGA supply size
and per-capita area in HL and LL states, resulting in weak growth. Therefore, in the future,
provincial governments should increase the quota of their UPGAs, and city governments
should adopt speed control-oriented planning and policies to accelerate incremental supply
and promote a balance between supply and demand. For Tangshan, Xingtai, Cangzhou,
Langfang, Hengshui, Nanjing, Nantong, Lianyungang, and other positive oversupply cities,
subdivision planning based on spatio–temporal evolution patterns is required. Cities with
spatio–temporal evolution patterns in the HH and LH categories, such as Xingtai, Nantong,
Dongying, Fuyang, and Anqing, should strictly limit the growth of quotas in the future
and promote a balance between supply and demand by reducing land supply. They should
focus UPGA planning and management on quality improvement rather than quantity
growth in the future, and they could sell their surplus land index to undersupply cities via
the regional inter-city trading platform. Cities with spatio–temporal evolution in LL and HL
patterns, such as Cangzhou, Tangshan, Jiaxing, Huzhou, Lishui, and Xuancheng, should
increase or purchase land quotas and strengthen the planning, design, and management of
urban green areas to promote a balance between supply and demand through the growth
of land supply and the strict protection of the stock.

4.2. Integrated Symbiotic Planning

We found significant spatial correlations of UPGAs in the Grand Canal in this study,
with hotspot and coldspot cities clustering together. It should be noted that Choumert [105]
and Kim [106] also noted such correlations, and in common with this paper they both
found significant positive spatial autocorrelations in UPGAs between cities in France
and South Korea, with local spatial clustering features prominent, although the global
correlation is weak or insignificant. However, unfortunately, they did not propose a
response strategy for spatial planning and green area management policies based on
spatial correlation characteristics. We believe that clustered hotspot and coldspot cities
face similar development challenges, and they can maximize their performance with
minimum cost through inter-city collaboration in UPGA planning and management. Highly
interconnected cities may seek to rapidly increase the quantity and quality of their own
and regional green infrastructure through the construction of point-like regional parks and
linear inter-city greenways.

For the construction of regional parks, cities can learn from the European experience of
building large-scale green parks across administrative districts based on the characteristics
of natural resources such as the Grand Canal’s green areas and water system, as well as
planning and constructing open spaces, high-quality landscapes, and recreational and
activity facilities to promote the symbiosis of spatial functions and social needs [107,108].
In urban green area system planning, park system planning, and green infrastructure
planning in China, it is common to keep the planning scope in line with the scope of the
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city’s overall planning, i.e., the planning is more confined to the central urban area, which
has seriously weakened the overall allocation of green resources in counties and towns
within the municipal area and has led to no overall planning for the regional green area
system. The construction of regional parks that are not confined to the central city and
encouraged coordination between neighboring cities will contribute to the integration of
regional ecological, spatial, tourism, and social resources to enhance regional sustainability
and competitiveness. The regional greenway is a linear green open space. Natural and
artificial landscapes such as mountains, lakes, fields, scenic spots, ancient cities, cultural
heritages, traditional villages, and tree-lined roads along the main stream and tributaries of
the Grand Canal should be connected together, and landscape recreation routes and service
facilities serving pedestrians and cyclists should be built within them [109]. Hotspot cities
can link and showcase quality parks and green areas in the united cities through regional
greenways to enhance the overall image of the regional habitat. For coldspot cities, they
can promote the sharing of parks and green area resources among different cities through
regional greenways to enhance utilization efficiency and alleviate, to a certain extent, the
imbalance between supply and demand.

4.3. Multi-Policies Mix Management

Both the supply scale and per-capita areas of UPGAs have very complex driving
mechanisms. In terms of nature, the ventilation coefficient always plays a negative blocking
role, while population density always has both positive driving and negative blocking
effects. The roles of other factors are always in a complex state of change and may shift from
positive to negative (e.g., GDP), mixed (e.g., proportion of population aged 60 and above),
or from negative to mixed (e.g., average temperature and topography) or from mixed to
positive (e.g., per-capita GDP) and negative (e.g., outflow population). In terms of intensity,
the key factors of supply scales of UPGAs are completely different from those of their
per-capita area. Proportion of population aged 60 and above and ventilation coefficient are
always important factors for both, while average temperature and fiscal self-sufficiency
rate are always common auxiliary factors. The intensity ratings of the other factors differ
widely. For example, GDP has been reduced from an important factor of the supply scale
of UPGAs to an auxiliary factor of their per-capita area. Per-capita GDP, by contrast, has
been upgraded from an important factor to a key factor. In terms of interaction, the super
factor pairs of the supply scale of UPGAs are completely different from those of their
per-capita area. In terms of spatial effects, all factors show a significant spatial clustering
of influence on geographic patterns, but the geographic distribution and spatial extent of
highlands and depressions vary widely, with a variety of change patterns such as gradient
rise and fall, high in the center and low at the edge, low in the center and high at the
edge, dumbbell (high at the ends and low in the middle), contiguous belt, and clustering
emerging (Figure 11).

A growing body of research reveals that the planning and management of UPGAs
are complex systematic projects subject to the influence of many factors. Many scholars
have discussed the factors influencing changes in urban parks. For example, Cheng [110],
Nam [111], and Smith [112] argued that government funding plays a key role in the man-
agement of urban parks in China and the United Kingdom. Luo [113], Feng [114], and
Kim [115] argued that both population density and size had significant spatial correlations
with the level of service of urban parks. Guo [116,117] found that house prices, trans-
portation accessibility, and the status of the surrounding commercial facility package are
important factors influencing the accessibility of urban parks. Their findings are corrobo-
rated with the conclusions of this paper. Different from them, this paper fully explores the
spatial effects and interaction effects of different factors, which has a great inspirational
value for the design of policy combination. In view of the intensity, nature, and spatial
and interaction effects of different factors, future planners and the government should
better interconnect the policies for UPGAs. Since a single policy is limited and difficult
to operationalize in practice, multiple policies should be designed and implemented in
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the management. In addition, attention should be paid to the mode of combining policies
in policy design and implementation, integrating policies on population, ageing, social
mobility, economic and industrial development, financial investment, and the building of
an ecological civilization. While ensuring the precision of each policy, it is important to
maximize the synergy of different policies and to maximize policy performance by means
of the interaction effect of factor pairs.
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5. Conclusions

This paper arrives at the following findings: (1) The spatio–temporal evolution patterns
of the UPGAs in the Grand Canal of China are diversified, with many types emerging, such
as HH (High-scale–High-growth), HL (High-scale–Low-growth), LH (Low-scale–High-
growth), and LL (Low-scale–Low-growth). (2) The evolutionary performance of UPGAs in
the Grand Canal is mainly characterized by positive oversupply and positive equilibrium,
with super oversupply, super undersupply, and positive undersupply found in a small
number of cities. (3) The spatio–temporal evolution patterns and performance of UPGAs are
characterized by significant spatial heterogeneity and positive spatial autocorrelation, with
huge inter-city differences, and both hotspot and coldspot cities are clustered geographically.
(4) The spatio–temporal evolution of UPGAs is driven by a complex mechanism, and
different factors vary greatly in nature, intensity, spatial effect, and interaction effect.
(5) The planning and management of UPGAs in the Grand Canal should be implemented
by classifying and zoning, and zoning planning and symbiosis planning should be prepared
and implemented based on the results of the analysis. In addition, it is necessary to design
differentiated and diversified policies for each planning zone in the future, and to focus
on enhancing the synergy of multiple policies in the management, so as to maximize the
benefits based on the “combination of policies”.

This paper presents innovations in the following areas: (1) It pushes UPGA research
to shift from case studies of a single city to systematic studies of regional urban agglomera-
tions. It is a big step forward as a single system is more than the sum of its parts. Against
the backdrop of China’s urban development entering a new era of regional integration
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dominated by urban agglomerations, urban belts, urban contiguous areas, and metropoli-
tan areas, the research conclusions of individual cities reached in the past are not entirely
applicable to current regional green infrastructure planning, although they have provided
good guidance for urban scale green space system planning. (2) By integrating the BCG
(Boston Consulting Group) matrix, ESDA (Exploratory Spatial Data Analysis), MLR (Ma-
chine Learning Regression), GWR (Geographically Weighted Regression), GeoDetector, and
LCRPGR (Ratio of Land Consumption Rate to Population Growth Rate), it comprehensively
and systematically reveals the driving mechanisms behind UPGAs while quantitatively
evaluating their spatio–temporal evolution patterns and performance, especially analyzing
in detail the spatial and interactive effects of different factors. It is a brand-new exploration
and discovery. (3) Instead of being limited to or stagnated in the analysis of the change
characteristics of UPGAs, this study proposes differentiated zoning planning, integrated
symbiotic planning, and multi-policies mix management based on the design of spatial
planning and management policies for green areas, parks, and green infrastructure in the
Grand Canal of China. It is a remarkable fact that canals are common in all countries of the
world, and the technical approach, analytical methods, and results of this paper are not
only applicable to China, but can also be used as the basis and reference for canal planning
and management in Egypt, India, Indonesia, America, and other countries.

There are still some shortcomings in this study: (1) Due to data and information
limitations, this study only took into account the effect of population size in the performance
evaluation, while it did not include the heterogeneity of the needs of different populations
in the analytical model, which may affect the accuracy of the analysis results. (2) This paper
is based on a regional inter-city comparative study with no in-depth analysis of parkland
in a single city within the Grand Canal, especially within the key cities, which somewhat
constrains the breadth of application of the results. The canal is not only a navigation
channel and cultural heritage zone for human beings, but also a natural ecological zone
and a source of green well-being for the people living along the route. Beginning with
the construction of ecological civilization and ending with the sustainable development
of the Grand Canal of China, this study focuses on the regional analysis and planning of
UPGAs, expanding the field of canal research from the traditional dimensions of shipping
and transportation, water resources, and history and culture to the dimension of green
areas. It demonstrates certain theoretical innovations while responding to the practical
needs of ecological protection and high-quality development of the Grand Canal.
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